【精选】高中数学第二章随机变量及其分布2.1离散型随机变量及其分布列第2课时自我小测新人教A版选修2_3

合集下载

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3_第二章_随机变量及其分布_211_离散型随机变量(2)

高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。

第二章 随机变量及其分布(第2讲)

第二章  随机变量及其分布(第2讲)
分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ

e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效

2014-2015学年高中数学选修2-3 第2章 随机变量及其分布第二章2.1.2(二)

2014-2015学年高中数学选修2-3   第2章 随机变量及其分布第二章2.1.2(二)
X P 0 4 7 1 3 7
研一研·问题探究、课堂更高效
小结
本 课 时 栏 目 开 关
两点分布中只有两个对应的结果,因此在解答此类问题
时,应先分析变量是否满足两点分布的条件,然后借助概率的 知识,给予解决.
研一研·问题探究、课堂更高效
跟踪训练 1 设某项试验成功率是失败率的 2 倍,用随机变量 ξ
研一研·问题探究、课堂更高效
方法二
本 课 时 栏 目 开 关
间接法
由分布列的性质,得 P(X≥2)=1-P(X<2)=1-[P(X=0)+P(X=1)] 1 4 37 =1-210+35= . 42
研一研·问题探究、课堂更高效
2.1.2
【学习要求】
离散型随机变量的分布列(二)
1.进一步理解离散型随机变量的分布列的求法、作用.
本 课 时 栏 目 开 关
2.理解两点分布和超几何分布. 【学法指导】 两点分布是常见的离散型随机变量的概率分布, 如某队员在 比赛中能否胜出,某项科学试验是否成功,都可用两点分布 来研究.在产品抽样检验中,一般采用不放回抽样,则抽到 次品数服从超几何分布;在实际工作中,计算次品数为 k 的 概率,由于涉及产品总数,计算比较复杂,因而,当产品数 较大时,可用后面即将学到的二项分布来代替.
填一填·知识要点、记下疑难点
1.两点分布,如果随机变量 X 的分布列为
本 课 时 栏 目 开 关
X P
0 1-p
1 p
则称离散型随机变量 X 服从 两点分布 .
填一填·知识要点、记下疑难点
2.一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 n- k Ck C M N-M 中恰有 X 件次品,则 P(X=k)= ,k=0,1,2,…, Cn N m, 其中 m=min{M, n}, 且 n≤N, M≤N, n, M, N∈N*,

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量

一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.

2020高中数学 第二章2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量学案 新人教A版选修2-3

2020高中数学 第二章2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量学案 新人教A版选修2-3

2.1.1 离散型随机变量学习目标:1.理解随机变量及离散型随机变量的含义.(重点)2.了解随机变量与函数的区别与联系.(易混点)3.能写出离散型随机变量的可能取值,并能解释其意义.(难点)[自主预习·探新知]1.随机变量(1)定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η,…表示.思考:随机变量与函数有怎样的关系?[提示](1)定义:所有取值可以一一列出的随机变量,称为离散型随机变量.(2)特征:①可用数值表示.②试验之前可以判断其出现的所有值.③在试验之前不能确定取何值.④试验结果能一一列出.思考:离散型随机变量的取值必须是有限个吗?[提示]离散型随机变量的取值可以是有限个,例如取值为1,2,…,n;也可以是无限个,如取值为1,2,…,n,….[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在抛掷一枚质地均匀的硬币试验中,“出现正面的次数”为随机变量.(3)离散型随机变量的取值是任意的实数.()[解析](1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)√因为掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.(3)×由离散型随机变量的定义可知它的取值能够一一列出,因此离散型随机变量的取值是任意的实数的说法错误.[答案](1)√(2)√(3)×2.下列变量中,是离散型随机变量的是( )【导学号:95032116】A.到2019年10月1日止,我国发射的人造地球卫星数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数D[根据离散型随机变量的定义:其可能取到的不相同的值是有限个或可列为有限个,即可以按一定次序一一列出,试验前可以判断其出现的所有值.选项A、B、C的数值均有不确定性,而选项D中,投篮10次,可能投中的次数是离散型随机变量.]3.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能取值为( )A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5B[由于取到白球游戏结束,由题意可知X的可能取值为1,2,3,4,5,6,7.]4.下列随机变量不是离散型随机变量的是________.【导学号:95032117】①某景点一天的游客数X;②某手机一天内收到呼叫次数X;③水文站观测到江水的水位数X;④某收费站一天内通过的汽车车辆数X.[解析]①②④中的随机变量X可能取的值,我们都可以按一定的次序一一列出,因此都是离散型随机变量;③中X可以取一区间内的一切值,无法按一定次序一一列出,故③不是离散型随机变量.[答案]③[合作探究·攻重难]随机变量的概念A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率(2)判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.①北京国际机场候机厅中明天的旅客数量;②2018年5月1日至10月1日期间所查酒驾的人数;③2018年6月1日济南到北京的某次动车到北京站的时间;④体积为1 000 cm3的球的半径长.(1)B[A中取到的产品的件数是一个常量不是变量,C、D也是一个定值,而B中取到正品的件数可能是0,1,2,是随机变量.](2)[解]①旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.②所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.③动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.④球的体积为1 000 cm3时,球的半径为定值,不是随机变量.[规律方法]随机变量的辨析方法1.随机试验的结果具有可变性,即每次试验对应的结果不尽相同.2.随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.[跟踪训练]1.判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某天腾讯公司客服接到咨询电话的个数;(2)标准大气压下,水沸腾的温度;(3)在一次绘画作品评比中,设一、二、三等奖,你的一件作品获得的奖次;(4)体积为64 cm3的正方体的棱长.[解](1)接到咨询电话的个数可能是0,1,2,…出现哪一个结果都是随机的,因此是随机变量.(2)标准大气压下,水沸腾的温度100℃是定值,所以不是随机变量.(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机的,因此是随机变量.(4)体积为64 cm3的正方体的棱长为4 cm为定值,不是随机变量.离散型随机变量的判定(1)某教学资源网站一天内的点击量.(2)你明天上学进入校门的时间.(3)某市明年下雨的次数.(4)抽检一件产品的真实质量与标准质量的误差.【导学号:95032118】[思路探究]根据随机变量的实际背景,判断随机变量的取值是否可以一一列出,从而判断是否为离散型随机变量.[解](1)某教学资源网站一天内的点击量可以一一列出,是离散型随机变量.(2)你明天上学进入校门的时间,可以是某区间内任意实数,不能一一列出,不是离散型随机变量.(3)某市明年下雨的次数可以一一列出,是离散型随机变量.(4)抽检一件产品的真实质量与标准质量的误差可以在某区间内连续取值,不能一一列出,不是离散型随机变量.[规律方法]离散型随机变量判定的关键及方法(1)关键:判断随机变量X的所有取值是否可以一一列出.(2)具体方法:①明确随机试验的所有可能结果;②将随机试验的试验结果数量化;③确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.2.给出下列四种变量(1)某电话亭内的一部电话1小时内使用的次数记为X.(2)某人射击2次,击中目标的环数之和记为X.(3)测量一批电阻,在950 Ω和1 200 Ω之间的阻值记为X.(4)一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中离散型随机变量的个数是( )A.1个B.2个C.3个D.4个B[(1)某电话亭内的一部电话1小时内使用的次数记为X,X是离散型随机变量;(2)某人射击2次,击中目标的环数之和记为X,X是离散型随机变量;(3)测量一批电阻,阻值在950 Ω~1 200 Ω之间,是连续型随机变量;(4)一个在数轴上运动的质点,它在数轴上的位置记为X,X不是随机变量.故离散型随机变量个数是2个.]3.有下列问题:(1)某单位一天来往的人数X;(2)从已编号的5张卡片中(从1号到5号)任取一张,被取出的卡片号数X;(3)一天内的温度为X;(4)某人一生内的身高为X;(5)全民运动会上,一选手进行射箭比赛,击中目标得10分,未击中目标得零分,用X表示该选手在比赛中的得分;(6)某林场树木最高达50米,此林场树木的高度X.上述问题中的X是离散型随机变量的是________.[解析](1),(2),(5)都可以一一列出,故都是离散型随机变量,而(3),(4)都是连续型随机变量,不能一一列出,(6)也不能一一列出,树木高度有无限多个,也不是离散型随机变量.[答案](1),(2),(5)随机变量的可能取值及试验结果1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示]可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X,则X可取哪些数字?[提示]X=0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示]“ξ≥4”表示出现的点数为4点,5点,6点.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.【导学号:95032119】[思路探究]分析题意→写出X可能取的值→分别写出取值所表示的结果[解](1)X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X=3表示取出的球编号为1,2,3.X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.母题探究:1.(变换条件、改变问法)在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解]ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.2.(改变问法)本例(2)中,“最大”改为“最小”,其他条件不变,应如何解答?[解]X可取1,2,3.X=3表示取出的3个球的编号为3,4,5;X=2表示取出的3个球的编号为2,3,4或2,3,5或2,4,5;X=1表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或1,2,4或1,3,4或1,2,3.[规律方法]用随机变量表示随机试验的结果的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.4.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)在2018年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示. [解] (1)X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.[当 堂 达 标·固 双 基]1.袋中有2个黑球、6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率B [A 的取值不具有随机性,C 是一个事件而非随机变量,D 中概率值是一个定值而非随机变量,只有B 满足要求.]2.下列变量中,不是随机变量的是( )【导学号:95032120】A .2020年奥运会上中国取得的金牌数B .2018年冬奥会上中国取得的奖牌数C .某人投篮2次,投中的次数D .某急救中心每天接到的呼救次数B [2018年我国冬奥会上取得的奖牌数是一个具体的数字,不是随机变量,其他三个均为随机变量.] 3.随机变量X 是某城市1天之中发生的火警次数,随机变量Y 是某城市1天之内的温度,随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( )A .X 和ξB .只有YC .Y 和ξD .只有ξB [某城市1天之内的温度不能一一列举,故Y 不是离散型随机变量.]4.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为ξ,则ξ的可能取值为________.【导学号:95032121】[解析] 甲可能在3次射击中,一次也未中,也可能中1次,2次,3次. [答案] 0,1,2,35.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”.用ξ表示需要比赛的局数,写出“ξ=6”时表示的试验结果.[解] 根据题意可知,ξ=6表示甲在前5局中胜3局且在第6局中胜出或乙在前5局中胜3局且在第6局中胜出.。

高中数学必修2-3第二章2.1 2.1.1离散型随机变量

高中数学必修2-3第二章2.1 2.1.1离散型随机变量

第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量问题导航(1)随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?(2)随机变量与函数有什么区别与联系?1.随机变量(1)定义:在随机试验中,确定了一个对应关系,使得每一个________试验结果都用一个________确定的数字表示.在这个对应关系下,________数字随着________试验结果的变化而变化.像这种随着________试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母________X,Y,ξ,η,…表示.2.离散型随机变量所有取值可以________一一列出的随机变量,称为离散型随机变量.1.判断(对的打“√”,错的打“×”)(1)离散型随机变量的取值是任意的实数.()(2)随机变量的取值可以是有限个,也可以是无限个.()(3)离散型随机变量是指某一区间内的任意值.()答案:(1)×(2)√(3)×2.下列变量中,不是随机变量的是()A.掷一枚骰子,所得的点数B.一射手射击一次的环数C.某日上证收盘指数D.标准状态下,水在100 ℃时会沸腾答案:D3.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ≥5”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点答案:D4.在8件产品中,有3件次品,5件正品,从中任取一件取到次品就停止,抽取次数为X,则X=3表示的试验是________.答案:共抽取3次,前两次均是正品,第3次是次品1.对随机变量的再认识(1)随机变量是用来表示不同试验结果的量.(2)试验结果和实数之间的对应关系产生了随机变量,随机变量每取一个确定的值对应着试验的不同结果,试验的结果对应着随机变量的值,即随机变量的取值实质上是试验结果所对应的数.2.离散型随机变量的特征(1)可用数值表示.(2)试验之前可以判断其出现的所有值.(3)在试验之前不能确定取何值.(4)试验结果能一一列出.随机变量的概念判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2016年5月1日的旅客数量;(2)2016年1月1日到6月1日期间所查酒驾的人数;(3)2016年6月1日济南到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球半径长.[解](1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.1.(1)10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率解析:选C.对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C 中取到次品的件数可能是0,1,2,是随机变量.(2)指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.①任意掷一枚质地均匀的硬币5次,出现正面向上的次数;②掷一枚质地均匀的正方体骰子出现的点数(最上面的数字);③某个人的属相随年龄的变化关系.解:①任意掷一枚质地均匀的硬币1次,可能出现正面向上也可能出现反面向上,因此掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪一个结果是随机的,因此是随机变量.②掷一枚质地均匀的骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个,而且出现哪一个结果是随机的,因此是随机变量.③属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.离散型随机变量的判定指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30 m有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获奖等次X;(3)一天内气温的变化值X.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)一天内的气温变化值X,可以在某区间内连续取值,不能一一列出,不是离散型随机变量.判断一个变量是否为离散型随机变量,首先看它是不是随机变量,其次看可能取值是否能一一列出,也就是说变量的取值若是有限的,或者是可以列举出来的,就可以视为离散型随机变量,否则就不是离散型随机变量.2.下面给出四个随机变量:①某高速公路上某收费站在未来1小时内经过的车辆数X是一个随机变量;②一个沿直线y=x进行随机运动的质点,它在该直线上的位置Y是一个随机变量;③某网站未来1小时内的点击量;④一天内的温度η.其中是离散型随机变量的为()A.①②B.③④C.①③D.②④解析:选C.①是,因为1小时内经过该收费站的车辆可一一列出.②不是,质点在直线y=x上运动时的位置无法一一列出.③是,1小时内网站的访问次数可一一列出.④不是,1天内的温度η是该天最低温度和最高温度这一范围内的任意实数,无法一一列出.用随机变量描述随机现象写出下列随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)设所取卡片上的数字之和为X,则X=3,4,5, (11)X=3,表示取出标有1,2的两张卡片;X=4,表示取出标有1,3的两张卡片;…X =11,表示取出标有5,6的两张卡片.解答此类问题的关键在于明确随机变量的所有可能的取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.3.(1)抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是( ) A .2枚都是4点B .1枚是1点,另1枚是3点C .2枚都是2点D .1枚是1点,另1枚是3点,或者2枚都是2点解析:选D.抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2, (6)而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2. (2)写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.①在2016年北京大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X ; ②射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.解:①X 可能取值0,1,2,3,4,5,X =i 表示面试通过的有i 人,其中i =0,1,2,3,4,5. ②ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标; 当ξ=1时,表明该射手在本次射击中击中目标.(2015·南充高二检测)一个木箱中装有6个大小相同的篮球,编号为1,2,3,4,5,6,现随机抽取3个篮球,以ξ表示取出的篮球的最大号码,则ξ的试验结果有________种.[解析] 从6个球中选出3个球,当ξ=3时,另两个球从1,2中选取,有一种抽法; 当ξ=4时,另两个球从1,2,3中任取两个球,有C 23=3种; 当ξ=5时,另两个球从1,2,3,4中任取两个球,有C 24=6种; 当ξ=6时,另两个球从1,2,3,4,5中任取两个球,有C 25=10种. 所以,ξ的试验结果共有1+3+6+10=20种. [答案] 20[错因与防范] 本题易遗漏ξ=3,4,5的情况;对题目中给出的条件作出正确判断是解决数学问题的关键,如本例中“以ξ表示取出的篮球的最大号码”指的是“随机抽取3个篮球”中的最大号码,而不是ξ=6.4.袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,求随机变量的取值.解:设所需要的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数解析:选 D.A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量了;D.颜色的种数是一个离散型随机变量.2.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,取后不放回直到取出的球是白球为止,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,3,…,6 B.1,2,3,…,7C.0,1,2,…,5 D.1,2,…,5解析:选B.因红球共有6个,在取到白球前可取6次,第7次取球只能取白球停止,所以X可能取值有1,2,3, (7)3.下列随机变量中是离散型随机变量的是________.①某鱼塘所养的鲤鱼中,重量在2.5千克以上的条数X;②任意取直线y=x上的整点的个数X;③放学后,小明同学离开学校大门的距离X;④网站中,歌曲《爱我中华》一天内被点击的次数X.解析:③中距离X可取某区间内的任意值,∴③中X不是离散型随机变量.①②④的X 可以一一列举,且②中的X是无限的.答案:①②④4.某篮球运动员在罚球时,罚中1球得2分,罚不中得0分,该队员在5次罚球中命中的次数ξ是一个随机变量.(1)写出ξ的所有取值及每一个取值所表示的结果;(2)若记该队员在5次罚球后的得分为η,写出所有η的取值及每一个取值所表示的结果.解:(1)ξ可取0,1,2,3,4,5.表示在5次罚球中分别罚中0次,1次,2次,3次,4次,5次.(2)η可取0,2,4,6,8,10.表示5次罚球后分别得0分,2分,4分,6分,8分,10分.[A.基础达标]1.给出下列四个命题:①某次数学期中考试中,其中一个考场30名考生中做对选择题第12题的人数是随机变量;②黄河每年的最大流量是随机变量;③某体育馆共有6个出口,散场后从某一出口退场的人数是随机变量;④方程x 2-2x -3=0根的个数是随机变量.其中正确的个数是( )A .1B .2C .3D .4解析:选C.①②③是正确的,④中方程x 2-2x -3=0的根有2个是确定的,不是随机变量.2.抛掷两枚骰子一次,X 为第一枚骰子掷出的点数与第二枚掷出的点数之差,则X 的所有可能的取值为( )A .0≤X ≤5,X ∈NB .-5≤X ≤0,X ∈ZC .1≤X ≤6,X ∈ND .-5≤X ≤5,X ∈Z解析:选D.两次掷出点数均可取1~6所有整数, ∴X ∈[-5,5],X ∈Z .3.袋中有2个黑球和6个红球,从中任取两个,可以作为随机变量的是( ) A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球D .至少取到一个红球的概率解析:选B.袋中有2个黑球和6个红球,从中任取两个,取到球的个数是一个固定的数字,不是随机变量,故不选A ,取到红球的个数是一个随机变量,它的可能取值是0,1,2,故B 正确;至少取到一个红球表示取到一个红球,或取到两个红球,表示一个事件,故C 不正确;至少取到一个红球的概率是一个古典概型的概率问题,不是随机变量,故D 不正确,故选B.4.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取到黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X ,则表示“放回5个球”的事件为( )A .X =4B .X =5C .X =6D .X ≤4解析:选C.第一次取到黑球,则放回1个球;第二次取到黑球,则放回2个球……共放了五回,第六次取到了红球,试验终止,故X =6.5.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( )A .6B .7C .10D .25解析:选C.X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个.6.(2015·济南高二检测)已知Y =2X 为离散型随机变量,Y 的取值为1,2,3,4,…,10,则X 的取值为______________________.解析:由题意可知X =12Y .又Y ∈{1,2,3,4,5,6,7,8,9,10}, 故X ∈⎩⎨⎧⎭⎬⎫12,1,32,2,52,3,72,4,92,5.答案:12,1,32,2,52,3,72,4,92,57.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.解析:若答对0个问题得分-300; 若答对1个问题得分-100; 若答对2个问题得分100; 若问题全答对得分300.答案:-300,-100,100,300 8.某射手射击一次所击中的环数为ξ(取整数),则“ξ>7”表示的试验结果是________. 解析:射击一次所中环数ξ的所有可能取值为0,1,2,…,10,故“ξ>7”表示的试验结果为“该射手射击一次所中环数为8环、9环或10环”.答案:射击一次所中环数为8环或9环或10环 9.(2015·南京高二检测)小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X 表示这两张金额之和.写出X 的可能取值,并说明所取值表示的随机试验结果.解:X 的可能取值为6,11,15,21,25,30. 其中,X =6,表示抽到的是1元和5元; X =11,表示抽到的是1元和10元; X =15,表示抽到的是5元和10元; X =21,表示抽到的是1元和20元; X =25,表示抽到的是5元和20元; X =30,表示抽到的是10元和20元.10.一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ. (1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果都加上6分.求最终得分η的可能取值,并判定η的随机变量类型.解:(1)(2)由题意可得η=5ξ+6,而ξ可能的取值范围为{0,1,2,3},∴η对应的各值是:5×0+6,5×1+6,5×2+6,5×3+6.故η的可能取值为{6,11,16,21},显然η为离散型随机变量.[B.能力提升]1.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C.前4次均未击中目标D.第4次击中目标解析:选C.ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.2.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时已拨的次数为ξ,则随机变量ξ的所有可能取值的种数为()A.20 B.24C.4 D.18解析:选B.由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是________.解析:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示两枚骰子中第一枚为6点,第二枚为1点.答案:第一枚为6点,第二枚为1点4.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.解析:ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C27种方法,即21种.答案:215.手机上网安全、方便,某地移动公司推出一款上网卡,月租费10元,上网时每分钟0.04元(不足一分钟的按一分钟计算).小张在一个月内上网的时间(分)为随机变量ξ,求小张在一个月内上网的费用η,则ξ和η是否为离散型随机变量.解:由于上网时间不足1分钟按1分钟计算,因此变量ξ的取值为1,2,3,….∴ξ是一个离散型随机变量.又η=0.04ξ+10,ξ∈N*,故η也是离散型随机变量.6.写出下面随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽得号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).。

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

数学人教A选修2-3讲义:第二章 随机变量及其分布2.1.2 离散型随机变量的分布列(一) (最新)

2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 离散型随机变量及其分布列 2
自我小测
1.设随机变量ξ等可能取值1,2,3,…,n ,如果P (ξ<4)=0.3,那么( ) A .n =3 B .n =4 C .n =10 D .n =9
2.一个人有n 把钥匙,其中只有一把可以打开房门,他随意地进行试开,若试开过的钥匙放在一旁,试过的次数X 为随机变量,则P (X =k )等于( )
A .k n
B .1n
C .k -1n
D .k !n !
3.设随机变量ξ的分布列如下:
则P (ξ=A .239B .2310 C .139D .1310
4.随机变量X 所有可能取值的集合为{-2,0,3,5},且P (X =-2)=14,P (X =3)=1
2

P (X =5)=112
,则P (X =0)的值为( )
A .0
B .14
C .16
D .1
8
5.设随机变量X 等可能地取值1,2,3,4,…,10.又设随机变量Y =2X -1,P (Y <6)的值为( )
A .0.3
B .0.5
C .0.1
D .0.2 6.随机变量Y 的分布列如下:
则(1)x =7.设随机变量X 的概率分布列为P (X =k )=m ⎝ ⎛⎭
⎪⎫23k
,k =1,2,3,则m 的值为________.
8.设随机变量X 的概率分布列为P (X =n )=
a +
(n =1,2,3,4),其中a 为常数,
则P ⎝ ⎛⎭
⎪⎫12<X<52=________. 9.已知随机变量X 的分布列为
求随机变量Y =2
X 的分布列.
10.设S 是不等式x 2
-x -6≤0的解集,整数m ,n ∈S .
(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设X =m 2
,求X 的分布列.
参考答案
1.解析:由ξ<4知ξ=1,2,3,
所以P (ξ=1)+P (ξ=2)+P (ξ=3)=0.3=3
n ,
解得n =10. 答案:C
2.解析:X =k 表示第k 次恰好打开,前k -1次没有打开, ∴P (X =k )=n -1n ×n -2n -1×…×
n -
-n --
×
1n -

=1n
. 答案:B
3.解析:P (ξ=10)=1-⎝ ⎛⎭⎪⎫23+232+…+239=1-23×⎣⎢⎡⎦⎥⎤
1-⎝ ⎛⎭⎪⎫1391-13=⎝ ⎛⎭
⎪⎫139.
答案:C
4.解析:由分布列的性质可知,
P (X =0)=1-P (X =-2)-P (X =3)-P (X =5)=16
.
答案:C
5.解析:Y <6,即2X -1<6,∴X <3.5.X =1,2,3,P =0.3. 答案:A
6.解析:(1)由∑i=1
6
p i =1,得x =0.1.
(2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6) =0.1+0.15+0.2=0.45.
(3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4) =0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.55
7.解析:由离散型随机变量分布列的性质得, m ⎣⎢⎡⎦⎥⎤23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233=1,解得m =2738.
答案:27
38
8.解析:由题意,P (X =1)+P (X =2)+P (X =3)+P (X =4) =
a 1×2+a 2×3+a 3×4+a 4×5=1,∴a =54
. ∴P ⎝ ⎛⎭⎪⎫12<X<52=P (X =1)+P (X =2)=a 2+a 6=2a 3=23×54=56.
答案:5
6
9.解:由于Y =1
2X ,对于X 的不同取值-6,-2,0,1,2,6可得到不同的Y ,即Y =-3,
-1,0,12,1,3.故Y =1
2
X 的分布列为
10.解:(1)由
由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).
(2)由于m 的所有不同取值为-2,-1,0,1,2,3,所以X =m 2
的所有不同取值为0,1,4,9,且有P (X =0)=16,P (X =1)=26=13,P (X =4)=26=13,P (X =9)=16
.
故X 的分布列为。

相关文档
最新文档