大学物理参考公式(2)

合集下载

大学物理第二学期公式集

大学物理第二学期公式集

大学物理第二学期公式集电磁学1.定义:①E 和B :F =q(E +V ×B)洛仑兹公式②电势:⎰∞⋅=rr d E U电势差:⎰-+⋅=l d E U电动势:⎰+-⋅=l d K ε(qF K 非静电 =)③电通量:⎰⎰⋅=S d E eφ磁通量:⎰⎰⋅=S d B Bφ磁通链:ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S=IS nˆ ④电偶极矩:p =q l⑤电容:C=q/U 单位:法拉(F )*自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I =dtdq ; *位移电流:I D =ε0dtd e φ 单位:安培(A )⑦*能流密度: B E S ⨯=μ12.实验定律①库仑定律:0204r r Qq F πε=②毕奥—沙伐尔定律:204ˆr r l Id B d πμ⨯=③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dtd Bφ 动生电动势:⎰+-⋅⨯=l d B V)(ε感生电动势:⎰-+⋅=l d E iε(E i 为感生电场)*⑤欧姆定律:U=IR (E =ρj)其中ρ为电导率3.*定理(麦克斯韦方程组)电场的高斯定理:⎰⎰=⋅0εq S d E ⎰⎰=⋅0εq S d E 静(E静是有源场)E =F/q 0 单位:N/C =V/mB=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G )Θ ⊕ -q l +qS m ESB⎰⎰=⋅0S d E感 (E 感是无源场) 磁场的高斯定理:⎰⎰=⋅0S d B⎰⎰=⋅0S d B(B 稳是无源场)⎰⎰=⋅0S d B(B 感是无源场)电场的环路定理:⎰-=⋅dtd l d E B φ⎰=⋅0l d E静(静电场无旋)⎰-=⋅dtd l d E B φ 感(感生电场有旋;变化的磁场产生感生电场) 安培环路定理:d I I l d B 00μμ+=⋅⎰⎰=⋅I l d B 0μ稳(稳恒磁场有旋) dtd l d Be φεμ00⎰=⋅ 感(变化的电场产生感生磁场) 4.常用公式①无限长载流导线:r I B πμ20= 螺线管:B=nμ0I②带电粒子在匀强磁场中:半径qBmV R =周期qBm T π2=磁矩在匀强磁场中:受力F=0;受力矩B m M⨯=③电容器储能:W c =21CU 2 *电场能量密度:ωe =21ε0E 2 电磁场能量密度:ω=21ε0E 2+021μB 2 *电感储能:W L =21LI 2 *磁场能量密度:ωB =021μB 2 电磁场能流密度:S=ωV④ *电磁波:C=001εμ=3.0×108m/s 在介质中V=C/n,频率f=ν=021εμπ波动学1.定义和概念简谐波方程: x 处t 时刻相位 振幅ξ=Acos(ωt+φ-2πx/λ) 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)相位Φ——决定振动状态的量振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /振动量(位移)点处相位点处初相x处落后0点的相位2k π 极大(明纹) (2k+1)π极小(暗纹) kλ 极大(明纹)(2k+1)λ/2极小(暗纹)周期T ——振动一次的时间 单摆ω=lg /波速V ——波的相位传播速度或能量传播速度。

大学物理公式大全

大学物理公式大全

大学物理公式大全大学物理公式大全物理学是一门探索自然现象的科学,它研究宇宙的运动、力的作用、物质的组成和性质等。

在大学物理学学习中,我们会接触到众多的物理公式。

下面是一份大学物理公式大全,供大家参考。

1. 运动学公式:速度(v)= 位移(s)/ 时间(t)加速度(a)= (末速度(v)- 初速度(u))/ 时间(t)位移(s)= 初速度(u)* 时间(t) + 1/2 * 加速度(a)* 时间(t)^22. 牛顿第一定律(惯性定律):一个物体在没有受到外力作用时,保持静止或匀速直线运动。

3. 牛顿第二定律(力与加速度的关系):力(F)= 质量(m)* 加速度(a)4. 牛顿第三定律(作用与反作用定律):两个物体之间的相互作用力,两个力的大小相等、方向相反。

5. 动能公式:动能(K)= 1/2 * 质量(m)* 速度^26. 动量公式:动量(p)= 质量(m)* 速度(v)7. 转动力矩(扭矩)公式:转动力矩(τ)= 力(F)* 力臂(r)8. 转动惯量公式:转动惯量(I)= 质量(m)* 半径(r)^29. 动量守恒定律:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。

10. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。

11. 功公式:功(W)= 力(F)* 位移(s)12. 弹性势能公式:弹性势能(E)= 1/2 * 弹性系数(k)* 弹性变形^213. 引力公式:引力(F)= 万有引力常数(G)* (质量1(m1)* 质量2(m2))/ 距离^214. 等离子体温度公式:等离子体温度(T)= 等离子体内电子能量总量(Ee)/ 等离子体内电子数目(Ne)* Boltzmann常数(k)15. 麦克斯韦速度分布公式:概率密度(f)= (质量(m)/ (2 * π * Boltzmann常数(k) * 温度(T)))^(3/2) * e^(-(速度(v)^2)/ (2 * Boltzmann常数(k) * 温度(T)))16. 电场强度公式:电场强度(E)= 电力(F)/ 电荷量(q)17. 电能公式:电能(W)= 电流(I) * 电压(V) * 时间(t)18. 磁场强度公式:磁场强度(B)= 电流(I)* μ0 / (2 *π * r)19. 磁感应强度公式:磁感应强度(B)= 磁场强度(μ0) * 磁化强度(M)20. 麦克斯韦电磁场微分方程组:∇·E = ρ / ε0∇·B = 0∇×E = - ∂B / ∂t∇×B = μ0J + μ0ε0 ∂E / ∂t以上仅是大学物理中的一小部分公式,物理学的知识非常广泛且深入。

((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档

((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档

2.30 I r 2dm r 2 dv 转动惯量 (dv 为相应质元
m
v
dm 的体积元,p 为体积元 dv 处的密度)
2.31 L I 角动量
2.32 M Ia dL 物体所受对某给定轴的合外力矩等 dt
于物体对该轴的角动量的变化量
2.33 Mdt dL 冲量距
2.34
t
Mdt
v gt
y
1
at 2
v
2
2 2gy
v v0 gt
y
v0t
1 2
gt
2
v 2 v0 2 2gy
1.17
抛体运动速度分量
v
y
vx
v0
v0 cos a sin a gt
x v0 cos a t
1.18
抛体运动距离分量
y
v0 sin a t
1 2
gt 2
1.19 射程 X= v02 sin 2a g
F=ma 牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互 吸引力,其大小与两质点质量的乘积成正比,与两质点 间的距离的二次方成反比;引力的方向沿两质点的连线
dv d 2r
1.8 瞬时加速度 a= =
dt dt 2
1.11 匀速直线运动质点坐标 x=x0+vt 1.12 变速运动速度 v=v0+at
1
1.13 变速运动质点坐标 x=x0+v0t+ at2
2
1.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16 竖直上抛运动

大学物理常用公式(电场磁场 热力学)

大学物理常用公式(电场磁场 热力学)

第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。

2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。

二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。

Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E v ⊥表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

大学物理学公式(考试必备)

大学物理学公式(考试必备)

1.元电荷——电子(质子)所带的电量(e=1.60×10-19C )为所有电量中的最小值,叫做元电荷。

2.库伦定律:处在静止状态的两个点电荷,在真空(空气)中的相互作用力,与两个点电荷的电量成正比,与两个点电荷间距离的平方成反比,作用的方向沿着两个点电荷的连线221r q q k F =(其中k 为比例系数,F m /1099⨯=)静电力021041r r q q F q πε=(其中0ε为电容率m F /1085.812-⨯=,0r 为人的单位矢量。

3.电场中某点的电场强度E 的大小等于单位电荷在该点受力的大小,其方向为正电荷在该点受力的方向:020041r r q q F E πε==,在已知静电场中各点电场强度的条件下电荷q 的静电力qE F =。

4.点电荷系在某点P 产生的电场强度等于各点电荷单独在该点产生的电场强度的矢量和,这称为电场的叠加原理。

5.电偶极子:两个大小相等的异号点电荷+q 和-q ,相距为l ,如果要计算电场强度的各场点相对这一对电荷的距离r 要比l 大的多,这样一对点电荷称为电偶极子。

ql p =,p 为点偶极子电偶极距,l 的方向规定为由负电荷指向正电荷。

6.静电场中的电场线有两条重要的性质:(1)电场线总是起自正电荷,终止于负电荷(或从正电荷伸向无限远,或来自无限远到负电荷止);(2)电场线不会自成闭合线,任意两条电场线也不会相交。

7.电通量:在电场中穿过任意曲面S 的电场线条数称为穿过该面的电通量,用e Φ表示。

8.高斯定理:真空中的任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电量的代数和乘以1ε即)(1内∑⎰⎰=•=Φii se q dS E ε(不连续分布的源电荷)dV dS E Vse ρε⎰⎰⎰=•=Φ01(连续分布)。

9.高斯定理的重要意义:把电场与产生电场的源电荷联系起来了,它反映了静电场是有源电场这一基本的性质。

大学物理常用公式(电场磁场-热力学)

大学物理常用公式(电场磁场-热力学)

第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。

4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。

二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。

q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E ⊥表表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。

3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。

大学物理公式大全

大学物理公式大全

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 2212022001.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v y x sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。

大学物理公式总结归纳

大学物理公式总结归纳

大学物理公式总结归纳物理学作为自然科学的一支重要学科,研究物质、能量以及它们之间的相互作用规律。

在学习和应用物理学的过程中,公式是不可或缺的工具。

本文将对大学物理中一些重要的公式进行总结归纳,并介绍它们的应用场景和实际意义。

1. 力学1.1 牛顿第二定律F = ma在这个公式中,F代表物体所受的力,m代表物体的质量,a代表物体的加速度。

这个公式描述了力对物体运动状态的影响,它是经典力学的基础。

1.2 弹力公式F = kx这个公式描述了弹簧对物体施加的力。

F代表弹力,k代表弹簧的劲度系数,x代表弹簧伸长或压缩的距离。

它在弹簧振动、弹簧秤等实际应用中起到了重要作用。

1.3 动量定理FΔt = Δp这个公式描述了物体所受力的变化率与物体动量的变化率之间的关系。

F代表物体所受的力,Δt代表时间间隔,Δp代表物体动量的变化量。

动量定理在撞击碰撞等问题中有广泛应用。

2. 电磁学2.1 库仑定律F = k|q1q2|/r^2这个公式描述了两个电荷之间的力的作用关系。

F代表电荷之间的力,q1、q2分别代表两个电荷的电量,r代表它们之间的距离。

库仑定律是静电学的基本定律,对于电场、电势等问题的研究具有重要意义。

2.2 电流强度公式I = Q/Δt这个公式描述了单位时间内通过导线的电荷量与电流强度的关系。

I 代表电流强度,Q代表单位时间内通过导线的电荷量,Δt代表时间间隔。

电流强度是电路中一个基本的物理量,在电路分析和设计中被广泛应用。

2.3 电磁感应定律ε = -dΦ/dt这个公式描述了磁场变化引起的感应电动势。

ε代表感应电动势,dΦ/dt代表磁通量对时间的变化率。

根据电磁感应定律,电磁感应现象得到解释,并应用于发电机、变压器等设备的设计与实际运用。

3. 热学3.1 热传导公式Q = kAΔT/Δx这个公式描述了物质在热传导过程中的热量传递。

Q代表热量,k代表热导率,A代表传热面积,ΔT代表温度差,Δx代表传热距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理(2)参考公式
第七章:
库仑定律:
F12
=
1 4πε0
q1q 2 r2
er
均匀带电细圆环轴线上场强: E =
qx
4πε 0 (R 2 + x 2 )3 2
电偶极子在匀强电场中所受的力矩:M = P × E
∫ ∑ 高斯定理:Φe =
E ⋅ dS =
1
e0
qint
∫ ∫
静电场的环路定理: E ⋅ d l = 0 l
= ωmdV
V
1 BHdV
2V
(非铁磁质)
自感磁能: Wm
=
1 2
LI 2
位移电流:Id
=
S dD dt
=
dΨ D dt
∫ ∑ ∫ ∫ 两个载流线圈的总磁能: 全电流定律:
Wm H
L
=1 2
⋅dl
L1I12 =
+ (I
1 2
+
L
2
I
2 2
Id ) =
± M 21I1I2 j ⋅ dS +
S
∂D S∂t
球形电容器的电容: C = 4πε 0ε r R1R2 R2 − R1
∑ ∑ 电容器并联: C =பைடு நூலகம்Ci
电容器串联: 1 = C
1 Ci
∫ ∫ 电容器的能量:W = 1 Q 2 = 1 CU 2 = 1 QU
2C 2
2
静电场的总能量:W =
ωedV =
eE 2 dV 2
第八章:电流元产生的磁场(毕-萨定律)
dB
=
µ0

Idl
×
er
r2
∫ 磁场高斯定理 B ⋅ dS = 0 S
直线电流的磁场
B
=
µ0 I 4πr
(cosθ1-cosθ 2 )
( ) 圆电流轴线上的磁场
B=
µ0 IR 2 2 R2 + x2
3 2
一个运动电荷在电磁场中所受的力
F
=
qE
+
qv ×
B
1
∫ 载流导线 L 在磁场中受的力 F = Idl × B L
dI1 dt
ε 12
= − d Ψ12 dt
= − M12
dI2 dt
自感系数: L = Ψ I
自感电动势: ε L
= − dΨ dt
= − L dI dt
自感和互感的关系: M = k�L1L2(K 为耦合系数)
磁场能量密度:
ω=m
B2 = 2µ
1 BH
2
(非铁磁质)
∫ ∫ 磁场总磁能: = Wm
电势的定义:
VP =
P0
E

dl
P
点电荷电势: V = q 4πε 0 r
均匀带电圆环轴线上电势:
V
=
q 4πε0 (R 2 +
x 2 )1/ 2
电场力做功: A12 = q(V1 − V2 ) = W1 − W2
各向同性电介质中的电极化强度与电场强度的关系: P = ε 0 (ε r −1)E
3
∫ ∫∫ 第九章: 法拉第电磁感应定律:
感生电场:εi =
L Ei
⋅d l
=

dψ dt
=
εi −
=−
∂B
S ∂t

dt
⋅ dS
∫ ∫ 动生电动势:
εi =
LEk ⋅dl =
b
(
v
×
B)

d
l
a
互感系数:= M
Ψ=21 i1
Ψ12 i2
互感电动势:ε 21
= − d Ψ21 dt
= − M21
载流线圈在均匀磁场中受的力矩
M
=
m
×
B
(其中磁矩
m
=
NIS

载流线圈在磁场中磁力矩做的功 A = I ∆Φ
∫ ∑ 安培环路定理
B⋅dl
L
=
µ0
Iint
磁化强度
M =µr

1
B
µ0µr
磁化电流线密度 =j′
M × en
磁场强度
B
B
H= − M=
µ0
µ0µr
∫ ∑ H 的环路定理 H ⋅ dl = Ii
牛顿环: e = r2 / 2R ,
r明 =
(2k −1)Rλ 2n
r暗 =
kRλ n
2
夫琅禾费单缝衍射:
暗条纹中心 a sinθ = ±kλ
( k = 1, 2,3,... , a 为缝宽)
明条纹中心(近似) a sinθ = ±(2k +1) λ 2
( k = 1, 2,3,... )
中央明条纹的半角宽度为 θ ≈ sinθ = λ 中央明条纹的线宽度为 a
⋅ dS
第十二章:光程:L=nd
相位差与光程差: ∆ϕ =2π δ
λ
薄膜干涉:
δ =2e
n22

n12
sin 2
i
+
λ 2
= 或 δ 2e n22 − n12 sin2 i
干涉条件: 明纹 δ = kλ
暗纹 =δ (2k +1)λ / 2
劈尖条纹间距: L = λ 2nθ
迈克尔逊公式: ∆d =N λ 2
电介质表面的面束缚电荷密度:σ ′
=
P cosθ
=
P

en
( )
电位移矢量: D = ε0E + P = εrε0E
∫ ∑
电位移矢量 D 的高斯定理:
D

ds
=
s
q0 int
平行板电容器的电容: C = ε 0ε r S d
圆柱形电容器的电容: C
=
2πε 0ε r L
ln(R2 R1 )
光栅衍射:
光栅方程: d sinθ = kλ (d 为光栅常数)
缺级条件: k = ± d k′, a
整个屏幕看到最大级数: k max
<
d λ
∆x =2 f λ a
马吕斯定律: I = I0 cos2 α
布儒斯特定律:
tan
i0
=
n2 n1
常数 : ε0 = 8.85×10-12 C2 ·N-1·m-2; m0 = 4π × 10−7 T ⋅ m/A
相关文档
最新文档