固体激光器原理及应用
固体激光器原理及应用

固体激光器原理及应用固体激光器是一种使用固态材料作为工作介质,利用吸收外部能量激发材料内部电子跃迁产生激光的器件。
其原理基于材料内部的电子能级结构,通过能量输入使电子能级发生跃迁,产生一束高强度、窄谱线、准单色的激光束。
固体激光器具有激光输出稳定、寿命长、重复频率高、输出功率大等优点,因此在许多领域有着广泛的应用。
固体激光器的工作原理可以分为三个基本步骤:激发、放大和输出。
首先,通过能量输入使材料内部的电子从基态跃迁至激发态,形成一个激发态的粒子团。
其次,通过适当的增益介质,激发态粒子发生受激辐射过程,产生激光并且放大。
最后,通过激光输出装置将激光束从增益介质中输出。
固体激光器的工作介质一般是由具有合适外加激励源的能级结构的晶体或玻璃组成。
常用的材料有Nd:YAG(氧化钇铝铈钕)、Nd:YLF(钇铝石榴石)、Nd:YVO(钇钕钒酸盐)和Ti:sapphire(蓝宝石)等。
这些材料具有良好的耐热性、光学性能和谐振特性。
固体激光器的应用相当广泛。
在科学研究领域,固体激光器常用于物理、化学、生物学等学科中的实验室研究。
其高可靠性和稳定性使其成为激光生物学、光谱学和光物理学等领域的基础工具。
此外,固体激光器在通信领域也有着重要的地位。
特别在光纤通信系统中,固体激光器可以作为光源产生高质量的激光信号,用于传输和接收数据。
固体激光器还在制造业中得到广泛应用。
例如,固体激光器在激光切割、焊接和打标等加工过程中发挥着重要角色。
其高功率和高能量脉冲使其成为材料切割和焊接的理想工具。
此外,固体激光器还可以应用于材料精细处理、纳米加工和激光显微技术等领域,为制造业提供了更加高效和精确的加工手段。
此外,固体激光器还用于医疗领域。
例如,激光手术中使用的激光刀就是一种固体激光器。
固体激光器可以提供高能量和高精确性的激光束,用于切割、热凝固和热疗等医疗操作。
它在眼科手术、皮肤整形和癌症治疗等领域中有着广泛应用。
总之,固体激光器以其稳定的输出功率、高效的能量转化和丰富的应用领域而受到广泛关注和应用。
固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作介质的激光器,其工作原理主要包括激发态产生、增益介质放大、谐振腔构成和输出光束等几个方面。
首先,固体激光器的工作原理涉及到激发态的产生。
在固体激光器中,通常采用外部能源(如光、电、化学能等)来激发固体材料中的原子或分子,使其跃迁至激发态。
这个过程需要一定的能量输入,激发态的产生是固体激光器工作的第一步。
其次,固体激光器的工作原理还包括增益介质的放大。
在固体激光器中,激发态的原子或分子通过受激辐射的作用,向入射的光子传递能量,从而使光子的数目呈指数增长。
这一过程发生在增益介质中,增益介质通常是由稀土离子或色心等组成的晶体或玻璃材料。
另外,固体激光器的工作原理还涉及到谐振腔的构成。
谐振腔是固体激光器中的一个重要部件,它由两个反射镜构成,其中一个是部分透明的,用于输出光束。
谐振腔的作用是使激光在其中来回多次反射,从而增强激光的放大效应,最终形成输出光束。
最后,固体激光器的工作原理还包括输出光束的形成。
当激光在谐振腔中来回多次反射后,其中一部分光子会通过部分透明的反射镜逸出,形成输出光束。
这个输出光束通常具有一定的方向性和单色性,可以用于各种应用。
总的来说,固体激光器的工作原理是利用外部能源激发固体材料中的原子或分子,使其跃迁至激发态,然后通过增益介质的放大和谐振腔的构成,最终形成输出光束。
固体激光器在医疗、通信、材料加工等领域有着广泛的应用,对于推动科学技术的发展具有重要意义。
固体激光器原理

固体激光器原理引言固体激光器是一种基于固体材料的激光器,它利用固体材料中的激发态粒子在受激辐射的作用下发射出一束相干的激光。
固体激光器具有高效率、高能量、高稳定性等优点,广泛应用于材料加工、医学领域、科学研究等方面。
本文将介绍固体激光器的原理以及其工作过程。
原理固体激光器的工作原理基于受激辐射的过程。
当固体材料被外部能量激发时,其原子或分子的能级结构发生改变,使得一些电子被激发到高能级,形成激发态。
这些激发态的电子在适当的条件下会发生跃迁回到基态,并释放出激光光子。
这个过程称为受激辐射。
固体激光器的关键部分是激光介质。
激光介质通常由具有激发态和基态之间能级跃迁的活性离子组成。
这些活性离子可以是稀土离子(如Nd3+、Er3+)或过渡金属离子(如Cr3+、Ti3+)。
在激光介质中,这些离子被激发到激发态,然后通过受激辐射过程发射出激光光子。
为了实现受激辐射和激光放大,固体激光器通常采用光泵浦的方式来向激光介质提供能量。
光泵浦可以通过闪光灯、半导体激光器或其他激光器来实现。
光泵浦的作用是将能量传递给激光介质,从而激发其中的离子跃迁到激发态。
一旦离子处于激发态,它们就会在受激辐射的作用下发射出激光光子。
固体激光器中的激光光子在两个镜子之间被反射,形成一个光学腔。
这个光学腔通过选择性反射,使得激光光子在腔内多次来回反射,逐渐放大。
这个过程被称为光学放大。
最终,激光光子从一个镜子中逃逸,形成一束相干、高强度的激光束。
工作过程固体激光器的工作过程可以概括为以下几个步骤:1.光泵浦:通过光泵浦的方式向激光介质提供能量,将其中的离子激发到激发态。
2.受激辐射:激发态的离子通过受激辐射过程发射出激光光子。
3.光学放大:激光光子在光学腔中多次来回反射,逐渐放大。
4.激光输出:激光光子从一个镜子中逃逸,形成激光束输出。
固体激光器的工作过程需要维持适当的能量供应和光学腔的稳定性。
光泵浦的能量需要满足激发离子到激发态的能量需求,而光学腔的稳定性可以通过优化腔内的补偿装置和调节器件来实现。
固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作物质的激光器,它通
过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理主要包括激发、增益、反射和输出四个过程。
首先,固体激光器的工作原理涉及到激发过程。
在固体激光器中,通常采用激发源(如闪光灯、半导体激光二极管等)照射固体
材料,激发固体材料中的原子或离子,使其跃迁至高能级。
这种激
发过程会导致固体材料中的原子或离子处于一个高能级的激发态。
其次,固体激光器的工作原理还涉及到增益过程。
在激发过程中,固体材料中的原子或离子处于高能级的激发态,这时如果有入
射光子与其相互作用,就会引发受激辐射,从而产生激光。
这种受
激辐射会引起原子或离子从高能级跃迁到低能级,释放出更多的光子,使激光光子数目急剧增加,形成所谓的增益。
然后,固体激光器的工作原理还包括反射过程。
在固体激光器中,通常会设置一个光学反射器,用来反射激光。
这种光学反射器
可以将激光反射回固体材料中,使其在其中来回反射,增强激光的
增益效果。
最后,固体激光器的工作原理还涉及到输出过程。
在固体激光器中,设置一个输出镜,用来从激光腔中输出激光。
这种输出镜通常只透过一部分激光,反射大部分激光,使得激光可以从固体激光器中输出。
总的来说,固体激光器的工作原理是通过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理涉及到激发、增益、反射和输出四个过程,这些过程共同作用,使得固体激光器能够产生高能、高亮度的激光,被广泛应用于医疗、通信、材料加工等领域。
固体激光器

固体激光器简介固体激光器是一种基于固体材料的激光发射器件。
与其他类型的激光器相比,固体激光器具有较高的效率、较高的输出功率和较低的噪声。
它们在多个领域中得到广泛应用,包括医学、材料加工、通信和科学研究等。
在固体激光器中,激光通过在固体材料中激发原子或离子引起的电子跃迁来产生。
这些材料通常是晶体或玻璃,并且它们的结构和组成决定了激光器的性能和特性。
原理固体激光器的工作原理基于三个基本过程:吸收、放大和辐射。
首先,固体材料吸收外部激发源(例如光或电能)的能量。
这种能量转移导致材料的原子或离子中的电子被激发到更高的能级。
当电子处于这种高能级时,它们有望通过受激辐射产生辐射能量。
然后,在经历一系列非辐射过程后,高能级的电子通过自发辐射受激发射出激光光子。
这种发射过程又被称为光放大。
这些激光光子在光学谐振腔中来回反射,同时经历光放大过程,最终形成高功率、高能量的激光束。
固体材料固体激光器中常用的材料包括晶体和玻璃。
不同的材料具有不同的性质和应用。
1.晶体材料:晶体激光器最早使用的材料是人工合成的天然晶体,如红宝石 (ruby) 和人工蓝宝石 (sapphire)。
这些材料具有较高的光学透明性和较高的激光输出功率。
晶体激光器通常在固体材料中掺入外来的色心(如Cr3+)来调节激光输出的波长。
其他常见的晶体材料还包括掺铱的钛蓝宝石和掺钬的氧化铽。
2.玻璃材料:相比晶体材料,玻璃激光器具有更大的放大带宽和更高的辐射受激发射截面。
这意味着玻璃激光器可以实现更宽波长范围内的激光输出。
常见的玻璃材料包括钕玻璃、铽玻璃和铒玻璃。
无论是晶体材料还是玻璃材料,固体激光器的性能和特性都取决于材料的结构和化学成分。
应用领域固体激光器在多个领域中应用广泛。
1.医学:固体激光器被广泛用于医学领域,用于激光手术、皮肤美容、眼科手术和牙科治疗等。
例如,钕玻璃激光器被用于激光眼部手术,以纠正近视、远视和散光等眼部问题。
2.材料加工:固体激光器可以用于材料切割、焊接和打孔等加工过程。
固态激光器的工作原理

固态激光器的工作原理激光器作为一种重要的光学器件,在现代科技和工业应用中起到了至关重要的作用。
固态激光器作为其中的一种类型,在多个领域中展现出了广泛的应用前景。
本文将详细介绍固态激光器的工作原理,以及其在科学研究、医疗、通信等方面的应用。
一、固态激光器的基本构成和工作原理固态激光器由一个激光介质和一个泵浦源组成。
激光介质是固体材料,常见的材料包括Nd:YAG(氧化铝掺杂钕)、Nd:YVO4(钇钒酸钕)等。
泵浦源通常采用光源或者其他激光器来提供能量,使激光介质中的掺杂离子处于激发态。
1. 光子吸收与激发当泵浦光进入激光介质时,它与激光介质中的掺杂离子相互作用。
这种相互作用导致掺杂离子从基态跃迁到激发态,吸收入射光子的能量。
这种能量吸收过程是固态激光器工作的起点。
2. 辐射与受激辐射当掺杂离子处于激发态时,它会逐渐失去能量。
在这个过程中,掺杂离子通过辐射的形式传递能量,并以光子的形式释放出来。
这些光子的能量是特定波长和频率的激光光子,具有相同的相位和方向,符合激光的特性。
3. 扩散与增益当释放的激光光子经过多次的反射和扩散后,在固态激光器的谐振腔内产生共振放大。
在这个过程中,激光光子不断增加,并形成强大的激光束。
这种过程是通过谐振腔中的镜面反射实现的,其中一个镜子是部分透明的,用于输出激光。
二、固态激光器的应用固态激光器具有紧凑、高效、可靠等特点,因此在科学研究、医疗、通信等领域有广泛的应用。
1. 科学研究固态激光器在科学研究中扮演着重要角色。
其激光束的窄带宽和高功率使得它成为细分光谱研究、原子物理、分子光谱学等领域的理想工具。
此外,固态激光器还广泛应用于量子光学研究、量子计算和量子通信等领域。
2. 医疗器械固态激光器在医疗领域有着广泛的应用。
激光切割、激光刻蚀、激光焊接等技术在现代医疗器械的制造过程中发挥着重要作用。
此外,激光手术、激光疗法等应用也在眼科手术、皮肤整形和癌症治疗等方面展现出了巨大的潜力。
固体激光器的原理及应用
固体激光器的原理及应用1.激活剂:固体激光器使用的激活剂通常为晶体或玻璃,其中掺杂了能量水平分布较宽的物质,如三价离子或四价离子等。
激活剂材料的选择取决于所需的激光波长和特定应用。
2.激发系统:通常使用光源来激发激活剂中的原子。
常见的激发方式包括光闪烁法、电子束激发法和光泵浦激发法。
通过这些激发方法,激发剂吸收光子能量,电子跃迁到激活态。
3.受激辐射:当激活剂中的元激发态处于足够的能级时,它们可以通过受激辐射过程发射光子。
这些光子的能级和相位与刺激光子的相同,也就是说,它们是同相且具有相同的波长和频率。
这样一来,受激辐射形成一个激光。
4.光反馈:激活剂中的光子在传播时经过光学谐振腔,其中包含两个镜子,一个是高反射镜,另一个是半透镜。
高反射镜反射大部分激光光子,使得光子在腔内来回传播。
半透镜透过一小部分激光光子,从而产生输出激光。
1.科学研究:固体激光器在科学研究领域中被广泛应用,例如用于制造实验所需的高能量激光束,用于研究宇宙、物质结构和基本粒子等领域。
2.医疗:固体激光器被用于医学领域中的手术和治疗过程。
例如,激光切割术、激光去除表皮术和激光治疗癌症等。
3.通信:固体激光器可用于光纤通信系统中。
其优点包括高功率、高效能和高数据传输速度,使其成为光纤通信的理想激光源。
4.材料加工:固体激光器可用于材料加工,如激光切割和激光焊接等。
由于其高能量密度和可控性,这些激光器可以精确地加工各种材料,包括金属、塑料和陶瓷等。
5.军事应用:固体激光器在军事领域中具有重要的应用,例如激光制导武器、激光测距仪和激光干涉测量等。
总的来说,固体激光器具有高能量密度、高效能、高重复频率和稳定的输出特性,因此在科学研究、医疗、通信、材料加工和军事等领域有着广泛的应用。
随着技术的发展,固体激光器在不同领域的应用前景将进一步拓展。
固体激光器的工作原理
固体激光器的工作原理
固体激光器是一种利用固体材料作为工作介质产生激光的装置。
它的工作原理是通过激发固体材料中的原子或分子,使其处于激发态,然后在激发态和基态之间进行能级跃迁,产生激光输出。
固体
激光器通常由泵浦源、固体激发材料和谐振腔三部分组成。
首先,固体激光器的泵浦源通常采用激光二极管或者弧光灯等
高能量光源,用来提供能量以激发固体材料中的原子或分子。
这些
泵浦源产生的光能会被聚焦到固体激发材料上,激发材料吸收光能后,内部的原子或分子就会处于激发态。
其次,固体激光器的固体激发材料是产生激光的关键部分。
常
见的固体激发材料包括Nd:YAG晶体、Nd:YVO4晶体、Nd:glass等。
这些材料在受到泵浦源激发后,内部的原子或分子会处于激发态,
形成激发粒子团。
最后,固体激光器的谐振腔是激光放大和输出的关键部分。
谐
振腔由两个反射镜构成,其中一个是部分透射的输出镜,另一个是
全反射的输入镜。
激发粒子团在谐振腔中来回多次反射,不断受到
激发和放射,最终形成激光输出。
综上所述,固体激光器的工作原理是通过泵浦源激发固体激发材料中的原子或分子,使其处于激发态,然后在谐振腔内进行能级跃迁,产生激光输出。
固体激光器具有结构简单、稳定性好、寿命长的特点,被广泛应用于医疗、通信、材料加工等领域。
希望本文能够帮助大家更好地了解固体激光器的工作原理。
固体激光器的工作原理
固体激光器的工作原理固体激光器是一种利用固体材料作为工作物质产生激光的装置。
它通过激发固体材料中的原子或分子,使其处于激发态,然后在外部条件的作用下,使其发生跃迁并释放出光子,从而产生激光。
固体激光器广泛应用于医疗、通讯、材料加工等领域,具有输出功率高、波长范围广、光束质量好等优点。
下面将详细介绍固体激光器的工作原理。
首先,固体激光器的工作原理基于激光放大过程。
在固体激光器中,激光通过光学增益介质(固体材料)进行多次反射和透射,从而得到放大。
固体激光器中的激光增益介质通常是由稀土离子掺杂的晶体或玻璃材料构成。
当外部能量作用于激光增益介质时,激发介质中的稀土离子,使其处于激发态。
在外部条件的作用下,激发态的稀土离子发生跃迁并释放出光子,从而产生激光。
这些激光光子经过多次反射和透射后,得到放大,最终形成高功率、高亮度的激光输出。
其次,固体激光器的工作原理还涉及光学谐振腔。
光学谐振腔是固体激光器中的一个重要组成部分,它由两个反射镜构成,其中一个反射镜是部分透射的,用来输出激光。
在光学谐振腔中,激光在激光增益介质中来回传播,通过多次反射和透射,得到放大。
同时,光学谐振腔还能选择性地放大特定波长的光,形成单色激光输出。
最后,固体激光器的工作原理还涉及泵浦光源。
固体激光器的激光增益介质需要外部能量的输入才能实现激发和激光输出。
这种外部能量通常由泵浦光源提供,泵浦光源可以是激光二极管、氙灯、氦氖激光等。
泵浦光源的能量被吸收后,激发固体激光器中的稀土离子,从而实现激光的产生和输出。
综上所述,固体激光器的工作原理主要包括激光放大过程、光学谐振腔和泵浦光源。
通过这些过程,固体激光器能够产生高功率、高亮度的激光输出,具有广泛的应用前景。
固体激光器在医疗、通讯、材料加工等领域发挥着重要作用,为人类社会的发展做出了重要贡献。
固体激光器及其应用
固体激光器及其应用
固体激光器是一种使用固体材料作为激光介质的激光器。
它通常由一个激活剂(通常是稀土元素)和一个基质组成。
当激活剂受到外部能量激发时,它会释放出光子并与基质中的原子相互作用,从而产生激光。
固体激光器具有以下一些特点:
1. 高功率输出:固体材料具有较高的能量存储密度,可以实现高功率激光输出。
2. 长寿命:固体材料的寿命通常较长,可以连续工作数千小时。
3. 较低的散射损耗:固体材料通常具有较小的散射损耗,可以实现高效的激光转换。
4. 宽波长范围:固体材料可以实现从紫外到近红外等多个波长范围的激光输出。
固体激光器有广泛的应用领域,包括但不限于以下几个方面:1. 切割和焊接:固体激光器可以产生高功率激光束,用于金属切割和焊接工艺。
2. 材料加工:固体激光器可以用于玻璃、陶瓷、塑料等材料的微加工,如打孔、刻字等。
3. 医学领域:固体激光器可用于激光手术、激光治疗、激光诊断等医学应用。
4. 科研实验:固体激光器可用于物理学、化学等科研领域的实验研究,如光谱分析、原子冷却等。
5. 通信和雷达:固体激光器可以用于光纤通信、激光雷达等领域,实现高速数据传输和距离测量。
总而言之,固体激光器具有高功率、长寿命和宽波长范围等优点,其应用领域十分广泛,包括材料加工、医学、科研等多个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3椭圆柱聚光腔
4)光学谐振腔
光学谐振腔由全反射镜和部分反射镜组成,是固体激光器的重要
图6 : 激光跃迁能级图
现今, : 激光器的最大平均功率已达到3W,最大脉冲输出已达到5J,是迄今为止输出功率最大、效率最好的长波长固体激光器;加之交换输出波长为2.94m,这正是人体组织的吸收波长,这个也是 : 的一个非常突出的优点。因此在医疗方面(尤其是激光外科和血管外科)有很大的应用潜力[9]。
固体激光器原理及应用
———————————————————————————————— 作者:
———————————————————————————————— 日期:
编号
赣 南 师 范 学 院 学 士 学 位 论 文
固体激光器原理及应用
教学学院物理与电子信息学院
届 别2010届
专 业电子科学与技术
学 号060803013
典型固体激光器的比较
如下表2所示,将从工作物质、输出波长、能级系统和常用泵浦方式等四个方面对上述固体激光器进行简单的比较。
内容
激光器
工作物质
输出波长
能级系统
常用泵浦
方式
红宝石
激光器
:
0.6943m
0.6929m
三能级
光泵浦
掺钕钇铝
石榴石激光器
:
1.06m
1.35m
四能级
光泵浦
掺铒固体
激光器
:
2.94m
体激光器的结构非常简单并且非常耐用,同时价格相对适宜。
3)材料种类数量多。固体激光器的工作物质的种类非常多,到目
图1 固体激光器的基本结构
1)工作物质
工作物质——激光器的核心,是由激活粒子(都为金属)和基质
两部分组成,激活粒子的能级结构决定了激光的光谱特性和荧光寿命等激光特性,基质主要决定了工作物质的理化性质。根据激活粒子的能级结构形式,可分为三能级系统(例如红宝石激光器)与四能级系统(例如Er:YAG激光器)。工作物质的形状目前常用的主要有四种:圆柱形(目前使用最多)、平板形、圆盘形及管状[5]。
四能级
光泵浦
可调谐固体
激光器
钛蓝宝石
0.8~3.9m
四能级
光泵浦
表2 典型固体激光器的比较
3.4固体激光器的优缺点
固体激光器主要优点:
1)输出能量大,峰值功率高。在固体激光器中,由于中心粒子的
能级结构,能够输出大能量,并且峰值功率高。这个是固体激光器非常突出的优点。
2)结构紧凑耐用,价格适宜。和其他类型的激光器相比,固
激光的英文名——LASER,是英语词组LightAmplificationby StimulatedEmissionofRadiation(受激辐射的光放大)的缩写[1]。
2.1.2产生激光的条件
产生激光有三个必要的条件[2]:
1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(
原子、分子或离子)有适合于产生受激辐射的能级结构;
c)高便携性
d)低成本高质量
现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。
2激光与激光器
2.1激光
2.1.1激光(LASER)
图4红宝石中铬离子的能级结构
红宝石激光器的有一些非常突出的优点:机械强度好,高功率密度,大尺寸晶体,亚稳态寿命长,高能量单模输出。当然也有一些很明显的缺点:阈值高,温度效应明显。所以只能在低温下连续与高重复率运行。
3.2.2掺钕钇铝石榴石激光器( : )
: 激光器是迄今为止使用最为广泛的固体激光器。在固
姓 名丁志鹏
指导老师邹万芳
完成日期2010.5.10
摘要1
关键词1
Abstract1
Key words1
1引用ﻩ2
2激光与激光器2
2.1ﻩ激光2
2.2激光器3
3ﻩ固体激光器4
3.1ﻩ工作原理和基本结构4
3.2ﻩ典型的固体激光器ﻩ8
4固体激光器的应用ﻩ13
4.2ﻩ工业制造ﻩ15
4.3医疗美容ﻩ17
5结束语18
Abstract:Solid-state laser is currently one of the most extensive laser,it has some very obvious advantages.The working principle of solid-state lasers and applicationswere described in the paper andit canenhance the understanding.In this paper, starting with the basic principles and structure of the introduced solid-state laser,and then some typical solid-state lasers and a presentation on its military defense,industrial technology,medical andcosmeticapplicationsin three areas and future development directionwere introduced.
冷却措施。主要是对激光工作物质、泵浦系统和聚光腔进行冷却,以保证激光器的正常使用及器材的保护。冷却方法有液体冷却、气体冷却和传导冷却,但目前使用最广泛的是液体冷却方法。
要获得高单色性的激光束,滤光系统起了很大的作用。滤光系统
能够将大部分的泵浦光和其他一些干扰光过滤,使得输出的激光单色性非常好。
3.2典型的固体激光器
Key words:Solid-state Laser Basic Principle Basic Structure Application
1引用
世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。
组成部分。光学谐振腔除了提供光学正反馈维持激光持续振荡以形成受激发射,还对振荡光束的方向和频率进行限制,以保证输出激光的高单色性和高定向性。最简单常用的固体激光器的光学谐振腔是由相向放置的两平面镜(或球面镜)构成。
5)冷却与滤光系统
冷却与滤光系统是激光器必不可少的辅助装置。
固体激光器工作时会产生比较严重的热效应,所以通常都要采取
3.2.3掺铒钇铝石榴石激光器(Er:YAG)
: 激光器的出现是激光在医疗领域的一大突破。
它的基本结构与 : 激光器基本结构相似,通常采用脉冲氙灯泵浦,聚光腔为镀银的单椭圆柱腔或双椭圆柱腔,但是其光学元件必须与水蒸气隔离(不隔离激光束将破坏),因此需要将激光器密闭在干燥的容器之中[8]。如下图6所示,为 : 激光跃迁能级图,其输出的波长为2.94m。
2)泵浦系统
泵浦源能够提供能量使工作物质中上下能级间的粒子数翻转,目
前主要采用光泵浦。泵浦光源需要满足两个基本条件:有很高的发光效率和辐射光的光谱特性应与工作物质的吸收光谱相匹配。
常用的泵浦源主要有惰性气体放电灯、太阳能及二极管激光器。其中惰性气体放电灯是当前最常用的,太阳能泵浦常用在小功率器件(尤其在航天工作中的小激光器可用太阳能最为永久能源),二极管(LD)泵浦是目前固体激光器的发展方向,它集合众多优点于一身,已成为当前发展最快的激光器之一。
固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。
未来的固体激光器将朝着以下几个方向发展:
a)高功率及高能量
b)超短脉冲激光
目前,激光器并没有像上述两种激光器一样被广泛的应用,但是我们相信,在不久的将来它会在固体激光器当中占有一个非常重要的地位。
3.2.4可调谐固体激光器
可调谐固体激光器的出现可以说是固体激光器的重大发展。
它是指在一定范围内,可以连续改变输出波长的固体激光器。我们可以将它分为两类[10]:一类是色心激光器,一类是用掺过渡族金属离子的激光晶体制作的可调谐激光器。
色心是晶体中正负离子缺位引起的缺陷。色心激光器的阈值较低,容易实现单模运转,并且光束质量好,特别是调谐范围覆盖0.8~3.9m。这是其他可调谐激光器难以达到的。但色心激光器大都只适合在低温下工作,且使用过程中,仍然不太稳定。与此相比,掺过过渡金属的激光晶体制作的可调谐激光器,性能更加优越。主要的激光晶体有金绿宝石、Cr:GSGG、掺钛蓝宝石等。其中钛蓝宝石是目前性能最好的固体可调谐材料[11]。
激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生放大相干的红外线、可见光线和紫外线(以至χ射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。
2.2.1激光器的诞生史
激光器的诞生史大致可以分为以下三个阶段[3]:理论基础阶段、粒子数反转阶段和激光器产生(竞赛)阶段。
2.2.2激激光器的分类
1960年,梅曼首次在实验室用红宝石晶体获得了激光输出,开创了激光发展的先河。此后,激光器件和技术获得了突飞猛进的发展,相继出现了种类繁多的激光器。