固体激光器原理及应用

合集下载

固体激光器原理 (3)

固体激光器原理 (3)

固体激光器原理1. 引言固体激光器作为一种重要的激光器类型,在科学研究、医疗器械、激光切割等诸多领域有着广泛的应用。

本文将介绍固体激光器的原理、结构和工作方式。

2. 原理固体激光器的工作原理是基于激发固体材料中的激活物质,使其处于受激辐射的状态,从而产生激光。

在固体激光器中,常用的激活物质有Nd:YAG (二氧化钕掺杂的钇铝石榴石)、Nd:YVO4 (二氧化钕掺杂的钇钒石榴石)、Er:YAG (铒掺杂的钇铝石榴石)等。

固体激光器的工作过程可以分为以下几个步骤:2.1 激发过程在激光器的激发环节中,一种能量源(例如一束强光或电流)用来激活固体材料中的激活物质。

这种能量源可以是激光二极管、弧光灯等。

激发过程中,激光器将能量转化为激发离子的能量,使其处于受激辐射状态。

2.2 激光放大过程在激发过程中,激活物质处于受激辐射状态,当有一个激发光子通过时,会与被激发的离子产生辐射跃迁,从而产生两个新的光子。

这个辐射跃迁过程会引起其他离子的受激辐射,从而形成光子链式反应。

这种过程被称为光子放大过程。

2.3 激光输出过程在激光放大过程中,光子数目不断增加,当达到一定数目时,就会形成激光输出。

为了实现激光输出,激光器需要在光学谐振腔中引入一个镜片,这样可以将光子反射回激活物质中,从而增加激光的放大程度。

当光子数目达到一定程度,超过了腔体损耗,则会产生激光输出。

3. 结构固体激光器的基本结构由激活物质、光学谐振腔和能量源组成。

3.1 激活物质激活物质是固体激光器中的关键组成部分,它决定了激光的波长和性能。

常见的激活物质有Nd:YAG、Nd:YVO4、Er:YAG等。

这些激活物质都被掺杂在晶体或陶瓷中,以增加其能级和性能。

3.2 光学谐振腔光学谐振腔是固体激光器中的另一个重要组成部分,它通常由两个反射镜和一个激活物质组成。

其中一个反射镜被称为输出镜,另一个被称为输入镜。

输出镜可以通过调整其反射率来控制激光的输出功率和方向。

固体激光器原理及应用

固体激光器原理及应用

固体激光器原理及应用固体激光器是一种使用固态材料作为工作介质,利用吸收外部能量激发材料内部电子跃迁产生激光的器件。

其原理基于材料内部的电子能级结构,通过能量输入使电子能级发生跃迁,产生一束高强度、窄谱线、准单色的激光束。

固体激光器具有激光输出稳定、寿命长、重复频率高、输出功率大等优点,因此在许多领域有着广泛的应用。

固体激光器的工作原理可以分为三个基本步骤:激发、放大和输出。

首先,通过能量输入使材料内部的电子从基态跃迁至激发态,形成一个激发态的粒子团。

其次,通过适当的增益介质,激发态粒子发生受激辐射过程,产生激光并且放大。

最后,通过激光输出装置将激光束从增益介质中输出。

固体激光器的工作介质一般是由具有合适外加激励源的能级结构的晶体或玻璃组成。

常用的材料有Nd:YAG(氧化钇铝铈钕)、Nd:YLF(钇铝石榴石)、Nd:YVO(钇钕钒酸盐)和Ti:sapphire(蓝宝石)等。

这些材料具有良好的耐热性、光学性能和谐振特性。

固体激光器的应用相当广泛。

在科学研究领域,固体激光器常用于物理、化学、生物学等学科中的实验室研究。

其高可靠性和稳定性使其成为激光生物学、光谱学和光物理学等领域的基础工具。

此外,固体激光器在通信领域也有着重要的地位。

特别在光纤通信系统中,固体激光器可以作为光源产生高质量的激光信号,用于传输和接收数据。

固体激光器还在制造业中得到广泛应用。

例如,固体激光器在激光切割、焊接和打标等加工过程中发挥着重要角色。

其高功率和高能量脉冲使其成为材料切割和焊接的理想工具。

此外,固体激光器还可以应用于材料精细处理、纳米加工和激光显微技术等领域,为制造业提供了更加高效和精确的加工手段。

此外,固体激光器还用于医疗领域。

例如,激光手术中使用的激光刀就是一种固体激光器。

固体激光器可以提供高能量和高精确性的激光束,用于切割、热凝固和热疗等医疗操作。

它在眼科手术、皮肤整形和癌症治疗等领域中有着广泛应用。

总之,固体激光器以其稳定的输出功率、高效的能量转化和丰富的应用领域而受到广泛关注和应用。

固体激光器的工作原理

固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作介质的激光器,其工作原理主要包括激发态产生、增益介质放大、谐振腔构成和输出光束等几个方面。

首先,固体激光器的工作原理涉及到激发态的产生。

在固体激光器中,通常采用外部能源(如光、电、化学能等)来激发固体材料中的原子或分子,使其跃迁至激发态。

这个过程需要一定的能量输入,激发态的产生是固体激光器工作的第一步。

其次,固体激光器的工作原理还包括增益介质的放大。

在固体激光器中,激发态的原子或分子通过受激辐射的作用,向入射的光子传递能量,从而使光子的数目呈指数增长。

这一过程发生在增益介质中,增益介质通常是由稀土离子或色心等组成的晶体或玻璃材料。

另外,固体激光器的工作原理还涉及到谐振腔的构成。

谐振腔是固体激光器中的一个重要部件,它由两个反射镜构成,其中一个是部分透明的,用于输出光束。

谐振腔的作用是使激光在其中来回多次反射,从而增强激光的放大效应,最终形成输出光束。

最后,固体激光器的工作原理还包括输出光束的形成。

当激光在谐振腔中来回多次反射后,其中一部分光子会通过部分透明的反射镜逸出,形成输出光束。

这个输出光束通常具有一定的方向性和单色性,可以用于各种应用。

总的来说,固体激光器的工作原理是利用外部能源激发固体材料中的原子或分子,使其跃迁至激发态,然后通过增益介质的放大和谐振腔的构成,最终形成输出光束。

固体激光器在医疗、通信、材料加工等领域有着广泛的应用,对于推动科学技术的发展具有重要意义。

固体激光器原理

固体激光器原理

固体激光器原理引言固体激光器是一种基于固体材料的激光器,它利用固体材料中的激发态粒子在受激辐射的作用下发射出一束相干的激光。

固体激光器具有高效率、高能量、高稳定性等优点,广泛应用于材料加工、医学领域、科学研究等方面。

本文将介绍固体激光器的原理以及其工作过程。

原理固体激光器的工作原理基于受激辐射的过程。

当固体材料被外部能量激发时,其原子或分子的能级结构发生改变,使得一些电子被激发到高能级,形成激发态。

这些激发态的电子在适当的条件下会发生跃迁回到基态,并释放出激光光子。

这个过程称为受激辐射。

固体激光器的关键部分是激光介质。

激光介质通常由具有激发态和基态之间能级跃迁的活性离子组成。

这些活性离子可以是稀土离子(如Nd3+、Er3+)或过渡金属离子(如Cr3+、Ti3+)。

在激光介质中,这些离子被激发到激发态,然后通过受激辐射过程发射出激光光子。

为了实现受激辐射和激光放大,固体激光器通常采用光泵浦的方式来向激光介质提供能量。

光泵浦可以通过闪光灯、半导体激光器或其他激光器来实现。

光泵浦的作用是将能量传递给激光介质,从而激发其中的离子跃迁到激发态。

一旦离子处于激发态,它们就会在受激辐射的作用下发射出激光光子。

固体激光器中的激光光子在两个镜子之间被反射,形成一个光学腔。

这个光学腔通过选择性反射,使得激光光子在腔内多次来回反射,逐渐放大。

这个过程被称为光学放大。

最终,激光光子从一个镜子中逃逸,形成一束相干、高强度的激光束。

工作过程固体激光器的工作过程可以概括为以下几个步骤:1.光泵浦:通过光泵浦的方式向激光介质提供能量,将其中的离子激发到激发态。

2.受激辐射:激发态的离子通过受激辐射过程发射出激光光子。

3.光学放大:激光光子在光学腔中多次来回反射,逐渐放大。

4.激光输出:激光光子从一个镜子中逃逸,形成激光束输出。

固体激光器的工作过程需要维持适当的能量供应和光学腔的稳定性。

光泵浦的能量需要满足激发离子到激发态的能量需求,而光学腔的稳定性可以通过优化腔内的补偿装置和调节器件来实现。

固体激光器的工作原理

固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作物质的激光器,它通
过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。

固体激光器的工作原理主要包括激发、增益、反射和输出四个过程。

首先,固体激光器的工作原理涉及到激发过程。

在固体激光器中,通常采用激发源(如闪光灯、半导体激光二极管等)照射固体
材料,激发固体材料中的原子或离子,使其跃迁至高能级。

这种激
发过程会导致固体材料中的原子或离子处于一个高能级的激发态。

其次,固体激光器的工作原理还涉及到增益过程。

在激发过程中,固体材料中的原子或离子处于高能级的激发态,这时如果有入
射光子与其相互作用,就会引发受激辐射,从而产生激光。

这种受
激辐射会引起原子或离子从高能级跃迁到低能级,释放出更多的光子,使激光光子数目急剧增加,形成所谓的增益。

然后,固体激光器的工作原理还包括反射过程。

在固体激光器中,通常会设置一个光学反射器,用来反射激光。

这种光学反射器
可以将激光反射回固体材料中,使其在其中来回反射,增强激光的
增益效果。

最后,固体激光器的工作原理还涉及到输出过程。

在固体激光器中,设置一个输出镜,用来从激光腔中输出激光。

这种输出镜通常只透过一部分激光,反射大部分激光,使得激光可以从固体激光器中输出。

总的来说,固体激光器的工作原理是通过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。

固体激光器的工作原理涉及到激发、增益、反射和输出四个过程,这些过程共同作用,使得固体激光器能够产生高能、高亮度的激光,被广泛应用于医疗、通信、材料加工等领域。

固体激光器

固体激光器

固体激光器简介固体激光器是一种基于固体材料的激光发射器件。

与其他类型的激光器相比,固体激光器具有较高的效率、较高的输出功率和较低的噪声。

它们在多个领域中得到广泛应用,包括医学、材料加工、通信和科学研究等。

在固体激光器中,激光通过在固体材料中激发原子或离子引起的电子跃迁来产生。

这些材料通常是晶体或玻璃,并且它们的结构和组成决定了激光器的性能和特性。

原理固体激光器的工作原理基于三个基本过程:吸收、放大和辐射。

首先,固体材料吸收外部激发源(例如光或电能)的能量。

这种能量转移导致材料的原子或离子中的电子被激发到更高的能级。

当电子处于这种高能级时,它们有望通过受激辐射产生辐射能量。

然后,在经历一系列非辐射过程后,高能级的电子通过自发辐射受激发射出激光光子。

这种发射过程又被称为光放大。

这些激光光子在光学谐振腔中来回反射,同时经历光放大过程,最终形成高功率、高能量的激光束。

固体材料固体激光器中常用的材料包括晶体和玻璃。

不同的材料具有不同的性质和应用。

1.晶体材料:晶体激光器最早使用的材料是人工合成的天然晶体,如红宝石 (ruby) 和人工蓝宝石 (sapphire)。

这些材料具有较高的光学透明性和较高的激光输出功率。

晶体激光器通常在固体材料中掺入外来的色心(如Cr3+)来调节激光输出的波长。

其他常见的晶体材料还包括掺铱的钛蓝宝石和掺钬的氧化铽。

2.玻璃材料:相比晶体材料,玻璃激光器具有更大的放大带宽和更高的辐射受激发射截面。

这意味着玻璃激光器可以实现更宽波长范围内的激光输出。

常见的玻璃材料包括钕玻璃、铽玻璃和铒玻璃。

无论是晶体材料还是玻璃材料,固体激光器的性能和特性都取决于材料的结构和化学成分。

应用领域固体激光器在多个领域中应用广泛。

1.医学:固体激光器被广泛用于医学领域,用于激光手术、皮肤美容、眼科手术和牙科治疗等。

例如,钕玻璃激光器被用于激光眼部手术,以纠正近视、远视和散光等眼部问题。

2.材料加工:固体激光器可以用于材料切割、焊接和打孔等加工过程。

固态激光器的工作原理

固态激光器的工作原理

固态激光器的工作原理激光器作为一种重要的光学器件,在现代科技和工业应用中起到了至关重要的作用。

固态激光器作为其中的一种类型,在多个领域中展现出了广泛的应用前景。

本文将详细介绍固态激光器的工作原理,以及其在科学研究、医疗、通信等方面的应用。

一、固态激光器的基本构成和工作原理固态激光器由一个激光介质和一个泵浦源组成。

激光介质是固体材料,常见的材料包括Nd:YAG(氧化铝掺杂钕)、Nd:YVO4(钇钒酸钕)等。

泵浦源通常采用光源或者其他激光器来提供能量,使激光介质中的掺杂离子处于激发态。

1. 光子吸收与激发当泵浦光进入激光介质时,它与激光介质中的掺杂离子相互作用。

这种相互作用导致掺杂离子从基态跃迁到激发态,吸收入射光子的能量。

这种能量吸收过程是固态激光器工作的起点。

2. 辐射与受激辐射当掺杂离子处于激发态时,它会逐渐失去能量。

在这个过程中,掺杂离子通过辐射的形式传递能量,并以光子的形式释放出来。

这些光子的能量是特定波长和频率的激光光子,具有相同的相位和方向,符合激光的特性。

3. 扩散与增益当释放的激光光子经过多次的反射和扩散后,在固态激光器的谐振腔内产生共振放大。

在这个过程中,激光光子不断增加,并形成强大的激光束。

这种过程是通过谐振腔中的镜面反射实现的,其中一个镜子是部分透明的,用于输出激光。

二、固态激光器的应用固态激光器具有紧凑、高效、可靠等特点,因此在科学研究、医疗、通信等领域有广泛的应用。

1. 科学研究固态激光器在科学研究中扮演着重要角色。

其激光束的窄带宽和高功率使得它成为细分光谱研究、原子物理、分子光谱学等领域的理想工具。

此外,固态激光器还广泛应用于量子光学研究、量子计算和量子通信等领域。

2. 医疗器械固态激光器在医疗领域有着广泛的应用。

激光切割、激光刻蚀、激光焊接等技术在现代医疗器械的制造过程中发挥着重要作用。

此外,激光手术、激光疗法等应用也在眼科手术、皮肤整形和癌症治疗等方面展现出了巨大的潜力。

固体激光器基本原理以及应用

固体激光器基本原理以及应用
固体激光器基本原理及其应用
汇报人:
单击输入目录标题 固体激光器的基本原理 固体激光器的应用 固体激光器的发展趋势
添加章节标题
固体激光器的基本原理
固体激光器的组成
泵浦源:提供能量使激光介质产生 激光如氙灯、半导体激光器等
冷却系统:保持激光介质的温度稳 定提高激光器的性能和寿命如水冷、
风冷等
添加标题
添加标题
添加标题
添加标题
添加标题
技术进步:提高输出功率、降低能 耗、提高稳定性
研究热点:新型材料、新型结构、 新型工艺等
固体激光器的应用拓展势
医疗领域: 用于眼科、 皮肤科等 疾病的治 疗
工业领域: 用于切割、 焊接、打 标等加工 工艺
科研领域: 用于光谱 分析、激 光雷达等 科学研究
军事领域: 用于激光 武器、激 光通信等 军事应用
添加标题
添加标题
添加标题
添加标题
激光介质:产生激光的物质如YG晶 体、Nd:YG晶体等
光学谐振腔:使激光在腔内反复反 射形成稳定的激光输出如反射镜、
全反射镜等
电源和控制系统:提供激光器的工 作电压和电流控制激光器的工作状
态如电源、控制器等
固体激光器的工作原理
激光产生:通过激发态粒子的受激辐 射产生激光
激光治疗:用于 皮肤病、肿瘤、 血管疾病等治疗
激光诊断:用于 皮肤病、肿瘤、 血管疾病等诊断
激光美容:用于 皮肤美容、整形 等美容项目
军事领域的应用
激光制导武器:利用激光精确 制导提高打击精度
激光通信:实现远距离、高速、 保密通信
激光雷达:用于探测、跟踪、 识别目标
激光武器:用于摧毁敌方武器 装备、设施等
增益介质:使用固体材料作为增益介 质如稀土离子掺杂的晶体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体激光器原理及应用摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。

本论文先从基本原理和结构介绍固体激光器,最后介绍其在监测,检测,制造业,医学,航天等五个方面的应用及未来的发展方向。

关键词:固体激光器基本原理基本结构应用1激光与激光器1.1激光1.1.1激光(LASER)激光是在 1960 年正式问世的。

但是,激光的历史却已有 100多年。

确切地说,远在 1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。

他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。

1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。

激光,又称镭射,英文叫“LASER”,是“Light Amplification by Stimu Iatad Emission of Radiation”的缩写,意思是“受激发射的辐射光放大”。

激光的英文全名已完全表达了制造激光的主要过程。

1964年按照我国著名科学家钱学森建议将“光受激发射”改称“激光”。

1.1.2产生激光的条件产生激光有三个必要的条件:1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。

1.1.3激光的特点与普通意义上的光源相比较,激光主要有四个显著的特点:方向性好、亮度极高、单色性好、相干性好。

1.2激光器激光器的发明是20世纪科学技术的一项重大成就。

它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生放大相干的红外线、可见光线和紫外线(以至χ射线和γ射线)的能力。

激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。

2固体激光器2.1工作原理和基本结构在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。

如图1所示,固体激光器的基本结构(有部分结构没有画出)。

固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成。

图1 固体激光器的基本结构1)工作物质工作物质——激光器的核心,是由激活粒子(都为金属)和基质两部分组成。

激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。

根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。

工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状。

2)泵浦系统泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目前主要采用光泵浦。

泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。

常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。

其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件(尤其在航天工作中的小激光器可用太阳能最为永久能源),二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。

LD泵浦的方式可以分为两类,横向:同轴入射的端面泵浦(如下图2 a);纵向:垂直入射的侧面泵浦(如图2 b)。

图2 LD泵浦方式结构示意LD泵浦的固体激光器有很多优点,寿命长、频率稳定性好、热光畸变小等等,当然最突出的优点是泵浦效率高,因为它泵浦光波长与激光介质吸收谱严格匹配。

3)聚光系统聚光腔的作用有两个:一个是将泵浦源与工作物质有效的耦合;另一个是决定激光物质上泵浦光密度的分布,从而影响到输出光束的均匀性、发散度和光学畸变。

工作物质和泵浦源都安装在聚光腔内,因此聚光腔的优劣直接影响泵浦的效率及工作性能。

如下图3所示为椭圆柱聚光腔,是目前小型固体激光器最常采用的。

图3 椭圆柱聚光腔4)光学谐振腔光学谐振腔由全反射镜和部分反射镜组成,是固体激光器的重要组成部分。

光学谐振腔除了提供光学正反馈维持激光持续振荡以形成受激发射,还对振荡光束的方向和频率进行限制,以保证输出激光的高单色性和高定向性。

最简单常用的固体激光器的光学谐振腔是由相向放置的两平面镜(或球面镜)构成。

5)冷却与滤光系统冷却与滤光系统是激光器必不可少的辅助装置。

固体激光器工作时会产生比较严重的热效应,所以通常都要采取冷却措施。

主要是对激光工作物质、泵浦系统和聚光腔进行冷却,以保证激光器的正常使用及器材的保护。

冷却方法有液体冷却、气体冷却和传导冷却,但目前使用最广泛的是液体冷却方法。

要获得高单色性的激光束,滤光系统起了很大的作用。

滤光系统能够将大部分的泵浦光和其他一些干扰光过滤,使得输出的激光单色性非常好。

2.2固体激光器的优缺点固体激光器主要优点:1)输出能量大,峰值功率高。

在固体激光器中,由于中心粒子的能级结构,能够输出大能量,并且峰值功率高。

这个是固体激光器非常突出的优点。

2)结构紧凑耐用,价格适宜。

和其他类型的激光器相比,固体激光器的结构非常简单并且非常耐用,同时价格相对适宜。

3)材料种类数量多。

固体激光器的工作物质的种类非常多,到目前为止至少有一百多种,而且大有增长的趋势。

大量高性能的材料的出现,是固体激光器的性能进一步的提高。

固体激光器的主要缺点:1)温度效益比较严重,发热量大。

正是由于输出能量大,峰值功率高,导致热效应非常明显,因此固体激光器不得不配置冷却系统,才能保证固体激光器的正常连续使用。

2)转换效率相对较低。

固体激光器的总体效率非常低,例如红宝石激光器的为0.5%~1%左右,YAG激光器的总体效率为1%~2%,在最好的情况下可接近3%。

可见固体激光器的效率提高还有很大的空间。

3固体激光器的应用固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。

它常用于测距、跟踪、制导、打孔、切割和焊接、半导体材料退火、电子器件微加工、大气检测、光谱研究、外科和眼科手术、等离子体诊断、脉冲全息照相以及激光核聚变等方面。

激光自其诞生之日来,已对人类生活产生了巨大影响。

其应用已渗入到人类生活的每个方面。

比如监测, 检测,制造业,医学,航天等等。

由于激光应用的广泛性,这里我只能从广面上稍微介绍下其应用。

3.1 激光技术在监测方面的一些应用3.1.1三维激光扫描技术在地形测绘的应用三维激光扫描仪用于边坡三维形状的获取、加固方案设计、边坡灾害对策及安全检测等,都具有独到得方边便性及先进性。

测量设站灵活方便,测量效率高,获取的数据直接可以进行处理以得到基础信息和分析结果。

在地形测绘中,三维激光扫描仪及后处理软件,只经过简单的几个步骤就可以轻松获取高比例尺的地形图。

3.1.2激光雷达技术在大气环境监测中的应用用于探测大气气溶胶和云的激光雷达技术主要是米散射探测技术,使用这种技术的激光雷达被称为米散射激光雷达。

激光雷达是一种重要的大气环境探测手段,由于其具有时空分辨率高、探测灵敏度高和抗干扰能力强等优点,因此,利用激光雷达对大气进行监测,收集、分析数据,建立大气环境预测理论模型,将为研究气候变化和寻求治理环境的新途径提供科学的依据。

3.2激光技术检测方面的应用由于激光技术的精确性,在我们生活中的的一些检测越来越多都用到激光检测,既方便又安全精确。

如激光散斑技术在农产品检测中的应用,随着人们生活水平的提高,农产品检测技术越来越受到人们的重视,发展新颖的农产品快速检测技术是提高农产品市场竞争力、增加农民收入的有效措施。

激光散斑技术灵敏度高,操作简单,作为一种新颖的无损快速检测技术已经受到越来越多的关注。

3.3激光技术在制造业得应用随着激光制造技术的快速发展,激光技术已经在工业领域得到广泛的应用。

利用激光来焊接金属材料有许多优越性:方便快捷、焊缝小、焊接影响区域小,对原材料性质和形态的改变均很小;易于实现数控,可以焊接形状特殊的工件;激光能量集中、作用时间短,可以焊接薄板、金属丝等传统焊接工艺难以加工的材料以及精密、微小、排列密集、受热敏感的材料等等。

激光加工技术具有无接触、不需要工模具、清洁、效率较高、便于实行数控、可进行特殊加工等优点,在切割、焊接、表面熔覆与合金化、表面热处理、新材料制备等方面得到了广泛应用。

3.4激光技术在医学上应用激光医学在临床上的应用主要分为三大部分,包括:①激光在基础医学研究中的应用,主要是通过激光与人体器官组织、细胞和生物分子的相互作用来研究激光的生物效应。

②激光诊断,是以激光作为信息载体,利用激光单色性好的特点,对组织病理形态、病理情况下的功能及找出某些致病因素等方面进行光谱分析。

③激光治疗,是以激光作为能量载体,利用激光对组织的生物学效应进行治疗,多年来,激光技术已成为临床治疗的有效手段,也成为发展医学诊断的关键技术,包括:弱激光治疗,高强度激光手术,激光动力学疗法(光化学疗法),激光诊断。

3.5激光技术在航天上的应用航天技术作为一门综合性科学技术,是现代科学技术高度的综合集成。

激光焊接技术作为一项先进制造技术,对航天技术的发展起到了重要作用。

如航天电源连接器和传感器的焊接、航空发动机的焊接、飞机客体的焊接等。

随着激光器研究的深入和大功率激光器的产品化,激光焊接技术向大厚板、高适应性、高效率和低成本方向发展,同时,随着新材料、新结构的出现,激光焊接技术将逐步替代一些传统的焊接工艺,在航天领域中占据重要地位。

4结束语固体激光器是以掺杂的玻璃、晶体或透明陶瓷等固体材料为工作物质的激光器。

从世界上第一台激光器发明至今,固体激光技术取得了很大的发展,主要表现三个方面:第一是工作物质不断改进。

最初是红宝石激光器,后来出现了钕玻璃和掺钕钇铝石榴石激光器,现在又有了掺钕镓钆石榴石激光器。

还有报道称,目前出现了以陶瓷为基质的新型激光材料。

第二是泵浦光源的改进。

最初是闪光灯,后来发展为弧光灯,现在出现了高功率激光二极管泵浦。

第三是工作物质结构的改变。

从最初的棒式结构发展成板条式,又到后来的光纤式结构。

固体激光器的发展趋势是材料和器件的多样化,包括寻求新波长和工作波长可调谐的新工作物质,提高激光器的转换效率,增大输出功率,改善光束质量,压缩脉冲宽度,提高可靠性和延长工作寿命等。

未来的固体激光器将朝着以下几个方向发展:a)高功率及高能量b)超短脉冲激光c)高便携性d)低成本高质量总之,固体激光技术的发展过程是一个不断革新的过程,固体激光器发展到今天,无论在结构、输出功率、转换效率还是光束质量方面都有了很大进步。

相关文档
最新文档