2019-2020学年高中数学 函数的概念教案2 新人教版必修1.doc
2019_2020学年新教材高中数学第三章函数的概念与性质3.2.1.1函数的单调性讲义新人教A版必修第一册

3.2.1 单调性与最大(小)值最新课程标准:借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.第1课时 函数的单调性知识点一 定义域为I 的函数f (x )的单调性状元随笔 定义中的x 1,x 2有以下3个特征(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2; (3)属于同一个单调区间. 知识点二 单调性与单调区间如果函数y =f (x )在区间D 上是单调递增或单调递减,那么就说函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.状元随笔 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接. 如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减. [教材解难]1.教材P 77思考f (x )=|x |在(-∞,0]上单调递减,在[0,+∞)上单调递增; f (x )=-x 2在(-∞,0]上单调递增,在[0,+∞)上单调递减.2.教材P 77思考(1)不能 例如反比例函数f (x )=-1x,在(-∞,0),(0,+∞)上是单调递增的,在整个定义域上不是单调递增的.(2)函数f (x )=x 在(-∞,+∞)上是单调递增的.f (x )=x 2在(-∞,0]上是单调递减,在[0,+∞)上是单调递增的.[基础自测]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:由于①中的x 1,x 2不是任意的,因此①不正确;②③④显然不正确. 答案:A2.函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12 B .m <12C .m >-12D .m <-12解析:使y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.答案:B3.函数y =-2x 2+3x 的单调减区间是( ) A .[0,+∞) B.(-∞,0) C.⎝ ⎛⎦⎥⎤-∞,34 D.⎣⎢⎡⎭⎪⎫34,+∞ 解析:借助图象得y =-2x 2+3x 的单调减区间是⎣⎢⎡⎭⎪⎫34,+∞,故选D.答案:D4.若f(x)在R上是增函数,且f(x1)>f(x2),则x1,x2的大小关系为________.解析:∵f(x)在R上是增函数,且f(x1)>f(x2),∴x1>x2.答案:x1>x2题型一利用函数图象求单调区间[经典例题]例1 已知函数y=f(x)的图象如图所示,则该函数的减区间为( )A.(-3,1)∪(1,4) B.(-5,-3)∪(-1,1)C.(-3,-1),(1,4) D.(-5,-3),(-1,1)【解析】在某个区间上,若函数y=f(x)的图象是上升的,则该区间为增区间,若是下降的,则该区间为减区间,故该函数的减区间为(-3,-1),(1,4).【答案】 C观察图象,若图象呈上升(下降)趋势时为增(减)函数,对应的区间是增(减)区间.跟踪训练1 函数f(x)的图象如图所示,则( )A.函数f(x)在[-1,2]上是增函数B.函数f(x)在[-1,2]上是减函数C.函数f(x)在[-1,4]上是减函数D.函数f(x)在[2,4]上是增函数解析:函数单调性反映在函数图象上就是图象上升对应增函数,图象下降对应减函数,故选A.答案:A根据图象上升或下降趋势判断.题型二函数的单调性判断与证明[教材P79例3]例2 根据定义证明函数y =x +1x在区间(1,+∞)上单调递增.【证明】 ∀x 1,x 2∈(1,+∞), 且x 1<x 2,有y 1-y 2=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=x 1-x 2x 1x 2(x 1x 2-1). 由x 1,x 2∈(1,+∞),得x 1>1,x 2>1. 所以x 1x 2>1,x 1x 2-1>0. 又由x 1<x 2,得x 1-x 2<0. 于是x 1-x 2x 1x 2(x 1x 2-1)<0, 即y 1<y 2.所以,函数y =x +1x在区间(1,+∞)上单调递增.先根据单调性的定义任取x 1,x 2∈(1,+∞),且x 1<x 2,再判断f(x 1)-f(x 2)的符号. 教材反思利用定义证明函数单调性的步骤注:作差变形是解题关键.跟踪训练2 利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数. 证明:设x 1,x 2是区间(-1,+∞)上任意两个实数且x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1), ∵-1<x 1<x 2,∴x 2-x 1>0,x 1+1>0,x 2+1>0. ∴x 2-x 1(x 1+1)(x 2+1)>0.即f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴y =x +2x +1在(-1,+∞)上是减函数. 利用四步证明函数的单调性.题型三 由函数的单调性求参数的取值范围[经典例题]例3 已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.【解析】 ∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的减区间是(-∞,1-a ]. ∵f (x )在(-∞,4]上是减函数,∴对称轴x =1-a 必须在直线x =4的右侧或与其重合. ∴1-a ≥4,解得a ≤-3. 故a 的取值范围为(-∞,-3].状元随笔 首先求出f(x)的单调减区间,求出f(x)的对称轴为x =1-a ,利用对称轴应在直线x =4的右侧或与其重合求解.方法归纳“函数的单调区间为I ”与“函数在区间I 上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I ,而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.跟踪训练3 例3中,若将“函数在区间(-∞,4]上是减函数”改为“函数的单调递减区间为(-∞,4]”,则a 为何值?解析:由例3知函数f (x )的单调递减区间为(-∞,1-a ], ∴1-a =4,a =-3.求出函数的减区间,用端点值相等求出a.一、选择题1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( )A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数 解析:由f (a )-f (b )a -b>0知,当a >b 时,f (a )>f (b );当a <b 时,f (a )<f (b ),所以函数f (x )是R 上的增函数.答案:B2.下列函数中,在(0,2)上为增函数的是( ) A .y =-3x +2 B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -10解析:显然A 、B 两项在(0,2)上为减函数,排除;对C 项,函数在(-∞,2)上为减函数,也不符合题意;对D 项,函数在⎝ ⎛⎭⎪⎫-43,+∞上为增函数,所以在(0,2)上也为增函数,故选D.答案:D3.函数f (x )=x |x -2|的增区间是( ) A .(-∞,1] B .[2,+∞) C .(-∞,1],[2,+∞) D.(-∞,+∞)解析:f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,2x -x 2,x <2,作出f (x )简图如下:由图象可知f (x )的增区间是(-∞,1],[2,+∞). 答案:C4.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞)C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3.答案:C 二、填空题5.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是____________.解析:由图象知单调递增区间为[-1.5,3]和[5,6]. 答案:[-1.5,3]和[5,6]6.若f (x )在R 上是单调递减的,且f (x -2)<f (3),则x 的取值范围是________. 解析:函数的定义域为R .由条件可知,x -2>3,解得x >5. 答案:(5,+∞)7.函数y =|x 2-4x |的单调减区间为________.解析:画出函数y =|x 2-4x |的图象,由图象得单调减区间为:(-∞,0],[2,4].答案:(-∞,0],[2,4] 三、解答题8.判断并证明函数f (x )=-1x+1在(0,+∞)上的单调性.解析:函数f (x )=-1x+1在(0,+∞)上是增函数.证明如下:设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫-1x 1+1-⎝ ⎛⎭⎪⎫-1x 2+1=x 1-x 2x 1x 2,由x 1,x 2∈(0,+∞),得x 1x 2>0, 又由x 1<x 2,得x 1-x 2<0, 于是f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )=-1x+1在(0,+∞)上是增函数.9.作出函数f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象,并指出函数的单调区间.解析:f (x )=⎩⎪⎨⎪⎧-x -3,x ≤1,(x -2)2+3,x >1的图象如图所示.由图象可知:函数的单调减区间为(-∞,1]和(1,2];单调递增区间为(2,+∞).[尖子生题库]10.已知f (x )是定义在[-1,1]上的增函数,且f (x -2)<f (1-x ),求x 的取值范围. 解析:∵f (x )是定义在[-1,1]上的增函数, 且f (x -2)<f (1-x ), ∴⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,x -2<1-x ,解得1≤x <32,所以x 的取值范围为1≤x <32.。
【课件】函数的概念(2)课件人教A版(2019)高中数学必修第一册

(3)已知f (2x+3)的定义域为(2 ,4),求f (x-1)的定义域.
解:(1) (1 ,9 ) (2) [7, 11] (3) , 12)
二.求函数值域 1.观察法
例3.求下列函数的值域:
(1)y 2x 3 ( x 1,2,3,4,5 )
课堂小结:
一.求函数的定义域
1.已知原函数的定义域,求复合函数的定义域 2.已知复合函数的定义域,求原函数的定义域
二.求函数值域
1.观察法 2.配方法 3. 换元法 4.分离常数法
y
ax b cx d
ac
0,
ad
bc
的函数
(1)求函数 y 3x 2 的值域.
x 1
解: y 3x 2 3(x 1) 1 3 1 ,
x 1
x 1
x 1
1 0, x 1
所以 y 3
函数的值域为y | y 3 ,3 3,
(2)求函数 y 3x 2 , x 1,2 的值域.
x 1
求f(x)的值域.
(1)解:f(x)=x2-4x-2=(x-2)2-6
当x [1,4]时,
由图可得, x=2,f(X)取到最小值-6; x=4, f(X)取到最大值-2
所以f(x)的值域为 y | 6 y 2
(2) y | 5 y 3
3. 换元法——形如 y ax b cx d a 0的函数
解:(1)因为函数 f(x+2)的定义域为[0,3], 所以由 0≤x≤3,得到 2≤x+2≤5. 所以函数 f(x)的定义域是[2,5].
解:(2)因为函数 f(3-2x)的定义域为[0,3], 所以由 0≤x≤3,得到-3≤3-2x≤3. 所以函数 f(x)的定义域是[-3,3].
高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。
二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。
四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。
以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。
2019-2020学年高中数学新教材必修一第3章 3.1.1 第2课时 函数的表示方法

28
①当点F在BG上,即x∈[0,2]时,y=12x2; ②当点F在GH上,即x∈(2,5]时,y=x+2x-2×2=2x-2; ③当点F在HC上,即x∈(5,7]时,y=S五边形ABFED=S梯形ABCD-SRt△CEF =12(7+3)×2-12(7-x)2 =-12(x-7)2+10.
栏目导航
综合①②③,得函数的解析式为 12x2,x∈[0,2],
y=2x-2,x∈2,5], -12x-72+10,x∈5,7].
29
栏目导航
图像如图所示.
30
栏目导航
31
求函数解析式的常用方法 1待定系数法:若已知fx的解析式的类型,设出它的一般形 式,根据特殊值确定相关的系数即可. 2换元法:设t=gx,解出x,代入fgx,求ft的解析式即可. 3配凑法:对fgx的解析式进行配凑变形,使它能用gx表示 出来,再用x代替两边所有的“gx”即可.
栏目导航
25
[解] (1)法一(换元法):令t= x +1,则t≥1,x=(t-1)2,代入 原式有f(t)=(t-1)2-2(t-1)=t2-4t+3,f(x)=x2-4x+3(x≥1).
法二(配凑法):f( x +1)=x+2 x +1-4 x -4+3=( x +1)2- 4( x+1)+3,
因为 x+1≥1, 所以f(x)=x2-4x+3(x≥1).
栏目导航
(2)设f(x)=ax+b(a≠0), 则f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b. 又f(f(x))=4x+8, 所以a2x+ab+b=4x+8,
a2=4,
a=2, a=-2,
即ab+b=8, 解得b=83
栏目导航
47
当堂达标 固双基
2019-2020新课程同步人教A版高中数学必修第一册新学案课件:3.1 3.1.1 函数的概念

第十五页,编辑于星期日:点 二十九分。
[方法技巧] 1.判断对应关系是否为函数的 2 个条件 (1)A,B 必须是非空数集. (2)A 中任意一元素在 B 中有且只有一个元素与之对应. 对应关系是“一对一”或“多对一”的是函数关系, “一对多”的不是函数关系. 2.根据图形判断对应是否为函数的方法 (1)任取一条垂直于 x 轴的直线 l. (2)在定义域内平行移动直线 l. (3)若 l 与图形有且只有一个交点,则是函数;若在定义域内 没有交点或有两个或两个以上的交点,则不是函数.
x+10
所以函数 y=
的定义域为{x|x>-2 且 x≠-1}.
x+2
5-x≥0, (3)要使函数有意义,自变量 x 的取值必须满足
|x|-3≠0,
5-x
解得 x≤5,且 x≠±3,所以函数 y=
的定义域为{x|x≤5 且 x≠±3}.
|x|-3
x+1≥0, (4)要使函数 f(x)有意义,则
-x2-3x+4>0,
④A={(x,y)|x∈R ,y∈R },B=R ,对应关系 f:(x,y)→s=
x+y;
⑤A={x|-1≤x≤1,x∈R },B={0},对应关系 f:x→y=0.
A.①④⑤ C.②③⑤
B.②③④ D.①②④
第十四页,编辑于星期日:点 二十九分。
[解析] ①中,在对应关系 f 下,A 中不能被 3 整除的数在 B 中没有元素与之对应,故①不是;②中,在对应关系 f 下,A 中的数在 B 中有两个数与之对应,所以②不是;④中,A 不是 数集,所以④不是,③⑤显然满足函数的特征,故③⑤是.
{x|x≤b}
_(_-__∞__,__b_]_
{x|x<b}
2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质

2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质一、教材分析本节课选自人教版高一数学(必修一)第二单元2.2.2《对数函数及其性质》第一课时。
对数函数是重要的基本初等函数之一,是指数函数知识的拓展和延伸. 它的教学过程,体现了“数形结合”的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨论证的思维能力有重要作用.本节课也为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情分析学生前面已经学习了指数函数,用研究指数函数的方法,进一步研究和学习对数函数的概念、图像和性质以及初步应用,启发引导学生进一步完善初等函数的知识的系统性,加深对函数的思想方法的理解。
教学过程中,发挥大多数学生动手能力较强的特点,让学生自己通过列表、描点、连线画对数函数图像。
这样也利于对对数函数性质的理解。
三、教学目标1.知识目标:让学生掌握对数函数的概念,能正确描绘对数函数的图象,掌握对数函数的性质.2.能力目标:通过对对数函数的学习,培养学生观察,思考,分析,归纳的思维能力.3.情感目标:培养学生勇于探索的精神,让学生主动融入学习.四、教学重点和难点重点:在理解对数函数定义的基础上,掌握对数函数的图象和性质。
难点:对数函数性质的应用。
五、教法与学法说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,教师主导,学生为主体,根据这样的原则和所要完成的教学目标,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含解析

第2课时 函数的最大(小)值1.理解函数的最大(小)值的概念及其几何意义.(重点)2.了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.(重点、难点)[基础·初探]教材整理 函数的最大(小)值阅读教材P 30至“例3”以上部分,完成下列问题.1.函数f (x )=1x ,x ∈[-1,0)∪(0,2]( ) A .有最大值12,最小值-1 B .有最大值12,无最小值 C .无最大值,有最小值-1D .无最大值,也无最小值【解析】 函数f (x )=1x 在[-1,0)上单调递减,在(0,2]上也单调递减,所以无最大值,也无最小值,故选D.【答案】 D2.函数f (x )=x 2-2x +2,x ∈[-1,2]的最小值为________;最大值为________.【解析】 因为f (x )=x 2-2x +2=(x -1)2+1,x ∈[-1,2],所以f (x )的最小值为f (1)=1,最大值为f (-1)=5.【答案】 1 5[小组合作型]【精彩点拨】 先把y =x -|x -1|化成分段函数的形式,再画出其图象,并由图象求值域. 【自主解答】 y =x -|x -1|=⎩⎨⎧1,x≥12x -1,x<1,画出该函数的图象如图所示.由图可知,函数y =x -|x -1|的值域为(-∞,1].1.函数的最大值、最小值分别是函数图象的最高点、最低点的纵坐标.对于图象较容易画出来的函数,可借助于图象直观的求出其最值,但画图时要求尽量精确.2.利用图象法求函数最值的一般步骤作图象→找图象的最高点和最低点→确定最高点和最低点的纵坐标→确定最值[再练一题]1.已知函数f (x )=错误!(1)在如图1-3-2给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间及值域. 【导学号:97030053】图1-3-2【解】 (1)图象如图所示:(2)由图可知f (x )的单调递增区间为[-1,0),(2,5],值域为[-1,3].求函数f (x )=x +4x 在[1,4]上的最值.【精彩点拨】 先利用单调性的定义判断函数的单调性,再根据单调性求最值即可. 【自主解答】 设1≤x 1<x 2≤2,则f (x 1)-f (x 2)=x 1+4x1-x 2-4x2=x 1-x 2+错误!=(x 1-x 2)·⎝ ⎛⎭⎪⎫1-4x1x2=(x 1-x 2)x1x2-4x1x2=错误!. ∵1≤x 1<x 2≤2,∴x 1-x 2<0,x 1x 2-4<0,x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )是减函数. 同理f (x )在(2,4]上是增函数.∴当x =2时,f (x )取得最小值4,当x =1或x =4时,f (x )取得最大值5.函数的单调性与其最值的关系1.若函数f(x)在闭区间[a,b]上是减函数,则f(x)在闭区间[a,b]上的最大值为f(a),最小值为f(b).2.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在闭区间[a,b]上的最大值为f(b),最小值为f(a).3.求函数的最值时一定要注意所给的区间是闭区间还是开区间,若是开区间,则不一定有最大值或最小值.[再练一题]2.已知函数f(x)=1x-2,(1)判断f(x)在[3,5]上的单调性,并证明;【导学号:97030054】(2)求f(x)在[3,5]上的最大值和最小值.【解】(1)f(x)在[3,5]上为减函数.证明:任取x1,x2∈[3,5],有x1<x2,∴f(x1)-f(x2)=1x1-2-1x2-2=错误!.∵x1<x2,∴x2-x1>0.又∵x1,x2∈[3,5],∴(x1-2)(x2-2)>0,∴错误!>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[3,5]上是减函数.(2)∵f(x)在[3,5]上是减函数,∴f(x)在[3,5]上的最大值为f(3)=1,f(x)在[3,5]上的最小值为f(5)=1 3.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x 元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y 表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).(1)求函数y =f (x )的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 【精彩点拨】 (1)函数y =f (x )=出租自行车的总收入-管理费;当x ≤6时,全部租出;当6<x ≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 【自主解答】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3. ∵x ∈N ,∴3≤x ≤6,且x ∈N .当6<x ≤20时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =⎩⎨⎧50x -115,3≤x≤6,x ∈N-3x2+68x -115,6<x≤20,x ∈N.(2)当3≤x ≤6,且x ∈N 时,∵y =50x -115是增函数,∴当x =6时,y m ax =185元. 当6<x ≤20,x ∈N 时,y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113,∴当x =11时,y m ax =270元.综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法.2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键.[再练一题]3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=错误!假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G (x )=2.8+x . ∵R (x )=错误! ∴f (x )=R (x )-G (x ) =错误!(2)当x >5时,函数f (x )递减, ∴f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元).所以当工厂生产4百台时,可使盈利最大为3.6万元.[探究共研型]探究1 函数f (x )=x 1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?【提示】 函数f (x )=x 2-2x +2的图象开口向上,对称轴为x =1.(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2.(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.探究2 你能说明二次函数f (x )=ax 2+bx +c 的单调性吗?若求该函数f (x )在[m ,n ]上的最值,应考虑哪些因素?【提示】 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增.若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值.(2)根据函数在区间[t ,t +1]上的单调性分三种情况讨论,分别求出f (x )的最小值. 【自主解答】 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数, ∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值.[再练一题]4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【导学号:97030055】【解】f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)m ax=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(2)=3-4a.(3)当1<a≤2时,由图③可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(0)=-1.(4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)m ax=f(0)=-1.1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5 B.-3,5C.1,5 D.5,-3【解析】因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.【答案】 B2.函数y=x2-2x,x∈[0,3]的值域为( )A.[0,3] B.[-1,0]C.[-1,+∞) D.[-1,3]【解析】∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D.【答案】 D3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )【导学号:97030056】A.2 B.-2C.2或-2 D.0【解析】由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a +1)-(2a+1)=2,解得a=-2.综上知a=±2.【答案】 C4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________.【解析】∵6-x在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=6-x-3x在区间上是减函数,∴f(x)m ax=f(2)=6-2-3×2=-4.【答案】-45.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.【解】(1)函数f(x)在x∈[2,6]上是增函数.证明:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=错误!=错误!.由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=2x-1是区间[2,6]上的减函数.(2)由(1)可知,函数f(x)=2x-1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.。
人教A版(2019)高中数学必修第一册第三章3.1函数的基本概念教案

函数的基本概念教学目标:1.理解函数的概念,掌握函数三要素及求法.2.掌握函数解析式的求法,以及同一函数的判断标准.3.学会转化与化归、数形结合思想.问题导入:1.函数的定义:一般地,设A,B 是非空的实数集,如果对于A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与之对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,A x ∈.注:判断对应关系是否为函数,主要从以下三个方面去判断:(1)A ,B 必须是非空实数集;(2)A 中任何一个元素在B 中必须有元素与其对应;(3)A 中任何一个元素在B 中的对应元素必须唯一.2.函数三要素:定义域、值域、对应关系 .定义域:x 叫做自变量,x 的取值范围A 叫做函数的定义域.值域:函数值的集合{}f (x )|x ∈A 叫做函数的值域同一函数:如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数是同一个函数. 注:函数定义域及值域的求法总结(1)常见函数求定义域:①分式函数中分母不为0;①偶次根式函数被开方式大于等于0;①对数函数的定义域大于0.(2)抽象函数求定义域:①已知原函数)(x f 的定义域为()b a ,,求复合函数()[]x g f 的定义域:只需解不等式b x g a <<)(,不等式的解集即为所求函数定义域.①已知复合函数()[]x g f 的定义域为()b a ,,求原函数)(x f 的定义域:只需根据b x a <<求出)(x g 的值域,即得原函数)(x f 的定义域.(3)求值域的常规方法ⓐ观察法:一些简单函数,通过观察法求值域.ⓑ配方法:“二次函数类”用配方法求值域.ⓒ换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数也可以用换元法代换求值域.ⓓ分离常数法:形如y =cx +dax +b (a ≠0)的函数可用此法求值域.ⓔ单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.ⓕ数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围. 3. 求函数解析式的方法(1)待定系数法:当函数的类型已知时,可设出函数解析式,根据条件列出方程(组),进而求得函数的解析式.(2)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(3)换元法:已知)]([x g f y =,求)(x f 的解析式:令)(x g t =,并写出t 的取值范围,用t 表示x ,再将用t 表示的x 回代入原式,求出解析式.(4)方程组法:已知关于f (x )与)(xf 1或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).4.分段函数的概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数被称为分段函数. 分段函数虽由几个部分组成,但它表示的是同一个函数.注:(1)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.(2) 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先确定自变量的取值属于哪个区间,再选取相应的对应关系,离开定义域讨论分段函数是毫无意义的.知识点1:函数定义[例1] 下列图象中,可作为函数图象的是________.(填序号)[对点演练1]下列对应关系式中是A 到B 的函数的是( )A .A ⊆R ,B ⊆R ,x 2+y 2=1B .A ={-1,0,1},B ={1,2},f :x →y =|x |+1C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1知识点2:求函数的定义域和值域[例2] 下列选项中能表示同一个函数的是( )A .y =x +1与y =x 2-1x -1B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2[例3] 求下列函数的定义域.(1) y =2x -1-7x ;(2) y =(x +1)0x +2;(3) y =4-x 2+1x.[例4] 求下列函数的定义域:(1)已知函数的定义域为,求函数的定义域.(2)已知函数的定义域为,求函数的定义域. (3)已知函数的定义域为,求函数的定义域.[例5]求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]);(2) y =1-x 21+x 2; (3)3254)(-+-=x x x f[对点演练2]1. 下列各组式子是否表示同一函数?为什么?(1) f (x )=|x |,φ(t )=t 2;(2) y =1+x ·1-x ,y =1-x 2;(3) y =(3-x )2,y =x -3.[2,2]-2(1)y f x =-(24)y f x =+[0,1]f (x)f (x)[1,2]-2(1)(1)y f x f x =+--2. 求下列函数的定义域.(1) y =(x +1)2x +1-1-x ;(2) y =2x 2-3x -2+14-x. 3.已知函数)(x f y =的定义域是]2,0[,那么)1lg(1)()(2++=x x f x g 的定义域是? 4. 求下列函数的值域(1)f(x)=x -3x +1;(2)f(x)=x 2-x x 2-x +1. (3)f(x)=x 2-1x 2+1;(4)f(x)=1x -x 2.知识点3:求函数解析式[例6]待定系数:若)(x f 是一次函数,[()]94f f x x =+,则)(x f = _________________.[例7].配凑:函数2(1)f x x -=,则函数()f x =[例8].换元:已知2(1)2f x x x +=+,求函数)(x f 的解析式为 .[例9] 方程组:已知函数()f x 满足()2()f x f x x --=-,则()f x =________.[对点演练3]1.若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________.2.若,,则( )A .9B .17C .2D .3()43f x x =-()()21g x f x -=()2g =3.已知函数2)1(2-=x x f ,则f (x )=________. 4.已知函数f (x )的定义域为(0,+∞),且f (x )=2)1(xf ·x -1,则f (x )=________.知识点4:分段函数[例10]. 已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者). (1)分别用图象法和解析式表示φ(x );(2)求函数φ(x )的定义域,值域.[对点演练4]2. 已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则函数f (x )的图象是()习题演练:1.下列四种说法中,不正确的一个是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x3. 函数y =6-x|x |-4的定义域用区间表示为________.4. 若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是()5.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),)32(f 的值; (3)当a >0时,求f (a ),f (a -1)的值.6.函数y =x +1+12-x 的定义域为________.7.已知函数()2y f x =-定义域是[]0,4,则()11f x y x +=-的定义域是 .8. 求下列函数的值域:(1)y =3x +1x -2; (2)y =52x 2-4x +3; (3)y =x +41-x9.已知)(x f 是一次函数且满足()())(,1721213x f x x f x f 求+=--+.10. 若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x 11. 已知函数()f x 满足()2()f x f x x --=-,则()f x =________.12. 定义在)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,求函数)(x f 的解析式.13.已知f (x )满足2f (x )+)1(xf =3x ,则f (x )的解析式为 .14.已知1)f x =+,求函数)(x f 的解析式.15.已知f (2x +1)=3x -4,f (a )=4,则a =________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 函数的概念教案2 新人教版必修1 课 型:新授课
教学目标:
(1)会求一些简单函数的定义域与值域,并能用“区间”的符号表示;
(2)掌握复合函数定义域的求法;
(3)掌握判别两个函数是否相同的方法。
教学重点:会求一些简单函数的定义域与值域。
教学难点:复合函数定义域的求法。
教学过程: 一、复习准备:
1. 提问:什么叫函数?其三要素是什么?函数y =x
x 2
3与y =3x 是不是同一个函数?为什么?
2. 用区间表示函数y =ax +b (a ≠0)、y =ax 2+bx +c (a ≠0)、y =x
k (k ≠0)的定义域与值域。
二、讲授新课:
(一)函数定义域的求法:
函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。
例1:求下列函数的定义域(用区间表示)
⑴ f(x )=2
32--x x ; ⑵
; ⑶ f(x)=1+x -x x -2; 学生试求→订正→小结:定义域求法(分式、根式、组合式)
说明:求定义域步骤:列不等式(组) → 解不等式(组)
*复合函数的定义域求法:
(1)已知f(x)的定义域为(a,b ),求f(g(x))的定义域;
求法:由a<x<b ,知a<g(x)<b ,解得的x 的取值范围即是f(g(x))的定义域。
(2)已知f(g(x))的定义域为(a,b ),求f(x)的定义域;
求法:由a<x<b ,得g(x)的取值范围即是f(x)的定义域。
例2.已知f(x)的定义域为[0,1],求f(x +1)的定义域。
例3.已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。
巩固练习:
1.求下列函数定义域:
(1
)()f x = (2)1()11f x x
=+ 2.(1)已知函数f(x)的定义域为[0,1],求2(1)f x +的定义域;
(2)已知函数f(2x-1)的定义域为[0,1],求f(1-3x)的定义域。
(二)函数相同的判别方法: 函数是否相同,看定义域和对应法则。
例5.(课本P 18例2)下列函数中哪个与函数y=x 相等? (1
)2y =; (2
)y =
(3
)y = (4) 2
x y x
= 三)课堂练习:
1.课本 P19练习1,3;
2.求函数y=-x2+4x-1 ,x∈[-1,3) 的值域。
归纳小结:
本堂课讲授了函数定义域的求法以及判断函数相等的方法。
作业布置:
习题1.2A组,第1,2;
课后记:。