大学物理下主要公式(含文字)
((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档

2.30 I r 2dm r 2 dv 转动惯量 (dv 为相应质元
m
v
dm 的体积元,p 为体积元 dv 处的密度)
2.31 L I 角动量
2.32 M Ia dL 物体所受对某给定轴的合外力矩等 dt
于物体对该轴的角动量的变化量
2.33 Mdt dL 冲量距
2.34
t
Mdt
v gt
y
1
at 2
v
2
2 2gy
v v0 gt
y
v0t
1 2
gt
2
v 2 v0 2 2gy
1.17
抛体运动速度分量
v
y
vx
v0
v0 cos a sin a gt
x v0 cos a t
1.18
抛体运动距离分量
y
v0 sin a t
1 2
gt 2
1.19 射程 X= v02 sin 2a g
F=ma 牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互 吸引力,其大小与两质点质量的乘积成正比,与两质点 间的距离的二次方成反比;引力的方向沿两质点的连线
dv d 2r
1.8 瞬时加速度 a= =
dt dt 2
1.11 匀速直线运动质点坐标 x=x0+vt 1.12 变速运动速度 v=v0+at
1
1.13 变速运动质点坐标 x=x0+v0t+ at2
2
1.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16 竖直上抛运动
(完整版)大学物理公式总结

引言概述:大学物理是一门研究物质的基本原理和规律的学科,是自然科学中最基础、最广泛且最重要的学科之一。
在学习大学物理过程中,理解和掌握物理公式是至关重要的。
本文将对大学物理中一些重要的公式进行总结和阐述,帮助读者更好地理解和应用这些公式。
正文内容:1.力学1.1牛顿第一定律1.1.1物体在匀速直线运动中的惯性1.1.2例子及应用1.2牛顿第二定律1.2.1力和加速度的关系1.2.2例子及应用1.3牛顿第三定律1.3.1相互作用力和作用力的大小和方向1.3.2例子及应用1.4动能定理1.4.1动能的定义和计算1.5万有引力定律1.5.1质点间引力的大小和方向1.5.2例子及应用2.热学2.1热力学第一定律2.1.1内能的变化与热量和功的关系2.1.2例子及应用2.2热力学第二定律2.2.1热机效率和热流的方向2.2.2例子及应用2.3热扩散定律2.3.1温度梯度和热传导的关系2.3.2例子及应用2.4理想气体状态方程2.4.1理想气体的变化状态和方程2.4.2例子及应用2.5熵的增加原理2.5.1熵的定义和增加原理3.电学3.1库伦定律3.1.1静电力和电荷的关系3.1.2例子及应用3.2电场强度3.2.1电场和电荷的关系3.2.2例子及应用3.3电势能与电势3.3.1电势能和电势的定义3.3.2例子及应用3.4电流和电阻3.4.1电流和电阻的关系3.4.2例子及应用3.5电磁感应3.5.1法拉第电磁感应定律和楞次定律3.5.2例子及应用4.光学4.1光的折射和反射4.1.1折射定律和反射定律4.1.2例子及应用4.2光的波动性和粒子性4.2.1光的干涉和衍射现象4.2.2例子及应用4.3光的色散和偏振4.3.1光的色散和偏振现象4.3.2例子及应用4.4光的透射和吸收4.4.1光的透射和吸收定律4.4.2例子及应用4.5光的干涉和衍射4.5.1光的干涉和衍射现象4.5.2例子及应用5.量子力学5.1波粒二象性5.1.1波动方程和粒子的能量5.1.2例子及应用5.2不确定性原理5.2.1不确定性原理和粒子的位置和动量5.2.2例子及应用5.3斯特恩格拉赫实验5.3.1双缝干涉和波粒二象性的实验验证5.3.2例子及应用5.4薛定谔方程5.4.1薛定谔方程和波函数的解释5.4.2例子及应用5.5电子结构5.5.1电子能级和原子结构的描述5.5.2例子及应用总结:大学物理中的公式总结了物质世界中各种现象和规律的数学表达方式。
大学物理公式总结

大学物理公式总结引言:大学物理是自然科学中的一门基础学科,掌握物理公式是学好物理的关键。
物理公式是在长期实验和理论研究的基础上总结、归纳出来的。
在这篇文章中,我将为大家总结一些常见的大学物理公式,并简要介绍这些公式的应用。
1. 动力学公式:1.1 牛顿第二定律:F = ma(F代表力,m代表物体质量,a代表物体加速度)牛顿第二定律是经典力学的基石,描述了物体受到的力和其加速度之间的关系。
它可以用于解释物体在受力作用下的运动状态。
1.2 动能公式:K = (1/2)mv^2(K代表动能,m代表物体质量,v代表物体速度)动能公式是描述物体动能与质量以及速度之间关系的公式。
它告诉我们,当物体速度增加时,其动能也会增加。
1.3 势能公式:U = mgh(U代表势能,m代表物体质量,g代表重力加速度,h代表物体高度)势能公式是描述物体势能与质量、重力加速度以及高度之间关系的公式。
它可以用于解释物体在重力场中的储能情况。
2. 热力学公式:2.1 热力学第一定律:Q = ΔU + W(Q代表系统吸收的热量,ΔU代表系统内能的变化,W代表系统对外界做的功)热力学第一定律描述了系统内能的变化与热量和功之间的关系。
根据这个公式,我们可以推导出热功定理和热机效率等重要概念。
2.2 热容公式:Q = mcΔT(Q代表系统吸收的热量,m代表物体质量,c代表物质的比热容,ΔT代表温度变化)热容公式描述了物体吸收的热量与其质量、比热容和温度变化之间的关系。
它可以用于计算物体在受热或冷却过程中需要吸收或释放的热量。
3. 电磁学公式:3.1 库仑定律:F = k * (|q1 * q2| / r^2)(F代表电场力,k代表库仑常数,q1和q2代表电荷量,r代表距离)库仑定律描述了两个电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
这个定律是电磁学的基础之一,用于解释电荷之间的相互作用。
3.2 电路定律:3.2.1 欧姆定律:V = IR(V代表电压,I代表电流,R代表电阻)欧姆定律是描述电路中电压、电流和电阻之间关系的基本定律。
大学物理公式总结

大学物理电磁学公式总结第一章(静止电荷的电场)1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2. 库仑定律:两个静止的点电荷之间的作用力F =kq 1q 2r 2e r =q 1q 24πε0r 2e r3. 电力叠加原理:F=ΣF i4. 电场强度:E=Fq 0, q 0为静止电荷5. 场强叠加原理:E=ΣE i用叠加法求电荷系的静电场:E =∑q i4πε0r i2e ri i (离散型) E=∫dq4πε0r 2e r q(连续型)6. 电通量:Φe=∫E •dS s7. 高斯定律:∮E •dS s=1ε0Σq int 8. 典型静电场:1) 均匀带电球面:E=0 (球面内)E=q4πε0r 2e r (球面外)2) 均匀带电球体:E=q4πε0R3r =ρ3ε0r (球体内)E=q4πε0r 2e r (球体外)3) 均匀带电无限长直线: E=λ2πε0r ,方向垂直于带电直线4) 均匀带电无限大平面:E=σ2ε0,方向垂直于带电平面9. 电偶极子在电场中受到的力矩:M=p×E第九章 静电场知识点:1、 用积分方法计算连续带电体电场强度,场强叠加是矢量叠加;首先进行矢量分解,再把同方向的相加;2、 运用高斯定理,计算电荷均匀分布、对称带电体周围空间的场强和电势;关键是分析场强分布特点,选好封闭曲面;(1)电荷在表面均匀分布的带电圆筒;(选择一个封闭圆柱曲面) (2)电荷在表面均匀分布的带电球壳;(选择一个封闭球面) (3)电荷均匀分布的无穷大平面;(选择一个封闭圆柱曲面)3、 根据电势定义用积分方法计算连续带电体的激发的电势,要获得积分路径上场强的分布;电势叠加是标量叠加; 4、 电场强度环路定理一些问题辨识:1、理解高斯定理的内容:(1)只有封闭曲面内的电荷,才对该封闭曲面的电通量有贡献;(2)曲面以外的任何电荷,对该封闭曲面的电通量没有贡献;(3)这里强调的是封闭曲面,如果只是一个有限曲面,是封闭曲面的一部分,里外的电荷对该部分是有电通量贡献的:(4)里、外的电荷都对曲面上的各点产生场强;2、场强等于零的空间点,电势可以不为零;电势为零的空间点,场强可以不为零;1、 有关静电场的论述,正确的是( )(1) 只有封闭曲面内的电荷才对该封闭曲面的电通量有贡献;√(2) 无论封闭曲面内的电荷的位置如何改变,只要不离开该封闭曲面,而且电荷代数和不变,该封闭曲面的电通量就不变;√(3) 封闭曲面内部的任何电荷的位置的改变,尽管不离开该封闭曲面,而且电荷代数和不变,该封闭曲面的电通量也要发生改变;×(4) 封闭曲面外的电荷激发的场强对该封闭曲面上的任何面元的电通量的贡献为零;×(5) 如果封闭曲面的电通量为零,则该封闭曲面上任何面元上的电场强度一定为零;×(6) 如果封闭曲面的电通量不为零,则该封闭曲面上任何面元的电通量的一定不为零;×(7) 电场强度为零的空间点,电势一定为零;×(8) 在均匀带电的球壳内部,电场强度为零,但电势不为零;√计算场强的三种方法,按照问题的实际情况选择最方便的方法: (1) 根据连续带电体的积分公式; (2) 采用高斯定理;(3) 先获得电势分布公式,然后计算偏导数;z z y x U E y z y x U E x z y x U E z y x ∂∂-=∂∂-=∂∂-=),,(;),,(;),,(计算电势分布首先计算场强分布,再计算电势分布;➢ 第三章(电势)1. 静电场是保守场:∮E •dr L=0 2. 电势差:φ1 –φ2=∫E •dr (p2)(p1)电势:φp =∫E •dr (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ=q 4πε0r电荷连续分布的带电体的电势:φ=∫dq4πε0r4. 电场强度E 与电势φ的关系的微分形式:E=-grad φ=-▽φ=-(∂φ∂x i+∂φ∂y j+∂φ∂z k)电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
大学物理公式大全

⼤学物理公式⼤全⼤学物理公式集基本概念(定义和相关公式)位置⽮量:r,其在直⾓坐标系中:k z j y i x r ++=;222z y x r ++=⾓位置:θ速度:dtr d V=平均速度:tr V ??= 速率:dt dsV =(τ V V =)⾓速度:dt d θω=⾓速度与速度的关系:V=rω加速度:dtV d a=或22dt r d a= 平均加速度:tV a ??=⾓加速度:dtd ωβ=在⾃然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r2 ω)p d )⼒矩:F r M=(⼤⼩:M=rFcos θ⽅向:右⼿螺旋法则)2.动量:V m p=,⾓动量:V m r L=(⼤⼩:L=rmvcos θ⽅向:右⼿螺旋法则)3.冲量:?=dt F I(=FΔt);功:?=r d F A(⽓体对外做功:A=∫PdV )4.动能:mV 2/25.势能:A 保= – ΔE p 不同相互作⽤⼒势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P6.热量:CRT M Q µ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ωn tS ISF P 32===8.分⼦平均平动能:kT 23=ω;理想⽓体内能:RT s r t M E )2(2++=µ9.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分⼦数所占⽐率) 10.平均速率:πµdV V Vf VV80)(==∞⽅均根速率:µRTV 22=;最可⼏速率:µRTpV 3=11.熵:S=Kln Ω(Ω为热⼒学⼏率,即:⼀种宏观态包含的微观态数)12.电场强度:E =F /q 0 (对点电荷:rrq E420πε=) 13.电势:?∞=aar d E U(对点电荷rq U04πε=-kx (弹性⼒)→ kx 2/2F= rrMm G ?2- (万有引⼒) →r Mm G - =E pr r Qq ?420πε(静电⼒) →r Qq 04πεW)14.电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 15.磁感应强度:⼤⼩,B=F max /qv(T);⽅向,⼩磁针指向(S →N )。
(完整版)大学物理所有公式

第一章质点运动学和牛顿运动定律△r1.1 均匀速度v =△t刹时速度 v= lim△r dr=△t 0△t dt△rlim0ds1. 3 速度 v=dtlim0△t△t△t均匀加快度 a =△v△ta= lim△v dv 刹时加快度(加快度)=△t0△t dt刹时加快度 a= dv=d2r dt dt 2匀速直线运动质点坐标x=x +vt变速运动速度 v=v 0+at变速运动质点坐标x=x0+v0t+ 1 at2222速度随坐标变化公式:v0)-v0 =2a(x-x自由落体运动竖直上抛运动v gt v v0gty 1 at2y v0 t 1 gt2 22 v22gy v2v022gy抛体运动速度重量v x v0 cosav y v0 sin a gtx v0 cos a ?t抛体运动距离重量y v0sin a ?t 1 gt22圆周运动加快度等于切向加快度与法向加快度矢量和 a=a t +a n加快度数值a=a t2a n2法向加快度和匀速圆周运动的向心加快度同样a n= v2R切向加快度只改变速度的大小a t =dvds R dΦdtv Rωdt dt角速度ωdφdt角加快度αdω d 2φdt dt 2角加快度 a 与线加快度 a 、 a 间的关系n t2ω 2a t =dvωa n=v(R )Rω2RαR dR R dt dt牛顿第必定律:任何物体都保持静止或匀速直线运动状态,除非它遇到作使劲而被迫改变这类状态。
牛顿第二定律:物体遇到外力作用时,所获取的加快度 a 的大小与外力 F 的大小成正比,与物体的质量 m成反比;加快度的方向与外力的方向同样。
1.37 F=ma牛顿第三定律:若物体 A 以力 F1作用与物体 B,则同时物体 B 必以力 F2作用与物体 A;这两个力的大小相等、方向相反,并且沿同向来线。
万有引力定律:自然界任何两质点间存在着互相吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线1.39F=Gm1m2G 为万有引力称量×r 2v02 sin 2a 1.19 射程 X=g射高Y= v02 sin 2a2g1.21 飞翔时间y=xtga —gx2g10-1122N? m/kg重力 P=mg (g重力加快度 )重力 P=GMmr 2M有上两式重力加快度g=G r2 ( 物体的重力加快度与物体自己的质量没关,而紧随它到地心的距离而变)1.22 轨迹方程y=xtga —gx21.43 胡克定律 F= — kx (k是比率常数,称为弹簧的劲度1.23 向心加快度a=2v02 cos2 av 2系数 )最大静摩擦力f最大=μ0N(μ 0静摩擦系数)R滑动摩擦系数 f= μN ( μ滑动摩擦系数略小于μ )第二章 守恒定律动量 P=mvd (mv)dP 牛顿第二定律 F=dt dt动量定理的微分形式 Fdt=mdv=d(mv)dvF=ma=mdtt 2 v 2Fdt = d (mv) = mv 2- mv 1t 1v 1冲量 I= t 2 Fdtt 1动量定理 I=P 2-P 1均匀冲力 F 与冲量I=t 2Fdt = F (t -t )t 1 21t 2IFdtmv 2 mv 1均匀冲力 F ==t 1t 1 t 2 t 1=t 1t 2t 2质点系的动量定理 (F 1 +F 2 ) △ t=(m 1v 1+m 2v 2) —(m 1v 10+m 2 v 20)左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量nnn2.13 质点系的动量定理:F i △ tm i v im i vi 0i 1i 1i 1作用在系统上的外力的总冲量等于系统总动量的增量2.14 质点系的动量守恒定律 (系统不受外力或外力矢量和 为零)nnm i v i =m i v i0 =常矢量i1i 1L p ? R mvR 圆周运动角动量R 为半径Lp ? dmvd 非圆周运动, d 为参照点 o 到 p点的垂直距离L mvr sin 同上MFd Fr sin F 对参照点的力矩Mr ? F力矩MdL作用在质点上的合外力矩等于质点角动dt量的时间变化率dLdt假如关于某一固定参照点, 质点(系)L 常矢量所受的外力矩的矢量和为零, 则此质点关于该参照点的角动量保持不变。
大学物理公式总结

大学物理上公式定律和定理1.矢量叠加原理:任意一矢量A 可看成其独立的分量i A 的和。
即:A =Σi A (把式中A 换成r、V 、a、F 、E 、B 就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。
2.牛顿定律:F =ma(或F =dtp d );牛顿第三定律:F ′=F ;万有引力定律:rrMm GFˆ2-=动量定理:pI∆=→动量守恒:0=∆p条件∑=0外F1.位置矢量:r,其在直角坐标系中:k z j y i x r ++=;222zy x r ++=角位置:θ2.速度:dtr d V=平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dtd θω=角速度与速度的关系:V=rω3.加速度:dtV d a=或22dtr d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r 2 ω)4.力:F =ma (或F =dtp d) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9.热量:CRTMQμ=其中:摩尔热容量C与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tSI SF P32=∆==11. 分子平均平动能:kT 23=ω;理想气体内能:RTs r t ME)2(2++=μ12.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率)mg(重力) → mgh-kx (弹性力) → kx 2/2F= r rMm G ˆ2- (万有引力) →rMm G - =E prrQq ˆ42πε(静电力) →rQq 04πε13. 平均速率:πμRTNdN dV V Vf VV 80)(==⎰⎰∞方均根速率:μRTV 22=;最可几速率:μRTp V 3=14.熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)电场强度:E =F /q 0 (对点电荷:rrq E ˆ42πε= )毕奥-沙伐尔定律:204r r l Id B d⨯⋅=πμ 磁场叠加原理:⎰⨯=Lr r l Id B 2004πμ 运动电荷的磁场:204r r v q B⨯⋅=πμ 磁场的高斯定理:0=⋅⎰⎰SS d B磁通量:⎰⎰⋅=Sm S d BΦ安培环路定理:∑⎰=⋅I l d B L0μ载流直导线:()120sin sin4ββπμ-=aIB圆电流轴线上任一点:()23222032022RxIR rIR B +==μμ载流螺线管轴线上任一点:()120cos cos2ββμ-=nIB安培力:B l Id f d⨯=, ⎰⨯=LB l Id f载流线圈在均匀磁场中所受的磁力矩:B P M m ⨯=洛仑兹力:B v q f⨯=磁力的功:∆ΦΦΦΦI A Id A I =−−−→−==⎰恒量21bIB R U H AA =',nqR H 1=法拉第电磁感应定律:dtd i Φε-=动生电动势:⎰⋅⨯=abab l d )B v (ε感生电动势,涡旋电场:S d tB l d E Lk i⋅∂∂-=⋅=⎰⎰⎰ε自感:IN L Φ=, dtdI LL -=ε,221LIW m =互感:212112I N M Φ=,121221I N M Φ=2112M M =dtdI M 21212-=ε, dtdI M12121-=ε磁场的能量:μω2212BBH m ==,⎰=Vm m dV W ω麦克斯韦方程组的积分形式:i Sq S d D ∑=⋅⎰⎰(1) 0=⋅⎰⎰SS d B(2)⎰⎰⎰⋅∂∂-=⋅S L S d t Bl d E(3) ⎰⎰⎰⋅∂∂+=⋅S LS d )tD (l d Hδ(4)E D ε=, H B μ=, Eγδ=平面简谐波方程:)]ur t (cos[H H )]u r t (cos[E E {-=-=ωω00 坡印廷矢量:H E S⨯= 相长干涉和相消干涉的条件:ππϕ∆)k (k {122+±±= 3210,,,k =减弱,相消干涉)加强,相长干涉)((2/)12({λλδ+±±=k k ,(21ϕϕ=)杨氏双缝干涉:(暗纹)(明纹)3,2,12,1,0)4/()12()2/({==-±±=k k a D k a kD x λλ薄膜反射的干涉:2/)12({2sin 222122λλλδ+=+-=k k i n n e劈尖反射的干涉:21222/)k (k {ne λλλδ+=+=空气劈尖:lsin 2λθ=, 玻璃劈尖:nlsin 2λθ=牛顿环:3,2,12/)12(=-=k R k r λ(明环),,,k kR r 210==λ(暗环)迈克尔逊干涉仪:λ∆∆N d =2 单缝的夫琅和费衍射:)3,2,1(2)12()3,2,1(22{sin =+±=±=k k k ka 明暗条纹λλϕaf l λ20=, 20l af l ==λ光栅公式:λϕk b a ±=+sin )( 倾斜入射:,1,0)sin )(sin (=±=++k k b a λϕθ缺级公式:,,k 'k ab a k '21±±=+=最小分辨角:D.min λθ221=分辨率:m in1θ=R布喇格公式:3212,,k k sin d ==λϕ布儒斯特定律:12210n n n tgi ==马吕斯定律:α20cos I I = 洛仑兹变换:2222221111ββββ-+=-+=⎪⎪⎩⎪⎪⎨⎧−−−→−--=--=⎪⎪⎩⎪⎪⎨⎧-→'x c u 't t 'ut 'x x x c u t 't ut x 'x "u "u 狭义相对论动力学:① 201β-=m m② 201β-==v m mv P③ 2mc E =, 2mc E ∆∆=202c m mc E k -=④ 20222E c P E +=斯特藩-玻尔兹曼定律: 4T )T (E B σ=4281067.5---⋅⋅⨯=KmW σ唯恩位移定律:b T m =⋅λ, K m .b ⋅⨯=-3108972普朗克公式: 12),(52-=-T k hcB e hc T e λλπλ爱因斯坦方程:A mvh +=221ν红限频率:hA =0ν康普顿散射公式:)cos 1(ϕλ∆-=cm h e光子: νεh =, λhP =三条基本假设:定态,nh h n L =⋅=π2,m n E E h -=ν两条基本公式:2220men h r n πε=oA n2529.0=2220418nhmeE n ⋅-=εeV n26.13-=,3,2,1=n粒子的能量:νh mcE ==2粒子的动量:λhmv P ==测不准关系 h P x x ≥⋅∆∆ 15.16.电势:⎰∞⋅=aa r d E U(对点电荷rq U4πε=);电势能:W a =qU a (A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。
大学物理下册公式大全

大学物理下册公式大全电磁学1.定义:①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:rrd E U电势差: l d E U电动势:l d K (q F K 非静电)③电通量: S d E e 磁通量: Sd B B磁通链:ΦB =N φB 单位:韦伯(Wb )④电偶极矩:p =q l 磁矩:m =I S =IS n ˆ ⑤电容:C=q/U 单位:法拉(F )*自感:L=Ψ/I 单位:亨利(H )*互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I =dtdq ; *位移电流:I D =ε0dtd e 单位:安培(A )⑦*能流密度: BE S12.实验定律①库仑定律:0204r r Qq F②毕奥—沙伐尔定律:24ˆr r l Id B d③安培定律:d F =I l d ×B④电磁感应定律:ε感= –dt d B动生电动势:ld B V)(感生电动势:ld E i(E i 为感生电场)*⑤欧姆定律:U=IR (E=ρj )其中ρ为电导率3.*定理(麦克斯韦方程组) 电场的高斯定理:0 q S d E0 q S d E静(E静是有源场) 0S d E 感(E 感是无源场)磁场的高斯定理: 0S d B 0S d B (B 稳是无源场) 0S d B (B感是无源场)E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G )Θ ⊕ -q l +q电场的环路定理: dt d l d E B 0l d E 静 (静电场无旋)dt d l d E B 感(感生电场有旋;变化的磁场产生感生电场) 安培环路定理:dI I l d B 00 I l d B 0稳 (稳恒磁场有旋)dt d l d B e00 感(变化的电场产生感生磁场) 4.常用公式①无限长载流导线:r I B 20螺线管:B=nμ0I ②带电粒子在匀强磁场中:半径qB mV R周期qB mT 2磁矩在匀强磁场中:受力F=0;受力矩B m M③电容器储能:W c =21CU 2 *电场能量密度:ωe =21ε0E 2电磁场能量密度:ω=21ε0E 2+021 B 2*电感储能:W L =21LI 2 *磁场能量密度:ωB =21 B 2 电磁场能流密度:S=ωV④ *电磁波:C=001=3.0×108m/s 在介质中V=C/n,频率f=ν=0021波动学1.定义和概念简谐波方程: x 处t 时刻相位 振幅ξ=Acos(ωt+φ-2πx/λ) 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)相位Φ——决定振动状态的量振幅A ——振动量最大值 决定于初态 x0=Acos φ初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /周期T ——振动一次的时间 单摆ω=l g /波速V ——波的相位传播速度或能量传播速度.决定于介质如: 绳V= /T 光速V=C/n 空气V= /B波的干涉:同振动方向、同频率、相位差恒定的波的叠加. 光程:L=nx(即光走过的几何路程与介质的折射率的乘积.相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2). 拍:频率相近的两个振动的合成振动.驻波:两列完全相同仅方向相反的波的合成波.多普勒效应:因波源与观察者相对运动产生的频率改变的现象. 衍射:光偏离直线传播的现象. 自然光:一般光源发出的光偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光.部分偏振光:各振动方向概率不等的光.可看成相互垂直两振幅不同的光的合成.x处落后0点的相位0点处初相0点处相位振动量 (位移)2.方法、定律和定理 ①旋转矢量法:如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A在x方向的投影.相干光合成振幅:A=cos 2212221A A A A其中:Δφ=φ1-φ2– 2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1) ② ③菲涅尔原理:波面子波相干叠加确定其后任一点的振动.④*马吕斯定律:I 2=I 1cos 2θ ⑤*布儒斯特定律:当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光.I p 称布儒斯特角,其满足:tg i p = n 2/n 13.公式振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t)*波动能量:2221A I=V A V 2221 ∝A 2*驻波:波节间距d=λ/2 基波波长λ0=2L基频:ν0=V/λ0=V/2L; 谐频:ν=nν0*多普勒效应: 机械波sRV V V V'(V R ——观察者速度;V s ——波源速度)对光波rrV C V C'其中V r 杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd单缝衍射(夫琅禾费衍射):asin θ=kλ(暗纹)θ≈sin θ≈y/f瑞利判据:θmin =1/R =1.22λ/D (最小分辨角)光栅:dsin θ=kλ(明纹即主极大满足条件) tg θ=y/fd=1/n=L/N (光栅常数)薄膜干涉:(垂直入射)δ反=2n2t+δ0 δ0= 0 中 λ/2 极 增反:δ反=(2k+1)λ/2 增透:δ反=k λ现代物理(一)量子力学1.普朗克提出能量量子化:ε=hν(最小一份能量值) 2.爱因斯坦提出光子假说:光束是光子流.光电效应方程:hν=21mv2+A 其中: 逸出功A=hν0(ν0红限频率) 最大初动能21mv2=eUa (Ua 遏止电压) 3.德布罗意提出物质波理论:实物粒子也具有波动性.则实物粒子具有波粒二象性:ε=hν=mc 2 对比光的二象性: ε==mc 2 p=h/λ=mv p=h/λ=m c注:对实物粒子:2210c Vm m>0且ν≠c/λ亦ν≠V/λ;而对光子:m 0=0且ν=C/λ 4.海森伯不确定关系: ΔxΔpx ≥h/4π ΔtΔE ≥h/4π 波函数意义:202=粒子在t时刻r处几率密度.归一化条件:12dV Ψ的标准条件:连续、有限、单值. (二)狭义相对论:1.两个基本假设:①光速不变原理:真空中在所有惯性系中光速相同,与光源运动无关. ②狭义相对性原理:一切物理定律在所有惯性系中都成立. 2.洛仑兹变换:Σ’系→Σ系 Σ系→Σ’系 x=γ(x’+vt’) x’=γ(x - vt) y=y’ y’=y z=z’ z’=zt=γ(t’+vx’/c 2) t’=γ(t-vx/c 2)其中:2211c v因V 总小于C 则γ≥0所以称其为膨胀因子;称β=221c v为收缩因子. 3.狭义相对论的时空观:①同时的相对性:由Δt=γ(Δt’+v Δx’/c 2),Δt’=0时,一般Δt ≠0.称x’/c 2为同时性因子. ②运动的长度缩短:Δx=Δx’/γ≤Δx ′ ③运动的钟变慢:Δt=γΔt’≥Δt ′ 4.几个重要的动力学关系: ① 质速关系m=γm 0② 质能关系E=mc 2 粒子的静止能量为:E 0=m 0c 2粒子的动能为:E K=mc2– m0c2=242212082)111(22cVmVmcmcv当V<<c时,E K≈mV2/2 *③动量与能量关系:E2–p2c2=E02 *5.速度变换关系:Σ’系→Σ系:'1'2xcvxx uvuu'11'22xcvcvyy uuu'11'22xcvcvzz uuuΣ系→Σ’系:'1'2xcvxx uvuu'11'22xcvcvyy uuu'11'22xcvcvzz uuu。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕奥-沙伐尔定律:20
04r r l Id B d
⨯⋅=πμ 磁场叠加原理:⎰⨯=L r
r l Id B 20
04
πμ 运动电荷的磁场:2004r r v q B ⨯⋅=πμ 磁场的高斯定理:0=⋅⎰⎰S
S d B
磁通量:⎰⎰⋅=
S
m S d B
Φ
安培环路定理:∑⎰=⋅I l d B L
0μ
载流直导线:()120sin sin 4ββπμ-=a
I
B
圆电流轴线上任一点:
()
2
32
22
03
2
022R x IR r
IR B +=
=
μμ
载流螺线管轴线上任一点:
()120cos cos 2
ββμ-=
nI
B
安培力:B l Id f d
⨯=, ⎰⨯=L
B l Id f
载流线圈在均匀磁场中所受的磁力矩:
B P M m ⨯= 洛仑兹力:B v q f
⨯=
磁力的功:∆ΦΦΦΦ
I A Id A I =−−→−=
=⎰恒量
2
1
b IB R U H
AA =',nq
R H 1= 法拉第电磁感应定律:dt d i Φ
ε-
= 动生电动势:⎰⋅⨯=a b
ab l d )B v (
ε
感生电动势,涡旋电场:
S d t B l d E L
k i
⋅∂∂-=⋅=⎰⎰⎰ε
自感:I
N L Φ=, dt dI L L -=ε,2
21LI W m =
互感:212112I N M Φ=
,1
21221I N M Φ
= 2112M M =
dt dI M 212
12-=ε, dt
dI
M 12121-=ε 磁场的能量:
μω2212
B BH m =
=,⎰=V
m m dV W ω 麦克斯韦方程组的积分形式:
i S
q S d D ∑=⋅⎰⎰
(1)
0=⋅⎰⎰S S d B
(2)
⎰⎰⎰⋅∂∂-=⋅S L S d t B l d E
(3)
⎰⎰⎰⋅∂∂+=⋅S L S d )t D (l d H
δ (4) E D ε=, H B μ=, E
γδ=
平面简谐波方程:
)]
u
r
t (cos[H H )]u r t (cos[E E {
-=-
=ωω00 坡印廷矢量:H E S
⨯=
相长干涉和相消干涉的条件:
π
π
ϕ∆)k (k {
122+±±= 3210,,,
k = 减弱,相消干涉)
加强,相长干涉)
((2/)12({
λλδ+±±=k k ,
(21ϕϕ=)
杨氏双缝干涉:
(暗纹)
(明纹)
3,2,12,1,0)4/()12()2/({
==-±±=k k a D k a kD x λλ 薄膜反射的干涉:
2/)12({
2
sin 222122λλ
λ
δ+=+
-=k k i n n e
劈尖反射的干涉: 2
122
2/)k (k {
ne λλ
λ
δ+=+
=
空气劈尖:l sin 2λθ=, 玻璃劈尖:nl
sin 2λθ= 牛顿环:
3,2,12/)12(=-=k R k r λ(明环)
,,,k kR r 210==λ(暗环)
迈克尔逊干涉仪:λ∆∆N d =2 单缝的夫琅和费衍射:
)
3,2,1(2
)
12()
3,2,1(22{
sin =+±=±=k k k k
a 明暗条纹λ
λ
ϕ
a
f
l λ20=, 20l a f l ==λ 光栅公式:λϕk b a ±=+sin )( 倾斜入射:
,1,0)sin )(sin (=±=++k k b a λϕθ
缺级公式:
,,k 'k a
b
a k '21±±=+=
最小分辨角:D
.min λ
θ221=
分辨率:min
1
θ=
R
布喇格公式:
3212,,k k sin d ==λ
ϕ
布儒斯特定律:1
2210n n n tgi == 马吕斯定律:α2
0cos I I =
洛仑兹变换:
2
22222
1111ββββ-+=-+=
⎪⎪⎩⎪⎪
⎨⎧−−−→−--=--=⎪⎪⎩⎪⎪⎨⎧-→'
x c u 't t '
ut 'x x x c u t 't ut
x 'x "
u "u 狭义相对论动力学:
① 2
01β
-=
m m
② 2
01β
-=
=v m mv P
③ 2
mc E =, 2
mc E ∆∆=
202c m mc E k -=
④ 2
0222E c P E +=
斯特藩-玻尔兹曼定律: 4T )T (E B σ=
4281067.5---⋅⋅⨯=K m W σ
唯恩位移定律:
b T m =⋅λ, K m .b ⋅⨯=-3108972
普朗克公式: 1
2),(5
2-=
-T
k hc
B e hc T e λλπλ
爱因斯坦方程:A mv h +=2
2
1ν 红限频率:h
A =
0ν 康普顿散射公式:)cos 1(ϕλ∆-=c
m h
e 光子: νεh =, λ
h
P =
三条基本假设:
定态,nh h
n L =⋅
=π
2,m n E E h -=ν 两条基本公式:
2
220me
n h r n πε=o
A n 2
529.0= 2
2
2
0418n
h me E n ⋅
-
=εeV n 26.13-= ,3,2,1=n
粒子的能量:νh mc E ==2
粒子的动量:λ
h
mv P =
=
测不准关系 h P x x ≥⋅∆∆。