小论固体激光材料与激光器的发展及应用
固体激光器原理

固体激光器原理固体激光器是一种利用固体材料作为工作物质产生激光的装置。
它具有结构简单、体积小、效率高、可靠性强等优点,在医疗、通信、材料加工等领域有着广泛的应用。
固体激光器原理是指固体激光器产生激光的基本物理过程和原理。
在固体激光器中,激光的产生是通过材料的受激辐射过程实现的。
下面将详细介绍固体激光器的原理。
固体激光器的工作原理主要包括三个过程,吸收、受激辐射和放大。
首先是吸收过程,固体激光器中的工作物质吸收外界能量,使得原子或分子处于激发态。
其次是受激辐射过程,当处于激发态的原子或分子受到外界激发能量的作用时,会发生受激辐射,产生与激发能量相同的光子,并且这些光子与外界激发能量的相位相同。
最后是放大过程,通过光学共振腔的作用,使得受激辐射的光子不断地在工作物质中来回反射,产生放大效应,最终形成激光。
固体激光器的原理中,工作物质的选择对激光器性能有着重要的影响。
常用的固体激光器工作物质包括Nd:YAG、Nd:YVO4、Ti:sapphire等。
这些工作物质具有较高的吸收截面、较长的寿命和较宽的工作波长范围,适合用于固体激光器的制作。
此外,激光器的光学共振腔结构也是固体激光器原理中的重要组成部分,它能够提供光学反馈,使得激光得以放大并输出。
在固体激光器的原理中,激光的输出特性是一个重要的参数。
激光器的输出特性包括波长、功率、脉冲宽度、光束质量等。
这些特性直接影响着激光器的应用效果和性能表现。
因此,在固体激光器的设计和制造过程中,需要对激光器的输出特性进行精确控制和调节。
总的来说,固体激光器原理是固体激光器产生激光的基本物理过程和原理。
通过吸收、受激辐射和放大三个过程,固体激光器能够产生高能量、高亮度、高单色性的激光。
固体激光器的原理为固体激光器的设计和制造提供了重要的理论基础,同时也为固体激光器的应用提供了技术支持。
随着科学技术的不断发展,固体激光器原理将会得到更深入的研究和应用,为激光技术的发展做出更大的贡献。
激光技术的发展及应用论文

激光技术的发展及应用引言随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。
总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。
“激光”一词是“LASER”的意译。
LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。
激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。
1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。
激光不是普通的光,其特性是任何光都无法比拟的。
激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。
由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。
一、激光发展史激光技术的启蒙研究发展就完全印证了上面的话。
最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光.受激辐射提出后,陆续有科学家进行研究。
如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。
激光器的工作原理及应用

激光器的工作原理及应用引言概述:激光器是一种能够产生高强度、高单色性和高直线度的光束的装置。
它的工作原理基于光的受激辐射,通过激活激光介质中的原子或者份子使其产生光子,然后通过光学共振腔放大和反射,最终形成一束高度聚焦的激光光束。
激光器的应用广泛,包括科学研究、医疗、通信、材料加工等领域。
一、激光器的工作原理1.1 激活激光介质激光介质可以是固体、液体或者气体。
通过光或者电的激活,激活激光介质中的原子或者份子,使其处于激发态。
1.2 受激辐射激活激光介质中的原子或者份子会发生受激辐射现象,即一个光子与一个激发态的原子或者份子相互作用,激发态的原子或者份子会释放出与激发光子相同的频率、相同相位和相同方向的光子。
1.3 光学共振腔放大和反射激光光子在光学共振腔中来回反射,经过放大和反射,形成高度聚焦的激光光束。
二、激光器的应用领域2.1 科学研究激光器在科学研究中有着广泛的应用,例如激光光谱学、激光干涉仪等。
激光器的高单色性和高直线度使其在科学实验中能够提供精确的测量和分析工具。
2.2 医疗激光器在医疗领域的应用包括激光手术、激光治疗和激光诊断等。
激光手术能够实现创伤更小、恢复更快的手术方式;激光治疗可以用于皮肤病、白内障等疾病的治疗;激光诊断则能够提供高分辨率的图象,匡助医生进行准确的诊断。
2.3 通信激光器在通信领域中被广泛应用于光纤通信系统。
激光器能够产生高强度的光束,并且可以通过光纤进行传输,从而实现高速、长距离的数据传输。
三、激光器的材料加工应用3.1 激光切割激光器通过高能量的激光束对材料进行切割。
激光切割可以实现高精度、高速度的切割过程,广泛应用于金属、塑料、纸张等材料的加工。
3.2 激光焊接激光器通过高能量的激光束将材料的表面熔化并连接在一起。
激光焊接具有高精度、低热影响区和无需接触等优点,被广泛应用于汽车、航空航天等领域。
3.3 激光打标激光器通过对材料表面进行脱色、脱漆或者氧化等处理,实现对材料进行标记。
激光的应用与发展趋势

激光作为新能源代表,在许多领域都有更广泛应用。
本文从激光在当今社会的地位谈起,接着介绍激光在几大领域的应用现状,最后又分析了激光器以及全球激光产业发展趋势。
激光;激光产业;发展趋势激光器的发明是20 世纪中能与原子能、半导体、计算机相提并论的重大科技成就。
自诞生到现在得到了迅速发展,激光光源的浮现是人工创造光源历史上的又一次革命。
我国激光技术在起步阶段就发展迅速,无论是数量还是质量都和当时国际水平接近。
一项创新性技术能够如此迅速地赶上世界先进行列,这在我国近代科技发展史上并不多见。
能够将物理设想、技术方案顺利地转化成实际激光器件,主要得力于长春光机所多年来在技术光学、精密机械方面的综合能力和坚实基础。
一项新技术的开发,没有足够技术支撑很难形成气候[1] 。
在熟悉的反射、折射、吸收等光现象中,反射光、折射光的强度与入射光的强度成正比,这种现象称为线性光学现象。
如果强度除了与入射光强度成正比外,还与入射光强调成二次方、三次方乃至更高的方次,这就属非线性光学效应。
这些效应惟独在入射光足够大时才表现出来。
高功率激光器问世后,人们在激光与物质相互作用过程中观察到非线性光学现象,如频率变换,拉曼频移,自聚焦,布布里渊散射[ 2]等。
气态原子、份子处于永不停息运动中(速度接近340 m/s),且不断与其它原子,份子碰撞,要“捕获”操作它们十分不易。
1997 年华裔科学家、美国斯坦福大学朱 棣文等人, 首次采用激光束将原子数冷却到极低温度, 使其速度比通常做热运动时降 低,达到“捕获”操作的目的。
具体做法是, 用六路俩俩成对的正交激光束, 用三个相互垂直的方向射向同一点, 光束始终将原子推向这点,于是约 106 个原子形成的小区,温度在 240 [3] 以下。
这样使原子的速度减至 10 m/s 两级。
后来又制成抗重力的光-磁陷阱,使原子在约 1s 内从控制区坠落后被捕获。
此项技术在光谱学、原子钟、研究量子效应方面有着广阔的应用前景。
固体激光器的原理及应用

产生激光有三个必要的条件[2]:
1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;
2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;
3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。
如表1是我国激光器的发展。
1.2.3激光器的分类
1960年,梅曼首次在实验室用红宝石晶体获得了激光输出,开创了激光发展的先河。此后,激光器件和技术获得了突飞猛进的发展,相继出现了种类繁多的激光器。
2)相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。
3)方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。
1.1.3激光的特性
激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高)。
1)单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光源。
由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。
激光器调研报告

激光器调研报告
《激光器调研报告》
一、概述
激光器是一种将电能或其它能源转换为、以及发射出一束具有高度相干性的光的器件。
它具有窄的光谱宽度、高亮度和高直线度等特点,被广泛应用于科学研究、医学、工业制造等领域。
二、分类
根据激光器的工作原理和结构特点,可以将其分为气体激光器、固体激光器、半导体激光器等。
气体激光器具有较高的功率和能量密度,适用于精细加工和材料焊接。
固体激光器具有高度稳定性和长寿命,被广泛应用于医疗美容和科学实验。
半导体激光器具有小型化和低成本的特点,被广泛应用于光通信和激光打印等领域。
三、应用领域
激光器在医学美容领域被广泛应用于激光祛斑、激光脱毛等治疗项目。
在工业制造中,激光器用于激光切割、激光焊接、激光打标等工艺。
在科学研究领域,激光器被用于原子钟、光学显微镜、光谱分析仪等设备。
四、发展趋势
随着科学技术的不断进步,激光器在功率、波长、稳定性等方面不断得到提升。
未来,激光器有望在医疗诊断、量子计算、激光雷达等领域发挥更大的作用。
五、结论
激光器作为一种高度先进的光学器件,具有广泛的应用前景和市场需求。
在未来的发展中,我们需要不断加强对激光器的研发和应用,以推动其在医学、工业和科学领域的进一步发展和应用。
第2章 固体激光材料及典型固体激光器_01

a. 氧化物晶体
最重要的元素:钕(Nd)
掺钕激光晶体的中心波长:0.91 m、1.06 m、1.35 m。 1)Nd:YAG 晶体 YAG:硬度高、光学质量好、 机械强度高、导热性好。 在激光波长范围内透过率高, 荧光谱线窄。 高增益、低阈值输出激光。 目前高效率、高平均功率激光 器的增益介质之一。
4)吸收系数变化对方形Nd:GdVO4晶体内部温度场分布 的影响:
掺杂浓度越低,吸收系数越小。
其中,
泵浦光功率及泵浦光斑相同但吸收系数不同,在 晶体中形成的热源强度及分布有较大差别。
吸收系数越大,热源越向端面集中。 强烈的热应力作用会导致端面破裂。
吸收系数越大,热源越向端面集中。 强烈的热应力作用会导致端面破裂。
3)Nd:GdVO4 晶体
吸收截面大,发射截面大。 同时有较高的导热率。 适用于高功率场合,成为 LD泵浦高功率激光器的理 想工作物质。
2)激光玻璃 特性:
钕玻璃是玻璃激光材料的典型代表,即以玻璃为基 质,掺入适量的氧化钕而成的固体激光工作物质。 激光特性和晶体类似。同样产生0.91 m、1.06 m、 1.35 m波长的激光。但在室温下,通常只产生1.06 m的激光振荡。
线宽增加,导致阈值增加,但激光介质中储存能量 更多。
钕玻璃的光学均匀性良好,掺杂浓度均匀等,易 于制成特大功率的激光器(用于受控热核聚变等 实验中)。
美国国家点火装置用磷酸盐玻璃
3)激光陶瓷
多数情况下透明,晶粒尺寸在几十微米,其光学性能、 力学性能、导热性能等类似于晶体或优于晶体。
激光技术的发展和应用简介

激光技术的发展和应用简介学院机电工程学院专业班级测控三班姓名学号摘要:激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的亮度约为太阳光的100亿倍。
本文简要的介绍了一下激光的起源和激光在中国的发展史,并在此基础上从工业、医疗、信息等几个主要领域简单介绍了激光技术的重要应用及其发展前景。
关键词:激光,发展,激光应用,激光技术一.激光的起源激光的理论基础起源于大物理学家‘爱因斯坦’,1917年爱因斯坦提出了一套全新的技术理论‘受激辐射’。
这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。
这就叫做“受激辐射的光放大”,简称激光。
1958年,美国科学家肖洛和汤斯发现了一种神奇的现象:当他们将钠光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。
根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光。
他们为此发表了重要论文。
肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功。
1960年5月15日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。
1960年7月7日,梅曼研制成功世界上第一台激光器,梅曼的方案是,利用一个高强闪光灯管,来刺激在红宝石色水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。
二.中国激光技术的发展“激光”一词是“LASER”的意译。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体激光材料与激光器的发展及应用西华师范大学物理与电子信息学院(姓名:** 学号*********)摘要:近年来2μm波段室温运行的固体激光器由于在医学、光通讯、激光雷达等方面的重要的应用前景而引起学术界和商业界的广泛关注。
本文详细介绍了2μm波段固体激光材料及激光器的发展状况,阐述了医用Cr,Tm,Ho:YAG激光器的技术特点,最后提出了应用2μm波段固体激光材料研制大功率激光器的新思路,为同类激光器的研究与应用提供了有利参考,具有一定的指导意义。
关键词:Cr,Tm,Ho:YAG 2μm波段钬激光治疗机激光医疗1、前言与气体激光器相比,半导体泵浦固体激光器具有体积小、重量轻、供电简单、结构紧凑、便于携带、便于维护和操作等优点。
现在已用作手术治疗、肌肉组织焊接、牙科治疗、光镇痛和光针灸等领域。
2μm波段恰恰处于水分子的吸收峰,输出波长为2μm的固体激光器是激光手术的最佳波长。
与通常的Nd:YAG激光(1.064μm)相比,人体对2μm激光的吸收效果更好,激光切割能力大大提高,尤其对敏感组织,如肝、胃、结肠等软组织的烧蚀利切割效果更加理想。
此外石英光纤还可以传播2μm激光,这使得激光传导更加容易。
目前半导体激光器泵浦的Ho∶YLF 2.12μm激光器已做成结构紧凑、维护容易、便携式的医用器械。
虽然2μm激光器有着如此广泛而重要的应用前景,并且在相应领域已经得到了大范围的应用,但是对于二极管泵浦2μm固体激光器深入的研究并不是伴随着激光器的产生而开始的,其间经历了漫长的过程。
2、国外2μm波段固体激光材料及激光器的发展状况(1)Ho:YAG激光器1965年Bell实验室Johnson等人首先报道了Ho:YAG在液氮温度下实现振荡[1],使用的晶体用熔盐法生长,晶体长度25mm,输出三种不同的激光波长。
输出波长2.0975μm时,脉冲阈值为44J;输出波长2.0914μm时,脉冲阈值为1760J;输出波长2.1223μm时,脉冲阈值为410J。
高阈值限制了Ho:YAG的应用。
(2)Er,Tm,Ho:YAG激光器Ho:YAG激光器泵浦效率低是由于Ho3+在YAG中只有几条弱吸收线。
为了增加对灯泵能量的吸收,1966年Johnson等人采用Er3+和Tm3+来敏化Ho3+,由于它们吸收和传递泵浦能量,液氮温度下得到了5%的闪光灯泵浦效率和15W的连续激光输出[2]。
1975年,Beck 等人报道了直径4mm,长度70mm的晶体在液氮温度下连续输出50W,斜率效率6.5%,使用钨卤素灯作泵浦源[3]。
1981年Barnes等人在液氮温度下实现了脉冲激光振荡和放大,TEM00模输出112mJ,斜率效率1.2%,放大输出235mJ。
晶体直径4mm,长度56mm,晶体中Ho3+、Tm3+、Er3+和Y3+分别占0.021、0.037、0.616和0.326[4]。
(3)Tm,Ho:YAG激光器1987年Fan等人报道了用波长为781.5二极管激光器泵浦Tm,Ho:YAG获得室温连续输出,阈值4.4mW,斜率效率19%,输出波长 2.074μm [5]。
1990年Stoneman等人实现了Tm,Ho:YAG在2.09~2.12范围连续可调谐激光输出。
晶体用引上法生长,Tm3+和Ho3+的含量分别为8.3×1020cm-3和6.9×1019cm-3。
(4)Cr,Tm,Ho:YSGG激光器1986年Alpatev研制出Cr,Tm,Ho:YSGG(钇钪石榴石)激光晶体,并获得室温灯泵浦脉冲输出能量7.4J,斜率效率3.1%,输出波长2.088μm,并于1988年实现开关运行[6]。
其中晶体直径4mm,长度76mm,晶体中Cr3+、Tm3+、Ho3+的含量分别为2.5×1020cm-3、8×1020cm-3、5×1019cm-3。
在室温下获得80mJ的电光调输出,此时的泵浦输入为125J,调阈值为60J。
在转镜调时,获得280mJ的多峰光脉冲,500的总宽度,脉冲中含5~6个峰,峰-峰间隔2μm,每个峰半宽度为40~50。
(5)Cr,Tm,Ho:YAG激光器1988年ST Systems公司的Mark E.Storm 采用单椭圆腔,Cr3+、Tm3+、Ho3+浓度分别为2.7at%、5.8at%、0.36at%。
晶体直径5mm,长度53mm。
闪光灯内径4mm,闪光灯弧长50mm,闪光灯脉宽600us,全反镜曲率半径10m,输出镜透过率85%。
在温度295K时,激光阈值25J,斜率效率2.3%[7]。
1989年美国海军研究实验室的G.J.Quarles等人采用67mm镀银椭圆腔和69mm漫反射腔,晶体直径5mm,长度76.2mm,Cr3+、Tm3+、Ho3+浓度分别为7.7×1019cm-3、8.0×1020cm-3、5.0×1019cm-3,氙灯充气压630T orr,闪光灯内径4mm,闪光灯弧长63.5mm,闪光灯脉宽540us,谐振腔长度为300mm,全反镜曲率半径为1m,输出镜透过率小于75%,输出波长为2.097μm。
使用漫反腔得到了4.7%斜效率,阈值70J。
使用镀银腔得到了5.1%斜效率,阈值38J[8]。
同时从理论和实验上证明了YAG是Cr,Tm,Ho:YAG 最好基质,Cr3+→Tm3+能量传递效率YAG高于YSAG和YSGG。
1990年T.Becker等人报道了Cr,Tm,Ho:YAG激光器重频30Hz时的输出特性。
Cr3+、Tm3+、Ho3+浓度分别为2at%、5at%和0.5at%。
晶体直径分别为2.8mm、4mm和5mm,晶体长度为56mm,谐振腔腔长300mm,全反镜半径1m,输出镜透过率15%。
闪光灯内径为4mm,弧长76mm,放电脉宽500μm。
在20oC时,直径2.8mm晶体的效率比其它两种高,在重频21Hz时,斜效率1.6%,同时获得了6.5W的输出;在重频30Hz时,得到2W输出。
1991年美国海军研究实验室采用单椭圆镀银腔,晶体直径5mm,长度67mm,Cr3+、Tm3+、Ho3+浓度分别为0.8at%、6.0at%、0.4at%,氙灯充气压450Torr,闪光灯内径5mm,闪光灯弧长63mm,闪光灯脉宽290μs,谐振腔长度为290mm,全反镜曲率半径为0.5m,输出镜透过率20%,水温20oC,重频1Hz时,得到最佳斜率效率。
同时,研究了调的特性,发现开关的Cr,Tm,Ho:YAG效率几乎比长脉冲Cr,Tm,Ho:YAG低一个数量级,得到了2.121μm增益系数为0.07cm-1,估计调在2.121μm的增益系数为0.02~0.07cm-1[9]。
1994年W.Zendzian等人报道了闪光灯泵浦的Cr,Tm,Ho:YAG激光器。
注入能量110J时,得到了17W的输出,斜效率为2%,同时从理论和实验上验证了热焦距对M2参数的影响[10]。
1998年Yoichi等人报道了在温度10oC,泵浦能量密度85.9J/cm3,得到了Cr,Tm:YAG和Cr,Tm,Ho:YAG的最大小信号增益系数分别为0.144cm-1和0.234cm-1[11]。
2000年Cheng Li等人报道了采用闪光灯泵浦Cr,Tm,Ho:YAG晶体,在自由运转模式下,室温获得了4.5J的激光输出,输出波长2.098μm,斜率效率2.7%,阈值能量95J;在声光调方式下,室温下单模输出大于530mJ,脉冲宽度165ns。
晶体直径为4mm,长度100mm,晶体中Cr3+、Tm3+、Ho3+的含量分别为1.2at%、6.1at%、0.4at%[12]。
在医用钬激光器的研究开发方面,美国相干公司等单位居领先地位,1990年向用户提供了第一台医用钬激光治疗机,如今已开发出平均功率为20W、60W和100W三种单波长型号,相应重复频率分别为5-20Hz、5-40Hz和5-50Hz,相应单脉冲能量分别为0.5-2.5J、0.2-3.5J和0.2-3.5J,相应的平均功率设置分别为2J/10Hz、1.5J/40Hz和2J/50Hz,脉冲持续时间为500μs。
此外,还有80/100W 的双波长Holmium&Nd:YAG激光器,重复频率为5-40Hz,单脉冲能量为0.2-3.5J,相应的平均功率设置为2J/40Hz,脉冲持续时间为500μs。
这些构成了Versa Pulse PowerSuiteTm系列钬激光器。
美国Trimedyne公司开发的钬激光治疗机,平均功率有30W和80W两种。
对于30W的钬激光治疗机,单脉冲能量为0.2-3.5J,重复频率为5-20Hz,脉冲持续时间为350μs。
而80W 钬激光治疗机采用独特的双脉冲技术,能够传递更多的能量到硬组织,同时尽量减少对周围软组织的损伤。
其单脉冲能量为0.2-3.5J,重复频率为5-60Hz,双脉冲模式下,单脉冲有效能量为0.4-7J,重复频率为3-30Hz,脉冲持续时间为350μs。
3、国内2μm波段固体激光材料及激光器的发展状况1991年起电子部11所展开了钬激光晶体研究工作。
采用感应加热提拉法生长Cr,Tm,Ho:YAG晶体,解决了高效率Cr3+→Tm3+→Ho3+能量转移和高光学质量晶体生长工艺等一系列关键技术。
激光棒主要技术指标达到:干涉条纹0.3条/25mm,无散射颗粒,单脉冲输出能量2.3J。
1995年华中理工大学的叶洪波等人研制出了在室温下Ho:YAG激光器输出的能量3J。
实验中所用到的泵浦方式为脉冲氙灯泵浦,聚光腔是镀银单椭圆腔,冷却方式为对冷却水进行恒温控制,其温度浮动范围为10±5oC。
实验采用国产棒尺寸为φ5×93mm,谐振腔为平凹腔,腔长280mm。
全反镜为曲面镜,曲率为1m。
输出镜为平面镜,在输出镜透过率为29%,冷却温度为9oC,放电脉冲半宽度为360μs,激光器阈值为98.4J,单脉冲输出在3J以上。
1997年中国计量学院光电子研究所的黄莉蕾等人,使用国产晶体Cr3+(2.3×1020cm-3),Tm3+(8.2×1020cm-3), Ho3+(5.4×1020cm-3):YAG。
尺寸为φ6×100mm,采用单灯相交圆柱聚光腔,内壁贴Ag箔抛光。
谐振腔为平凹腔,输出镜曲率半径为5m,透过率为25%,全反镜对2.1激光反射率大于98%。
用气压为2×105Pa的氙灯泵浦,频率1Hz,冷却水温18~22oC,激光阈值为73~84J,获得斜率效率为2~4%,单脉冲能量为0.8~1.4J [13]。
1997年,安徽光机所的陈长水等人进行了开关Cr,Tm,Ho:YAG激光器的实验研究,获得了单脉冲能量60mJ的2.1μm的稳定调激光输出,通过倍频途径测得了其倍频光(1.05μm)的脉冲半宽度35ns[14]。