2017年秋季新版北师大版八年级数学上学期5.2、求解二元一次方程组学案13

合集下载

2017年秋季新版北师大版八年级数学上学期5.1、认识二元一次方程组教案13

2017年秋季新版北师大版八年级数学上学期5.1、认识二元一次方程组教案13

5.1.1 认识二元一次方程组教学目标1.了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.2.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.3.对学生进行数学来源于生活服务于生活的教育.教学重点与难点 重点:二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.难点:判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识.[来 教法与学法指导教法:课前播放一段录像:《舞蹈世界》,激发学生的学习兴趣.将启发引导、合作交流贯穿教学始终,唤起学生的求知欲望,主动参与教学全过程.学法:采取小组合作的方式,通过丰富的实际背景,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容. 课前准备:多媒体课件. 教学过程:一、 创设情境,导入新课师:我们都知道牛和马是我们人类最忠诚的帮手,在那个非机械化的年代,是它们为我们驮运货物,帮助农民耕地…活干多了,牢骚也来了.请同学们看下面的故事,同时请两个同学来为它们配音.(多媒体出示)(显示对话一,老牛与小马,学生配音) 生:(笑)师:两个同学配音不错,它们到底各驮了多少包裹呢?师:请同学们认真理解它们的对话,分别是什么含义?在小组内讨论,并选择代表回答. (学生小组讨论,几分钟后有学生开始举手) 生1:老牛比小马要多2个包裹,生2:另外一句话的意思是老牛的包裹加1就等于小马的包裹数减去1差的2.列方程个,才比我多驮2个.哼来数真的?!师:如果假设老牛驮了x个包裹,小马驮了y个包裹,你能得到怎样的方程?能列几个?请大家写下来.(学生板演)x-y=2;x+1=2(y-1)师:刚刚解决老牛与小马的争论,下面还有一个疑问请大家来解决.(多媒体显示公园门票问题,学生认真观看图片,部分学生开始在练习本上计算.)师:这两个人的对话中说明了哪些数量之间的关系?请大家在小组内讨论解决这个问题的方法.(学生以小组为单位讨论,气氛热烈,举手的人越来越多.此时教师也参与在小组的探讨之中,看他们是怎样做的,听他们是怎样说的.适时的指导一下.)师:如果我们假设他们中有x个成人,y个儿童,你能得到怎样的方程呢?(学生板演x+y=8,5x+8y=34)设计意图:以动漫的形式引出方程问题,让学生再次经历建模的同时,调节部分学生的心情,以相对轻松的状态进入后面的学习.活动是以渐进的方式让学生通过自主探究来对二元一次方程建模思想的认识体会过程,也是学生完成从一元到多元的认识转化过程.本题及时巩固利用方程建立数学模型的思想,强化了“一元”到“多元”的思想转变.效果:学生通过前面的情景引入,在老师的引导下,列出了关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.二、类比旧知,引入新知师:大家观察一下刚才所列出的5个方程,是我们学过的一元一次方程吗?(投影所列的五个方程)360x+720y=17280,x-y=2,x+1=2(y-1),x+y=8,5x+8y=34.生:不是师:哪位同学回忆一下什么叫做一元一次方程?一元一次方程的特征有哪些?生:含有一个未知数,并且所含未知数的次数为1的整式方程叫一元一次方程.它有三个特征:(1)含有一个未知数;(2)未知数的次数是1;(3)方程的两边都是整式.师:与一元一次方程的特征相比较我们可以给它们取一个什么名称呢?生齐答:二元一次方程!师:很好,这就是今天学习的主题(板书课题:7.1谁的包裹多),请同学们找出二元一次方程有什么特征?生1:含有两个未知数; 生2:未知数的次数是1; 生3:方程两边都是整式;(多媒体同一页显示,便于学生逐条比较.)师:对于方程xy +8=5x ,大家认为是二元一次方程吗?(学生认识不统一有说是,有说不是.) xy (多媒体用红色记号圈出)这个项的次数是几?(学生有的说是2,有的说是1.此时老师加以矫正,单项式的次数是单项式中所有字母的指数和,因此项xy 次数为2,原方程不是二元一次方程.)师:我们应将“未知数的次数是1”更正为什么? 生:未知项的次数是1.师:很好,掌声鼓励,(学生掌声热烈)现在大家知道什么叫二元一次方程了吗? 生:含有两个未知数,并且所含未知数的项的次数都是1的方程叫二元一次方程. (多媒体显示二元一次方程概念,并让学生加以巩固.)设计意图:为了让学生尽快理解新知识,教学通过类比的方法,引导学生与一元一次方程相比较,逐步理解二元一次方程的概念,同时培养学生归纳概括能力. 师:两人一组,分别写出几个方程,让另一位同学判别是不是二元一次方程.(生迅速出题,然后互相判断,很多小组出现争执,场面非常活跃,师巡视对出现的争执及时给以评判.)概念巩固一:1.下列方程有哪些是二元一次方程: (1)390xy +-=,(2)232120x y -+=,(3)3474ab b-=-,(4)131xy-=,(5)()523=-y x x ,(6)512m n -=.[2.如果方程12231m m nx y-+-=是二元一次方程,那么m = ,n = .(学生独立完成,老师指定学生回答、对出现的问题给予解释、评价.)设计意图:通过这两题的训练,使二元一次方程的定义得到很好巩固.有助于学生进一步理解二元一次方程组.师:让我们再回到公园门票问题:x +y =8和5x +3y =34这两个方程,其中x 含义是什么?y 呢?两个方程x 、y 含义一样吗?生1:x 代表成人数,y 代表儿童数.生2:两个方程中x、y的含义是一样的.师:说明x、y必须同时满足两个方程,所以我们把它们联立起来,在前面加一个大括号,组成方程组,8, 5334. x yx y+=⎧⎨+=⎩像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(多媒体展示二元一次方程组的定义,学生进一步理解)概念巩固二:判断下列方程组是否是二元一次方程组:(1)21,3512;x yx y-=⎧⎨+=⎩(2)21,35;x yx y x⎧+=⎨-=+⎩(3)1,2;x yx y=⎧⎨+=⎩(4)523,13;x yyx-=⎧⎪⎨+=⎪⎩(5)20,13;5x zx y+=⎧⎪⎨-=⎪⎩(6)5,7;23zyx=⎧⎪⎨+=⎪⎩(学生逐一判定,老师作解释)师:通过这组题目,你有何收获?(学生以小组为单位展开热烈讨论)生1:只能含有两个未知数.并且每个方程必须是一次方程.生2:二元一次方程组中含有两个未知数,并不是每个方程必须是二元一次方程.师:同学们理解得真深刻,这是你们小组合作交流的结晶,在今后的学习中继续发扬合作学习的好习惯,再复杂的问题也可以迎刃而解,接下来我们继续探究两个新概念.设计意图:设置多种形式的方程组,让学生去辨别,有助于二元一次方程组的加深理解.问题探究:(多媒体显示“做一做”,学生迅速动笔在纸上演算,师巡视,发现有困难的同学及时加以指导,完成的同学积极举手.)生1:三对未知数的值都适合二元一次方程x+y=8;还有x=0,y=8;x=1,y=7…生2:这两组未知数的值都适合二元一次方程5x+3y=34.(多媒体出示)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.师:x =6,y =2是二元一次方程x+y =8的一个解,记作:62x y =⎧⎨=⎩,同时53x y =⎧⎨=⎩也是二元一次方程x +y =8的一个解.大家说二元一次方程有多少个解?生1:很多个. 生2:无数个!(师强调:二元一次方程的一个解不是一个值,而是一对值;一般地,二元一次方程有无数个解.)师:刚才我们找出二元一次方程的解,那么有没有一组x,y 的值同时适合这两个方程呢?生: 53x y =⎧⎨=⎩同时适合这两个方程.(多媒体显示概念)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.(给两分钟时间巩固理解概念) 概念巩固三:1.下列四组数值中,哪些是二元一次方程31x y -=的解?A 、2,3;x y =⎧⎨=⎩ B 、4,1;x y =⎧⎨=⎩ C 、10,3;x y =⎧⎨=⎩ D 、5,2.x y =-⎧⎨=-⎩2.二元一次方程2328xy +=的解有:5,_____.x y =⎧⎨=⎩ _____,2.x y =⎧⎨=-⎩ 2.5,_______.x y =-⎧⎨=⎩ _____,7.3x y =⎧⎪⎨=⎪⎩3.二元一次方程组2102x y y x+=⎧⎨=⎩,的解是( )A .43x y =⎧⎨=⎩,;B .36x y =⎧⎨=⎩,;C .24x y =⎧⎨=⎩,;D .42x y =⎧⎨=⎩,.4.以1,2x y =⎧⎨=⎩为解的二元一次方程组是( )A 、3,31;x y x y -=⎧⎨-=⎩ B 、1,35;x y x y -=-⎧⎨+=-⎩C 、23,355;x y x y -=-⎧⎨+=-⎩ D 、1,3 5.x y x y -=-⎧⎨+=⎩(学生独立完成,优生对照答案,师完善解法)设计意图:本组题目有助于巩固二元一次方程的解及二元一次方程组的解.变式训练四:1.已知关于x 、y 的方程()()2182620n m m xn y+--++=是二元一次方程,求m 、n 的值.(师提示:二元一次方程不仅要注意次数,还要注意系数.)2.方程225(22)x y x y +-+-+=可以转化为方程组 .3.已知2,1x y =⎧⎨=⎩是方程组2(1)2,1x a y b x y +-=⎧⎨+=⎩的解,则a b +的值为多少?(这三题对学生来说有一定的困难,可以合作探究,老师可以适时提示.)设计意图:使学生更深刻地理解本节课的有关概念概念,同时培养学生分析问题、解决问题的能力.三、交流心得,学习反思 师:本节课你有何收获?生1:1.含有两个未知数,并且所含未知数的项的次数都是1的方程叫二元一次方程.2.含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.4.二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.生2:会判断一个方程是否为二元一次方程,会判断一个方程组是否为二元一次方程组. 生3:会检验一组未知数的值是不是二元一次方程的解,是不是二元一次方程组的解. 生4:应用方程组的解来解决一些问题. 师强调:二元一次方程有无数个解.在探究二元一次方程的概念时,用到了类比的学习方法.设计意图:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化. 四、达标检测,反馈矫正1.下列方程组中,属于二元一次方程组的是( )2A 3x y y z +=⎧⎨+=⎩、 5B 6x y x y +=⎧⎨=⎩、 215C 213a b a b +=⎧⎨-=⎩、 7D 15m n m n -=⎧⎪⎨+=⎪⎩、2. 请写出一个二元一次方程组 ,使它的解是2-1x y =⎧⎨=⎩.3.关于x 、y 的方程组3x y m x m y n-=⎧⎨+=⎩的解是11x y =⎧⎨=⎩ ,则m n-的值是( )A、5B、3 C.、2 D、14.二元一次方程21-=x y有无数多个解,下列四组值中不是..该方程的解的是()A、12xy=⎧⎪⎨=-⎪⎩B、11xy=⎧⎨=⎩C、1xy=⎧⎨=⎩D、11xy=-⎧⎨=-⎩5.下列方程组中是二元一次方程组的是()A、12x yx y=⎧⎨+=⎩B、52313x yyx-=⎧⎪⎨+=⎪⎩C、20135x zx y+=⎧⎪⎨-=⎪⎩D、2633854x yyx+=⎧⎪⎨+=⎪⎩6.方程组31x yx y+=⎧⎨-=-⎩,的解是()A、12.xy=⎧⎨=⎩,B、12.xy=⎧⎨=-⎩,C、21.xy=⎧⎨=⎩,D、1.xy=⎧⎨=-⎩,设计意图:巩固所学知识,了解学生对本课所学知识的掌握情况,发现不足,查漏补缺,从而达到理解、提高的目的.五、布置作业,落实目标必做题:习题5.1 第1、2、3题.选做题:习题5.1 第5题.设计意图:对本节的认知技能进行分层训练.以满足学生多样化的学习需要,让“不同的人在数学上得到不同的发展”.板书设计:二元一次方程组的解教学反思:本节课的设计特点:1.通过创设情境,让学生感受数学知识的产生、发展与形成过程,通过自主探究、合作交流的教学方式,培养学生的观察、比较、分析、思考、探究的能力,在教学过程中,不但注重数学知识的产生与形成过程,同时注重思想方法与思想情感教育的渗透,使学生的思想情感得到升华.2.主要运用了类比的思想方法,通过与一元一次方程的比较引出二元一次方程的概念,有助于学生对新知识的理解.3.充分发挥学生的主观能动性,挖掘学生的潜力,鼓励学生与他人的合作意识和探索精神,形成和谐的学习氛围.不足之处:由于本节课概念较多,部分学困生对个别概念理解不够深刻,致使变式训练不能灵活解决.。

2017年秋季新版北师大版八年级数学上学期5.2、求解二元一次方程组课件32PPT共21页

2017年秋季新版北师大版八年级数学上学期5.2、求解二元一次方程组课件32PPT共21页
2017年秋季新版北师大版八年级数学 上学期5.2、求解二元一次方程组课件
32
51、山气日夕佳,飞鸟相与还Fra bibliotek 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

_八级数学上册5.2求解二元一次方程组教案新版北师大版1123151

_八级数学上册5.2求解二元一次方程组教案新版北师大版1123151

课题:求解二元一次方程组● 教学目标:知识与技能目标:1. 会用代入消元法和加减消元法解二元一次方程组2. 初步体会解二元一次方程组的基本思想“消元”。

3. 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想: 4. 通过用代入消元法和加减消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。

过程与方法目标:1. 了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”。

情感态度与价值观目标:1. 利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想. 2. 经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力 ● 重点:用代入消元法和加减消元法解二元一次方程组,基本方法是消元化二元为一元 ● 难点:用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉。

● 教学流程: 一、 课前回顾1.复习上节课所学二元一次方程的基本概念 问题1:什么是二元一次方程?含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

问题2:什么是二元一次方程组?由两个一次方程组成,并且含有两个未知数的方程组。

问题3:什么是二元一次方程组的解?使二元一次方程组中的两个方程左右两边的值都相 等的两个未知数的值(即两个方程的公解)。

2.复习如何将二元一次方程化为x 或y 的代数式 已知二元一次方程 2x+4y=8用含x的式子表示y2xy=2-用含y的式子表示x为 x=4-2y二、 情境引入探究1:还记得下面这一问题吗?昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?设他们中有x 个成年人,有y 个儿童我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程x+y=85x+3y=34我们怎么获得这个二元一次方程组的解呢?想想以前学习过的一元一次方程,能不能解决这一问题? 用一元一次方程求解解:设去了x 个成人,则去了(8-x )个儿童,根据题意,得:解得:x =5 将x =5代入 8-x =8-5 =3.去了5个成人, 3个儿童. 用二元一次方程组求解解:设去了x 个成人,去了y 个儿童, 根据题意,得:观察:列二元一次方程组和列一元一次方程设未知数有何不同?两者又有何联系?对你解二元一次方程组有何启示?用二元一次方程组求解解:设去了x 个成人,去了y 个儿童,得:由①得:y = 8-x. ③().34835=-+x x ⎩⎨⎧=+=+.3435,8y x y x ⎩⎨⎧=+=+②y x ①y x .3435,8将③代入②得:5x +3(8-x )=34 (二元化为一元啦!) 解得:x = 5把x = 5代入③得:y = 3. 所以原方程组的解为:⎩⎨⎧==.3,5y x (将解代入原方程组,就知道你解得对不对啦!)归纳:前面解方程组的方法取个什么名字好? ◆ 得出结论:将其中一个方程的某个未知数用含另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.◆ 解二元一次方程组的基本思路是消元,把“二元”变为“一元”. 解方程组的基本思路是什么?用“代入消元法”解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值. 第四步:回代求出另一个未知数的值. 第五步:把方程组的解表示出来.第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是否成立.三、合作探究探究2:根据等式性质填空: <1>若a=b,那么a±c= b±c <2>若a=b,那么ac= bc 思考:若a=b,c=d,那么a+c=b+d 吗?提问:怎样解下面的二元一次方程组呢?引导学生逐步得出更简单的方法: 方法一:把②变形得2115-=y x代入①不就消去x 了(代入消元法) 方法二:把②变形得5y=2x+1,可以直接代入①呀!方法三:5y 与-5y 互为相反数(提示学生:相反数相加为0) 分析:(3x + 5y )+(2x - 5y )= 21 + (-11)① 左边 + ② 左边 = ① 右边 + ②右边3X+5y +2x -5y=105x+0y =105x=10解:由①+②得: 5x=10x=2把x =2代入①,得y=3所以原方程组的解是想一想:参考以上思路,怎样解下面的二元一次方程组呢?分析:观察方程组中的两个方程,未知数x 的系数相等,都是2.把这两个方程两边分别相减,就可以消去未知数x ,同样得到一个一元一次方程.⎩⎨⎧=-=+11-52125y 3x y x ⎩⎨⎧=+=-1-3275y 2x y x解:把 ②-①得:8y =-8 y =-1 把 y =-1代入①,得 2x -5 ╳(-1)=7解得:x =1所以原方程组的解是⎩⎨⎧==-1y 1x归纳:前面解方程组的方法取个什么名字好?得出结论:对某些二元一次方程组可通过方程两边分相加(减)消去其中一个未知数,得到一个一元一次方程,从而求出它的解,这种解方程组的方法称为加减消元法。

北师大版八年级上册:5.2求解二元一次方程组

北师大版八年级上册:5.2求解二元一次方程组

5.2 求解二元一次方程组(1)一、学生起点分析学生的知识技能基础:在学习本节课之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组及其解等基本概念,具备了进一步学习二元一次方程组解法的基本能力,也会通过列一元一次方程解应用题,能通过分析找出题中的等量关系列出二元一次方程组。

学生活动经验基础:有同学间相互交流合作、自主探索的经验,有在活动过程中总结经验、归纳知识点的经验。

二、教学任务分析《求解二元一次方程组》是北师大版八年级(上)第五章《二元一次方程组》的第二节,要求学生能利用代入消元法解二元一次方程组。

基于学生对二元一次方程及二元一次方程组的基本概念理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程组的解法---代入消元法。

代入消元法是解二元一次方程组的基本方法之一,它要求从两个方程中选择一个方程,将它转换成用含有一个未知数的代数式表示另一个未知数的形式,然后代入另一个方程,求出这个未知数的值,最后将这个未知数的值回代已变形的那个方程,求出另一个未知数的值。

在求出方程组的解之后,可以通过对求出的解回带方程检验,这样可以防止和纠正方程变形和计算过程中可能出现的错误。

二元一次方程组的解法,其本质思路是消元,体会“化二元一次方程为一元一次方程”的化归思想.教学目标:1、了解解方程组的基本思路是"消元",掌握代入消元法的基本步骤;2、会用代入法求二元一次方程的解;3、培养学生的观察、比较、分析、综合等能力,通过自主概括解题步骤,初步体验数学研究中"化未知为已知"的化归思想。

教学重点:消元的实质以及用代入法解二元一次方程组。

教学难点:在解题过程中体会“消元”思路和“化二元为一元”的化归思想。

三、教学过程设计:本节课设计了六个教学环节:第一环节:情境引入;第二环节:探索新知;第三环节:巩固新知;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

北师大版八年级数学上册5.2.2求解二元一次方程教学设计

北师大版八年级数学上册5.2.2求解二元一次方程教学设计
三、教学重难点和教学设想
(一)教学重点
1.理解二元一次方程组的概念,掌握代入法、消元法求解二元一次方程组。
2.能够根据实际问题列出二元一次方程组,并运用所学方法解决实际问题。
3.理解二元一次方程组的几何意义,培养学生的空间想象力和直观思维能力。
(二)教学难点
1.对二元一次方程组的求解方法,尤其是消元法的掌握。
1.强化学生对二元一次方程组概念的理解,通过典型例题引导学生将实际问题转化为数学方程。
2.注重培养学生的解题思路,让学生在掌握代入法、消元法的基础上,学会灵活运用。
3.针对学生团队合作能力的不足,教学中应多设计小组讨论、合作探究的环节,提高学生的团队协作能力。
4.关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导和帮助,使全体学生都能在原有基础上得到提高。
五、作业布置
为了使学生能够更好地巩固本节课所学的知识,特布置以下作业:
1.必做题:
(1)根据课堂上讲解的代入法、消元法,求解以下二元一次方程组:
① 2x + 3y = 8,x - y = 1
② 5x - 4y = 3,3x + 2y = 19
③ 4x + 7y = 25,6x - 5y = 1
(2)运用二元一次方程组解决实际问题,例如:某商店举行促销活动,购买A商品可享受8折优惠,购买B商品满100元减20元。若小明购买A商品3件和B商品2件,总共花费360元,请问A商品和B商品的原价分别是多少?
7.跟踪辅导,关注个体差异
课后对学生的学习情况进行跟踪辅导,关注个体差异,针对学生的薄弱环节给予个性化的指导,使全体学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
在这一阶段,我将通过一个生活情境的引入,激发学生对二元一次方程组的兴趣。我会讲述一个关于两个好朋友小明和小红去购物的问题:他们一起去商场,小明看中了一件衣服,小红看中了一个玩具。他们决定用自己的零花钱合买,但总共只有一定数量的钱。如果衣服的价格是x元,玩具的价格是y元,他们总共带了z元,那么如何找出x和y的值,使得他们正好用完所有的钱?

新北师大版八年级数学上册5.2.1求解二元一次方程组(1)导学案.doc

新北师大版八年级数学上册5.2.1求解二元一次方程组(1)导学案.doc
学 习 过 程




1.已知x+3y-6=0,用含y的代数式表示x为___________ ,用含x的代数式表示y为___________.
2.二元一次方程组 的解是( )
A. B. C. D.无法得出
3. 如何用代入消元法解二元一次方程?




【预习成果展示】解方程组:
【探究一】解方程组:(1) (2)
【探究二】上述解方程组的基本思路是“________”,即把“_______”变为“________”;
解方程组的主要步骤是___________、____________、_____________ 。




1形是()
A.由①得x= B.由①得y= C.由②得x= D.由②得y=2x-5
解二元一次方程组的基本思路是什么?主要步骤有哪些?有什么小窍门?
导学
反思
2.用代入消元法解方程组
(1) (2)
3.善于思考的小军在解方程组 时,采用了一种“整体代换”的解法;
解:由①得3y=-8-2x ③,
把③代入②,得7x-2·(-8-2x)=5,
解得x=-1,
把x=-1代入③,得y=-2,
所以原方程组的解为 请你模仿小军的“整体代换”法解方程组
课堂
小结
这节课你有什么收获?
新北师大版八年级数学上册5.2.1求解二元一次方程组(1)导学案
学习
目标
1.正确运用代入消元法解二元一次方程组
2.了解解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
学习
重难点
学习重点:正确运用代入消元法解二元一次方程组.

八年级数学上册 5.2.2 求解二元一次方程导学案(新版)北师大版

八年级数学上册 5.2.2 求解二元一次方程导学案(新版)北师大版

求解二元一次方程【学习目标】1、会用加减消元法解二元一次方程组;2、进一步理解解二元一次方程组的基本思路是“消元”。

【学习过程】一、温故知新:1、解二元一次方程组的基本思路是 ,即把二元变为 。

2、已知2x+3y-5=0,用含x 的代数式表示y 为 ,用含y 的代数式表示x为 。

3、若-3x a -2b y 7与2x 8y 5a+b 是同类项,则a =__________,b=__________。

4、用代入法解下列方程组:(1)、⎩⎨⎧=-=-y x y x 14023 (2)、24435x y x y -=⎧⎨+=⎩二、新知探究:根据课本的提示,想一想怎样解下面的二元一次方程组?3x+5y=21 ①2x -5y= -11 ②思考:本题有几种解法?请把你的所有解法写在下面。

并对比用哪种方法更简便?请你仿照课本P111的例3,尝试用简便方法解方程组32328x y x y -=⎧⎨+=⎩三、知识应用:请你参照课本P111的例3和例4解下列方程组 。

(1)、4314,5331x y x y -=⎧⎨+=⎩ (2)、 (3)、⎩⎨⎧=+=-321943y x y x 四、课堂小结:——1、关于二元一次方程组的两种解法:代入消元法和加减消元法.2、用加减消元法解方程的条件?3、用加减法解二元一次方程的步骤?五、课后作业1、将x=-23y -1代入4x -9y=8,可得到一元一次方程_______ 。

2、用代入法解方程组27(1412)x y x y +=⎧⎨-=⎩)(由②得y =______③,把③代入①,得________,解得x=________,再把求得的x 值代入②得,y=________.原方程组的解为_______.3、二元一次方程组324526x y x y -=⎧⎨-=⎩的解是( ) A.⎩⎨⎧-==11y x B. ⎪⎩⎪⎨⎧-=-=211y x C. ⎪⎩⎪⎨⎧-==211y x D. ⎪⎩⎪⎨⎧=-=211y x 4、解下列方程组:(1) 4s+3t=5 2s-t=-15⎧⎨⎩ (2) 5x-6y=-57x-4y=9⎧⎨⎩◆二、发展题 5、用代入法解方程组⎩⎨⎧=-=+52243y x y x 使得代入后化简较容易的变形是( ) A.由①得x=342y - B.由①得y=432x - C.由②得x=25+x D.由②得y=2x -5 ⎩⎨⎧=+=-74823x y y x ①②6、解以下两个方程组,较为简便的是( )①⎩⎨⎧=+-=85712y x x y ②⎩⎨⎧=-=+486172568t s t s A.①②均用代入法B.①②均用加减法C.①用代入法②用加减法D.①用加减法②用代入法7、已知(3x -2y+1)2与|4x -3y -3|互为相反数,则x=__________,y=__________。

八年级数学上册 5.2.2 求解二元一次方程组教案 (新版)北师大版

八年级数学上册 5.2.2 求解二元一次方程组教案 (新版)北师大版

5.2.2求解二元一次方程组学习目标:1.会用加减消元法解二元一次方程组.2.让学生在自主探索和合作交流中,进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.3.通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.4.通过学生比较两种解法的差别与联系,体会透过现象抓住事物的本质这一认识方法.学习重点与难点:重点:用加减消元法解二元一次方程组.难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.教法及学法指导:采用多媒体课件辅助教学,在教师引导下,以学生的分组讨论、合作交流为主展开教学.课前准备:多媒体课件.教学过程:一、创设情境,引入新课师:上节课我们学习了解二元一次方程组的第一种解法——代入消元法,其主要步骤是哪些?生:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立. 师:现在我们一起解一个方程组(选两名学生板演在黑板上,其他同学在练习本上做,教师巡视、引导、解疑,并进行评析.)师:大家是把②变形,得:, ③把③代入①,得:,解得:.把代入②,得:.所以方程组的解为.这是我们已经熟悉的代入消元法了,除了这个方法你还有别的方法吗?生:小组交流后,选代表做题.生甲:解:由②得, ③把当做整体将③代入①,得:,解得:.把代入③,得:.所以方程组的解为.生乙:解:根据等式的基本性质.方程①+方程②得:(3x+5y)+(2x-5y)=21+(-11),,解得:,把代入①,解得:,所以方程组的解为.师:通过上面的练习发现,同学们对代入消元法都掌握得很好了,基本上都能够按要求解出二元一次方程组的解(如方案1),可是也有同学发现(方案2)的解法比(方案1)的解法简单,他是将5y作为一个整体代入消元,依然体现了代入法的核心是代入“消元”,通过“消元”,使“二元”转化为“一元”,从而使问题得以解决,那么(方案3)的解法又如何?它达到“消元”的目的了吗? 这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.设计意图:回顾旧知,通过学生练习、对比、讨论,既巩固了已学的用代入法解二元一次方程组的知识,又在此过程中自然而然地得出我们要研究和解决的问题.即新的解二元一次方程组的方法——加减消元法.二、小组合作,共同探索(留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x的系数或y的系数)师:在方程组中,我们看方程①和②中的5y和-5y互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.师:下面我们就用刚才的方法解下面的二元一次方程组.例1 解下列二元一次方程组(教师规范表达解答过程,为学生作出示范)解:②-①,得:,解得:,把代入①,得:,解得:,所以方程组的解为.(解答完本题后,口算检验,让学生养成进行检验的习惯.)师:在做题过程中要注意:(1)注意解此题的易错点是②-①时是(2x+3y)-(2x-5y)=-1-7,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x,不过在①-②得到的方程中,y的系数是负数,所以在上面的解法中选择②-①;(2)把y=-1代入①或②,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.归纳加减消元法概念:在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.设计意图:通过本环节的学习,加深学生对加减消元法的认识.并归纳加减消元法概念,通过比较体会在某些条件下使用加减法的优越性.三、学以致用,解决问题例2 解下列二元一次方程组(先留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?)生:对于用加减消元法解,x、y的系数既不相同也不是相反数,没有办法用加减消元法. 师:它直接不能用加减消元法,那就没有别的途径了?生:将方程组中的方程用等式的基本性质将这个方程组中的x或y的系数化成相等(或互为相反数)的情形,可以用加减消元法.师:这位同学回答的很好,那么大家现在动手做一做.(学生板演,师纠错.)解:①×3,得:,③②×2,得:,④③-④,得:.将代入①,得:.所以原方程组的解是.设计意图:通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的一般步骤.议一议:根据上面几个方程组的解法,请同学们思考下面两个问题:(1)加减消元法解二元一次方程组的基本思路是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?生:分组讨论、总结并请学生代表发言.师生共同归纳:(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程.③解一元一次方程.④把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解.注意:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等).通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程右边的形式,再作如上加减消元的考虑.设计意图:通过“议一议”让学生进一步归纳出加减法解二元一次方程组的一般步骤,为今后做题找到做题依据.随堂练习:用加减消元法解下列二元一次方程组:(选四名学生板演在黑板上,其他同学在练习本上做,教师巡视、引导、解疑,并进行评析.)设计意图:通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力.四、回顾课堂,盘点收获1.关于二元一次方程组的两种解法:代入消元法和加减消元法.比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为“一元”.2. 用加减消元法解方程组的条件:某一未知数的系数的绝对值相等.3. 用加减法解二元一次方程组的步骤:①变形,使某个未知数的系数绝对值相等.②加减消元.③解一元一次方程.④求另一个未知数的值,得方程组的解.设计意图:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.五、快乐套餐,深化提高一、认真选择:(1)用代入法解方程组的最佳策略是()A.消y,由②得y= (23-9x)B.消x,由①得x= (5y+2)C.消x,由②得x= (23-2y)D.消y,由①得y= (3x-2)(2)解以下两个方程组,较为简便的是()①②A.①②均用代入法B.①②均用加减法C.①用代入法②用加减法D.①用加减法②用代入法二、看谁做得又对又快:(1) (2)设计意图:练习注意了问题的梯度,由浅入深,一步步引导学生利用不同的方法解二元一次方程组,经过实践归纳出不同的题目,选择什么方法解答更好,在做题中教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.六、布置作业,课堂延伸必做题:课本第228页习题7.3 第1题.拓广题:课本第228页习题7.3 第4题.板书设计:教学反思:通过本节课的教学,使学生会用加减消元法解二元一次方程组,进一步了解“消元”的思想.加减法解二元一次方程组的基本思想与代入法相同,仍是“消元”化归思想,通过代入法、加减法这些手段,使二元方程转化为一元方程,从而使“消元”化归这一转化思想得以实现.因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析得出二元一次方程组的解法,在巩固议练活动中,加深学生对“化未知为已知”的化归思想的理解.特别是如何由代入消元法到加减消元法,过渡自然.因此在设计教学过程时,注重化归意识的点拨与渗透,使学生在学习中逐步体会理解这种具有普遍意义的分析问题、解决问题的思想方法.教学后发现,大部分学生能够通过加减消元法解二元一次方程组,教学一开始给出了一个二元一次方程组,先让学生用代入法求解,既复习了旧知识,又引出了新课题,引发学生探究的兴趣.通过学生的观察、发现,理解加减消元法的原理和方法,使学生明确使用加减法的条件,体会在一定条件下使用加减法的优越性.之后,通过两个例题来帮助学生规范书写,同时明确用加减法解二元一次方程组的步骤.接下来,通过一系列的练习来巩固加减消元法的应用,并在练习中摸索运算技巧,培养能力,训练学生思维的灵活性及分析问题、解决问题的综合能力.有个别同学在运算上比较容易出错,运用的灵活性掌握得不太好,解答起来速度较慢,我想只要多加练习,一定会又快又准确的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.22 求解二元一次方程组
【预习目标】:1、将一个未知数的系数变形为相同或互为相反数
2、通过消元的思想,用加减消元法解二元一次方程组
【预习提示】(一)同一个未知数的系数相同(或互为相反数)的二元一次方程组的解法
1、观察方程组7300,6100.x y y x +=⎧⎨-=⎩①
②,并思考:
(1)方程①中x 的系数是_______,方程②中x 的系数是______,这两个数_______.
方程①中y 的系数是_______,方程②中y 的系数是______,这两个数_______.
(2)若把方程①、方程②的左右两边分别相加,可得方程____________,得到的这个方程是二元一次方程还是一元一次方程?答:_____________.
若把方程①、方程②的左右两边分别相减,可得方程____________,得到的这个方程是二元一次方程还是一元一次方程?答:____________.
(3)通过上面的思考,通过方程两边相加(或相减)的方法,能把二元一次方程组转化为一元一次方程吗?
(4)经过上面的思考后,请同学们认真看课本110页的内容.
①课本中给出了这个方程组的几种解法?这种解法与代入法相同吗?你能说出这种解法的根据吗? ②什么是加减消元法?通过把两个方程_____或_____消去一个未知数,转化为_________,这种解法叫做加减消元法,简称加减法.
规律总结:在方程组的两个方程中,
(1)若同一个未知数的系数相同,可直接把这两个方程相___(加或减),消去系数相同的这个未知数;
(2)若同一个未知数的系数互为相反数,可直接把这两个方程相___,消去系数相同的这个未知数;
(二)不具备系数相同(或互为相反数)的二元一次方程组的解法
1、能不能由方程524u v +=-得到1048v v +=-?怎么得到的?
2、知识探究
已知方程组524,3418.u v u v +=-⎧⎨-=-⎩①
②.思考
(1)在上面的这个方程组中,两个方程中的未知数u 和v 的系数相同吗?互为相反数吗?能不能直接把这两个方程相加(或相减)消去一个未知数?
(2)能利用等式的性质使这两个方程的某一个未知数的系数变为相同或互为相反数吗?如何变化?
(3)尝试求出这个方程组的解.求解完后与课本P111例4的解答过程对照.
(三)归纳总结:(提示:加减消元法基本思路、主要步骤等)
【专项训练】:解下列方程组
2x-5y=7 2x+3y=12
2x +3y=-1 3x+4y=17
小甸子中学八数(上)5.22 求解二元一次方程组(课堂展示学案)
主备:黄祖花 副备:于传波 谭冬梅 审核: 2014.11.10 【预习反馈】:请你说说课前预习时你总结本节所学的内容以及疑惑的地方。

【预习检测】:解下列方程组:
1、(系数相同或相反)325523x y x y +=⎧⎨-=⎩①②; 31344x y x y +=⎧⎨-=-⎩①②. 4,2 5.x y x y +=⎧⎨-=⎩
①②
2、(系数不具备相同或相反) 2622x y x y -=⎧⎨
+=-⎩ ①② 235,3212.x y x y -=-⎧⎨+=⎩①②
【巩固训练】
1、用加减法解方程组⎩
⎨⎧=-=+823132y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①⎩⎨⎧=-=+846196y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+24
69264y x y x
其中变形正确的是( )A.①② B.③④ C.①③ D.②④
2、解以下两个方程组,较为简便的是( )
①⎩⎨⎧=+-=85712y x x y ②⎩
⎨⎧=-=+486172568t s t s A 、①②均用代入法 B 、①②均用加减法
C .①用代入法②用加减法
D .①用加减法②用代入法
3、书112页随堂练习
【拓展延伸】:若3x
3m+5n+9+4y 4m-2n-7=2,是关于x 和y 的二元一次方程,求n m 的值.。

相关文档
最新文档