北京市2019年中考数学二模试题汇编反比例综合题无答案

合集下载

北京市海淀区2019年中考二模数学试卷含答案

北京市海淀区2019年中考二模数学试卷含答案

北京市海淀区2019届九年级中考二模数学试卷2019.6 学校 班级___________ 姓名 成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为A .1.96×105B .19.6×104C .1.96×106D .0.196×1062.中华文化底蕴深厚,地方文化活动丰富多彩.下面的四幅简笔画是从我国地方文化活动中抽象出来的,其中是轴对称图形的是A .B .C .D .3.下列计算正确的是A .632a a a =⋅B .842a a a ÷=C .623)(a a = D .a a a 632=+ 4.如图,边长相等的正方形、正六边形的一边重合, 则1∠的度数为A .20°B .25°C .30°D .35°5.如图,数轴上有M ,N ,P ,Q 四个点,其中点 P 所表示的数为a ,则数3a -所对应的点可能是 A .M B .N C .P D .QNMQP6这10名学生所得分数的平均数是A .86B .88C .90D .927.如图,A ,B ,C ,D 为⊙O 上的点, AB OC ⊥于点E ,若=30CDB ∠︒,2OA =,则AB 的长为A B . C .2 D .48小明每月大约使用国内数据流量200MB ,国内主叫200分钟,若想使每月付费最少,则 他应预定的套餐是A .套餐1B .套餐2C .套餐3D .套餐49.随着“互联网+”时代的到来,一种新型的打车方式受到 大众欢迎.该打车方式采用阶梯收费标准.打车费用y (单 位:元)与行驶里程x (单位:千米)的函数关系如图所 示. 如果小明某次打车行驶里程为20千米,则他的打车 费用为A .32元B .34元C .36元D .40元10.如图1,抛物线2y x bx c =-++的顶点为P ,与x 轴交于A ,B 两点.若A ,B 两点间的距离为m , n 是m 的函数,且表示n 与m 的函数关系的图象大致如图2所示,则n 可能为A .PA AB +B .PA AB -C .AB PA D .PAAB二、填空题(本题共18分,每小题3分) 11.当分式221x x -+的值为0时,x 的值为 . 12.分解因式:2312x -=______ _________. 13.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度. 如图所示,木杆EF 的长为2m ,它的影长FD 为3m ,测得OA 为201m ,则金字塔的高度BO 为______ _ m .14.请写出一个图象过(2,3)和(3,2)两点的函数解析式______ ____. 15.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是_________________(精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同: ______ _____________________________________________________________________________.16.阅读下面材料:实际生活中,有时会遇到一些“不能接近的角”,如图中的P∠,我们可以采用下面的方法作一条直线平分P∠.如图,(1)作直线l与P∠的两边分别交于点A,B,分别作PAB∠和PBA∠的角平分线,两条角平分线相交于点M;(2)作直线k与P∠的两边分别交于点C,D,分别作PCD∠和PDC∠的角平分线,两条角平分线相交于点N;(3)作直线MN.所以,直线MN平分P∠.请回答:上面作图方法的依据是_________________ ___.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:101()2)14cos453---+-+︒.18.解不等式组8(1)517,106,2x xxx->-⎧⎪⎨--≤⎪⎩并将解集在数轴上表示出来.19.已知关于x的方程2670x x k-++=有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求方程的根.20.已知:如图,在△ABC中,∠ACB=90︒,点D在BC上,且BD =AC ,过点D 作DE ⊥AB 于点E ,过点B 作CB 的垂线,交DE 的延长线于点F .求证:AB =DF .21.为了提升阅读速度,某中学开设了“高效阅读”课.小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小静现在每分钟阅读的字数.22.如图,在△ABC 中,∠ACB =90︒,CD 为AB 边上的中线,过点D 作DE BC ⊥于E ,过点C 作AB 的平行线与DE 的延长线交于点F ,连接BF ,AE . (1)求证:四边形BDCF 为菱形;(2)若四边形BDCF 的面积为24,tan ∠EAC =23,求CF 的长.23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x =的一个交点为(,1)A m .(1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E . 若2BD BE =,求点D 的坐标.24.如图,在△ABC 中,∠C =90°,点E 在AB 上,以AE为直径的⊙O 切BC 于点D ,连接AD .(1)求证:AD平分∠BAC;(2)若⊙O的半径为5,sin∠DACBD的长.25.据报道,2019年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2019年报道的相关数据,绘制统计图表如下:全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表2019年全国人口年龄构成统计图根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2(3)若2020年我国儿童占总人口的百分比与2019年相同,请你估算到2020年我国儿科医生需比2019年增加多少万人,才能使每千名儿童拥有的儿科医生数达到0.6.26. 小明在做数学练习时,遇到下面的题目:小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、 探究过程,请你补充完整.第一步,读题,并标记题目条件如下:在△ABC 中,D 为AC 边上一点,①AB=AC ;②DBA A ∠=∠;③BD=BC ;④CD =2; ⑤△BDC 的周长为14.第二步,依据条件③、④、⑤,可以求得BD BC ==__________; 第三步,作出△BCD ,如图2所示;第四步,依据条件①,在图2中作出△ABC ;(尺规作图,保留作图痕迹), ,图2第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去掉这个条件,题目中其他部分保持不变,求得AB的长为__________.ax b+((1)1P(1,1n),2P(3,2n)为P点运动所经过的两个位置,判断1n,2n的大小,并说明理由;(2)当14m≤≤时,n的取值范围是14n≤≤,求抛物线的解析式.28. 已知:AB BC=,90ABC∠=︒.将线段AB绕点A逆时针旋转α(090α︒<<︒)得到线段AD.点C关于直线BD的对称点为E,连接AE,CE.(1)如图,①补全图形;②求AEC∠的度数;(2)若AE=1CE=-,请写出求α度数的思路.(可以不写出计算结果.........)老师:“质疑是29. 对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值 之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为 零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;②若13b ≤≤,求其不变长度q 的取值范围;(3)记函数22()y x x x m =-≥的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ≤≤,则m 的取值范围为 .海淀区九年级第二学期期末练习数学试卷参考答案一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式31+42=--⨯……………………4分5=.………………………5分18.解:原不等式组为8(1)5171062x x x x ->-⎧⎪⎨--≤⎪⎩,①,②解不等式①,得 3x >-. ………………………2分 解不等式②,得 2≤x . ………………………3分∴ 原不等式组的解集为32x -≤<.………………………4分 不等式组的解集在数轴上表示如下:………………………5分19. 解:(1)∵ 原方程有两个不相等的实数根,∴ 0Δ>.即 364(7)0k -+>.∴ 2k <..………………………2分 (2)∵2k <且k 为正整数,∴1=k ..………………………3分 ∴0862=+-x x .∴1224x x ==,..………………………5分20.证明:∵ AB DE BC BF ⊥⊥,,90ACB ∠=︒, ∴90DBF BEF ACB ∠=∠=∠=︒.∴ ︒=∠+∠︒=∠+∠9029021F ,. ∴ F ∠=∠1..………………………2分 在中和△△DFB ABC ,1F ACB DBF AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴ ABC △≌DFB △.………………………4分 ∴DF AB =..………………………5分21.解:设小静原来每分钟阅读x 个字.…………1分由题意,得300291003500+=x x . ………………………3分解得 500=x . ………………………4分 经检验,500=x 是原方程的解,且符合题意. ∴130030050023002=+⨯=+x .答:小静现在每分钟阅读1300个字. ………………………5分22.(1)证明:∵ 90ACB ∠=︒, ∴AC BC ⊥. ∵DE BC ⊥, ∴AC ∥DE . 又∵ CF ∥AD ,∴ 四边形ACFD 为平行四边形. …………1分 ∴CF AD =.∵ CD AB 为边上的中线, ∴BD AD =. ∴CF BD =.∴四边形BDCF 为平行四边形. ∵ BC DE ⊥,∴四边形BDCF 为菱形. ………………………3分 (2)解:在Rt ACE △中,∵ 2tan 3EC EAC AC ∠==, ∴设 2,3CE x AC DF x ===. ∵菱形BDCF 的面积为24, ∴1242DF BC ⋅=.………………………4分 ∴ 24DF EC ⋅=. ∴ 3224x x ⋅=.∴ 12x =,22x =-(舍). ∴4CE =,12EF =3DF =.F∴5CF =. ………………………5分23. 解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m . ………………………1分 ∵点)1,6(A 在直线b x y +=21上, ∴2-=b . ………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为5(1)2--,. 综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分24. (1)证明:连接OD .………………………1分∵⊙O 切BC 于点D , 90C ∠=︒, ∴90ODB C ∠=∠=︒. ∴OD ∥AC .图1图2∴DAC ODA ∠=∠. ∵OD OA =, ∴OAD ODA ∠=∠. ∴DAC OAD ∠=∠.∴AD 平分BAC ∠.………………………2分(2)解:连接DE . ∵AE 为直径, ∴︒=∠90ADE .∵OAD DAC ∠=∠,sin DAC ∠=, ∴sin OAD ∠=. ∵5OA =, ∴10AE =.∴AD =.………………………3分 ∴4CD =,8AC =. ∵OD ∥AC ,∴BOD BAC △∽△.………………………4分∴OD BDAC BC =. 即584BD BD =+. ∴203BD =.………………………5分25.(1)m 16.5=;………………………2分(2)14;(估值在合理范围内即可) ………………………3分 (3)14000016.5%0.69.721000⨯⨯- 4.14=.答:2020年我国儿科医生需比2019年增加4.14万人,才能使每千名儿童拥有的儿科医生数达到0.6. ………………………5分26. 第二步:6BD BC ==;………………………1分 第四步:如图,△ABC 即为所求. ………………3分 第五步: ② ,18.………………5分27. 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =. ∵1P (1,1n ),2P (3,2n )在抛物线上,∴.………………3分(2)当时,抛物线的顶点为(2,1),且过点(4,4), ∴抛物线的解析式为.………………5分当时,抛物线的顶点为(2,4),且过点(4,1), ∴抛物线的解析式为.综上所述,抛物线的解析式为或.…………7 分28. 解:(1)①补全图形,如图1所示.…………1分②连接. ∵,关于直线对称,∴.………………………2分 ∴,.∵90ABC ∠=︒,∴270BAE AEC C ∠+∠+∠=︒.∴135AEC ∠=︒..………………………4分 (2)求解思路如下:a .连接AC ,过点A 作AF ⊥CE ,交CE 延长线于点F ,如图2所示;b .由(1)可求︒=∠135AEC ,由AE =可求1AF EF ==;c .由1CE =,可求2AC =,AB BC ==ABE 为等边三角形;d .由C ,E 两点关于直线BD 对称,AB AD =,可求15EBD ∠=︒,75ABD ∠=︒,30α=︒. ……………………7分29.解:(1)函数1y x =-没有不变值; ………………1分函数1y x=有1-和1两个不变值,其不变长度为2;………………2分 函数2y x =有0和1两个不变值,其不变长度为1;………………3分(2)①∵函数22y x bx =-的不变长度为零,∴方程22x bx x -=有两个相等的实数根.∴1b =-. ………………4分②解方程22x bx x -=,得10x =,212b x +=.………………5分 ∵13b ≤≤,∴212x ≤≤.∴函数22y x bx =-的不变长度q 的取值范围为12q ≤≤. ………………6分(3)m 的取值范围为13m ≤≤或18m <-. ………………8分。

2019年北京市各城区中考二模数学——代数与几何综合题25题汇总

2019年北京市各城区中考二模数学——代数与几何综合题25题汇总

2x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.y5]5(x2+bx+c)过点数学试卷2019年北京市各城区中考二模数学——代数与几何综合题25题汇总y1、(2019年门头沟二模)25.如图25-1,抛物线y=-x2+b x+c与直线y=1y作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;72B CB CP E(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.O N A x PB'y....MP'O N A x P图1D DC F CA O EB x A O B x 3、(2019年平谷二模)25.定义:任何一个一次函数y=px+q,取出它的一次项系数p和常数项q,有序数组[p,q]为其特征数.例如:y=2x+5的特征数是[2,,同理,[a,b,c]为二次函数y=ax2+bx+c的特征数。

图25-1备用图(1)直接写出二次函数y=x2-5x的特征数是:_______________。

(2)若特征数是[2,m+1]的一次函数为正比例函数,求m的值;2、(2019年丰台二模)25.如图,经过原点的抛物线y=-x2+bx(b>2)与x轴的另一交(3)以y轴为对称轴的二次函数抛y=ax2+bx+c的图象经过A(2,m)、B(n,1)两点(其b点为A,过点P(1,2)作直线PN⊥x轴于点N,交抛物线于点B.点B关于抛物线对称轴的对中m﹥0,n<0),连结OA、OB、AB,得到OA⊥OB,S的特征数.△AOB=10,求二次函数y=ax2+bx+c称点为C.连结CB,CP.(1)当b=4时,求点A的坐标及BC的长;(2)连结CA,求b的适当的值,使得CA⊥CP;(3)当b=6时,如图△2,将CBP绕着点C按逆时针方向旋转,得到△C B’P’,CP与抛物线对称轴的交点为E,点M为线段B’P’(包含端点)上任意一点,请直接写出线段EM长度的取值范围.4、(2019年顺义二模)25.如图,在平面直角坐标系xOy中,抛物线y=3中,射线 l: y = 3x (x ≥ 0).点 A 是第一象限内一定点,OA = 4 3 ,射线 OA 与射线 l 的MA(1,0) ,B(0, 3) ,这条抛物线的对称轴与 x 轴交于点 C ,点 P 为射线 CB 上一个动点(不与点 C 重合),点 D 为此抛物线对称轴上一点,且∠CPD = 60︒ . (1)求抛物线的解析式; (2)若点 P 的横坐标为 △m , PCD 的面积为 S ,求S 与 m 之间的函数关系式;(3)过点 P 作 PE ⊥DP ,连接 DE ,F 为 DE 的中点,试求线段 BF 的最小值.5、(2019 年石景山二模)25.在平面直角坐标系 xoy.....夹角为 30°.射线 l 上有一动点 P 从点 O 出发,以每秒 2 3 个单位长度的速度沿射线 l 匀速运动,同时 x 轴上有一动点 Q 从点 O 出发,以相同的速度沿 x 轴正方向匀速运动,设运 动时间为 t 秒.(1)用含 t 的代数式表示 PQ 的长.(2)若当 P 、Q 运动某一时刻时,点 A 恰巧在线段 PQ 上,求出此时的 t 值.(3)定义 M 抛物线:顶点为 P ,且经过 Q 点的抛物线叫做“M 抛物线”.若当 P 、Q 运动 t秒时,将△PQA 绕其某边中点旋转 180°后,三个对应顶点恰好都落在“ 抛物线”上,求此时 t 的值. 解:(1)数学试卷(3)6、(2019 年海淀二模)25. 对于半径为 r 的⊙P 及一个正方形给出如下定义:若⊙P 上存在 到此正方形四条边距离都相等的点,则称⊙P 是该正方形的“等距圆”.如图 1,在平面直角 坐标系 xOy 中,正方形 ABCD 的顶点 A 的坐标为(2,4),顶点 C 、D 在 x 轴上,且点 C 在点 D 的左侧.(1)当 r = 4 2 时,①在 P 1(0,-3),P 2(4,6),P 3( 4 2 ,2)中可以成为正方形 ABCD 的“等距圆”的圆心的是 ;②若点 P 在直线 y = - x + 2 上,且⊙P 是正方形 ABCD 的“等距圆”,则点 P 的坐标为 ;(2)如图 2,在正方形 ABCD 所在平面直角坐标系 xOy 中,正方形 EFGH 的顶点 F 的坐标为(6,2),顶点 E 、H 在 y 轴上,且点 H 在点 E 的上方.①若⊙P 同时为上述两个正方形的“等距圆”,且与 BC 所在直线相切,求⊙P 在 y 轴上截得 的弦长;②将正方形 ABCD 绕着点 D 旋转一周,在旋转的过程中,线段 HF 上没有一个点能成为它的 “等距圆”的圆心,则 r 的取值范围是 .y H GBAEFCO Dx(2)备用图 1图 1图 2备用图 2x 是闭区间 [1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数 y = kx + b (k ≠ 0)是闭区间 m , n 上的“闭函数”,求此函数的表达式;5 x 2 - [ ] 5 是闭区间 a, b 上的“闭函数”,直接写出实数a ,b [ ] [ ]7、(2019 年西城二模)25.在平面直角坐标系 xOy 中,对于⊙A 上一点 B 及⊙A 外一点 P ,给出如下定义:若直线 PB 与 x 轴有公共点(记作 M ),则称直线 PB 为⊙A 的“x 关联直线”,(1)反比例函数 y =2014数学试卷记作 l PBM .[ ](1)已知⊙O 是以原点为圆心,1 为半径的圆,点 P (0,2),①直线 l : y = 2 ,直线 l : y = x + 2 ,直线 l : y = 3x + 2 ,直线 l : y = -2 x + 2 都经1234(3)若二次函数 y = 1的值.4 5 x - 7过点 P ,在直线 l , l , l , l 中,是⊙O 的“x 关联直线”的是;12 3 4②若直线 l是⊙O 的“x 关联直线”,则点 M 的横坐标 x 的最大值是;PBMM(2)点 A (2,0),⊙A 的半径为 1,9、(2019 年东城二模)25.定义:对于数轴上的任意两点 A ,B 分别表示数 x x ,用 x - x1, 2 1 2表示他们之间的距离;对于平面直角坐标系中的任意两点 A( x , y ), B( x , y ) 我们把1 12 2①若 P (-1,2),⊙A 的“x 关联直线” l当 x 最大时,求 k 的值;M②若 P 是 y 轴上一个动点,且点 P的纵坐标 y > 2 ,⊙A 的两条“x 关联pPBM: y = kx + k + 2 ,点 M 的横坐标为 x ,Mx - x + y - y 叫做 A ,B 两点之间的直角距离,记作 d (A ,B ).1 2 1 2(1)已知 O 为坐标原点,若点 P 坐标为(- 1,3),则 d (O,P )=_____________; (2)已知 C 是直线上 y =x +2 的一个动点,①若 D (1,0),求点 C 与点 D 的直角距离的最小值;②若 E 是以原点 O 为圆心,1 为半径的圆上的一个动点, 请直接写出点 C 与点 E 的直角距离的最小值.直线”lPCM, l PDN是⊙A 的两条切线,切y点分别为 C ,D ,作直线 CD 与 x 轴点于点 E ,当点 P 的位置发生变化时, AE 的长 度是否发生改变?并说明理由.8、(2019 年通州二模)24.设 a ,b 是任意两个不等实数,我们规定:满足不等式a ≤ x ≤ b的实数 x 的所有取值的全体叫做闭区间,表示为 a, b . 对于一个函数,如果它的自变量 x 与函数值 y 满足:当 m ≤ x ≤n 时,有 m ≤ y ≤n ,我们就称此函数是闭区间 m , n 上的“闭函数”.32 1-2 -1O1 2 x-1 -210、(2019 年朝阳二模)25.如图,在平面直角坐标系中 xOy ,二次函数 y =ax 2-2ax +3 的图象与 xyCA OB xC -2 -1 O A2 x大,请直接写出点 M 的坐标..轴分别交于点 A 、B ,与 y 轴交于点 C ,AB =4,动点 P 从 B 点出发,沿 x 轴负方向以每秒 1 个单位长度的速度移动.过 P 点作 PQ 垂直于直线 BC ,垂足为 Q .设 P 点移动的时间为 t 秒(t >△0), BPQ 与△ABC 重叠部分的面积为 S . (1)求这个二次函数的关系式; (2)求 S 与 t 的函数关系式; (△3)将 BPQ 绕点 P 逆时针旋转 90°,当旋转后的△BPQ 与二次函数的图象有公共点时,求 t 的取值范围(直接写出结果).11、(2019 年密云二模)25.按右图所示的流程,输入一个数据 x ,根据 y 与 x 的关系式就输出一个数据 y , 这样可以将一组数 据变换成另一组新的数据,要使任意一组都在20~100(含 20 和 100)之间的数据,变换成一组新数据后能满足下列两个要求:(一)新数据都在 60~100(含 60 和 100)之间;(二)新数据之间的大小关系与原数据之间的大小关系一致, 即原数据大的对应的新数据也较大.(1) 若 y 与 x 的关系是 y =x +p(100-x),请说明:当 p1= 2 时,这种变换满足上述两个要求;(2) 若按关系式 y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式(不要求对关 系式符合题意作说明,但要写出关系式得出的主要过 程)12、(2019 年延庆二模)13 、 (2019 年 房 山 二 模 )25. 如 果 一 条 抛 物 线说明理由;(3)在(2)的条件下,若以点 E 为圆心,r 为半径的圆与线段 AD 只有一个公共点,求出 r 的 取值范围.14、(2019 年昌平二模)25.如图,已知点A (1,0),B (0,3),C (-3,0),动点 P (x ,y )在线段 AB 上,CP 交 y y轴于点 D ,设 BD 的长为 t . B(1)求 t 关于动点 P 的横坐标 x 的函数表达式; 2(2)若 △S BCD :△S AOB =2:1,求点 P 的坐标,并判断线段 CD 与线段 AB 的数量及位置关系,说明理由; 1(3)在(2)的条件下,若 M 为 x 轴上的点,且∠BMD 最-115、(2019 年怀柔二模)25.在平面直角坐标系 xoy 中,已知 A(3,0)、B(1,2), 直线 l 围绕△OAB 的顶点 A 旋转,与 y 轴相交于点 P.探究解决下列问题: (1)在图 1 中求△OAB 的面积.(2)如图 1 所示,当直线 l 旋转到与边 OB 相交时,试确定点 P 的位置,使顶点 O 、B 到直线 l 的 距离之和最大,并简要说明理由.(3)当直线 l 旋转到与 y 轴的负半轴相交时,在图 2 中试确定点 P 的位置,使顶点 O 、B 到直 线 l 的距离之和最大,画出图形并求出此时 P 点的坐标. (点 P 位置的确定只需作出图形,不 用证明).y =ax 2 +bx +c (a ≠ 0)与 x 轴有两个交点,那么以该抛物线yyB的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛 物线三角形”.(1)“抛物线三角形”一定是 三角形;lPBO Ax(2)如图,△ OAB 是抛物线 y =-x 2 +b x (b >0)的“抛物线 x三角形”,是否存在以原点 O 为对称中心的矩形 ABCD ?若 存在,求出过 O 、C 、D 三点的抛物线的表达式;若不存在,O A图 1图 2x-2+1的图象向左平移2个单位,再向下平移1个单位得到y=x-2+1是y与x的“反比例平移函数”.16、(2019年大兴二模)24.已知:二次函数y=x2+bx+8的图象与x轴交于点A(–2,0).(1)求二次函数y=x2+bx+8的图象与x轴的另一个交点B及顶点M的坐标;(2)点P从点B出发,以每秒1个单位的速度沿水平方向向右运动,同时点Q从点M出发,以每秒2个单位的速度沿竖直方向向下运动,当点P运动到原点O时,P、Q同时停止运动.点C、点D分别为点P、点Q关于原点的对称点,设四边形PQCD的面积为S,运动时间为t,求S与t的函数关系表达式(不必写出t的取值范围);(3)在(2)的运动过程中,四边形PQCD能否形成矩形?若能,求出此时t的值;若不能,请说明理由.(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”y=ax+k的图象经过B、E两点.则这个“反比例平移函数”的表达式x-6为;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.yC BEO D A x17、(2019年燕山二模)25.定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:y=11x的图象,则y=1(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.。

2019年北京市中考二模数学试题(附答案)

2019年北京市中考二模数学试题(附答案)

2019北京市中考二模数学试题学校 姓名 准考证号考 生 须 知1.本试卷共8页,共三道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上。

在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答,在试卷上作答无效。

4.考试结束,请将本试卷和答题卡一并交回。

下面各题均有四个选项,其中只有一个..是符合题意的. 1.据有关部门数据统计,2015年中国新能源汽车销量超过33万辆,创历史 新高.数据“33万”用科学记数法表示为 A .43310⨯ B .43.310⨯ C .53.310⨯ D .60.3310⨯2.下列计算正确的是A .632a a a =⋅B .()222b a ab = C .()532a a =D .42232a a a =+3.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则 图中表示绝对值最大的数对应的点是 A .点M B .点N C .点P D .点Q 4.若312--x x 在实数范围内有意义,则x 的取值范围是 A .3≠x B .21>x 且3≠x C .2≥x D .21≥x 且3≠x 5.从长度分别是2,3,4的三条线段中随机抽出一条,与长为1,3的两条线段首尾顺次相接,能构成三角形的概率是 A .1 B .32 C .31D .0 6.将代数式2105x x -+配方后,发现它的最小值为A .30-B .20-C .5-D .07.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为A .⎩⎨⎧=+=-y x y x 4738B .⎩⎨⎧=-=+y x y x 4738C .⎩⎨⎧=-=-4738x y x yD .⎩⎨⎧=-=-4738y x y x PMNQ8.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为A .32°B .58°C .64°D .116° 9.如图,为了估计河的宽度,在河的对岸选定一个目标 点A ,在近岸取点B ,C ,D ,E ,使点A ,B ,D 在一 条直线上,且AD ⊥DE ,点A ,C ,E 也在一条直线上 且DE ∥BC .如果BC=24m ,BD=12m ,DE=40m ,则 河的宽度AB 约为 A .20mB .18mC .28mD .30m10.如图1,在等边△ABC 中,点D 是BC 边的中点,点P 为AB 边上的一个动点,设AP =x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图 2所示,则等边△ABC 的面积为 A .4 B . C .12 D .二、填空题(本题共18分,每小题3分) 11.分解因式:2484x x -+= .12.某班学生分组做抛掷瓶盖实验,各组实验结果如下表:根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为 . (精确到0.01)13.写出一个函数,满足当x>0时,y 随x 的增大而减小且图象过(1,3),则这个函数的表达式为 .14.甲、乙两名队员在5次射击测试中,成绩如下表所示:若需要你根据两名队员的5次成绩,选择一名队员参加比赛,你会选择队员 ,选择的理由是 .ECDB A PCDBA图1 图2第14题图 第15题图15.如图为44⨯的正方形网格,图中的线段均为格点线段(线段的端点为格点),则12345∠+∠+∠+∠+∠的度数为 .16.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y (mg)与时间x (分钟)的函数关系如图所示.已知,药物燃 烧阶段,y 与x 成正比例,燃完后y 与x 成 反比例.现测得药物10分钟燃完,此时教 室内每立方米空气含药量为8mg .当每立方 米空气中含药量低于1.6mg 时,对人体才能 无毒害作用.那么从消毒开始,经过 分钟后教室内的空气才能达到安全要求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:131833tan 303-⎛⎫--+-︒ ⎪⎝⎭.18.已知0142=++x x ,求代数式()()71212++--x x x 的值.19.解方程:221111x x x x --=--. 20.如图,在Rt △ABC 中,∠ABC=90°,点D 在边AB 上,且DB =BC ,过点D 作EF ⊥AC于E ,交CB 的延长线于点F .求证:AB=BF .21.在平面直角坐标系xOy 中,一次函数12y x b =+的图象与y 轴交于点A ,与反比例函数8y x=的图象交于点P (2,m ). (1)求m 与b 的值; 成绩/环 五次射击测试成绩DEFCB A 54321x /8O10y /mg(2)取OP 的中点B ,若△MPO 与△AOP 关于点B 中心对称,求点M 的坐标.22.为了促进旅游业的发展,某市新建一座景观桥.桥的拱肋ADB 可视为抛物线的一部分,桥面AB 可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度AB 为40米,桥拱的最大高度CD 为16米(不考虑灯杆和拱肋的粗细),求与CD 的距离为5米的景观灯杆MN 的高度.23.如图,CD 垂直平分AB 于点D ,连接CA ,CB ,将BC 沿BA 的方向平移,得到线段DE ,交AC 于点O ,连接EA ,EC . (1)求证:四边形ADCE 是矩形; (2)若CD =1,AD =2,求sin ∠COD 的值.24.阅读下面材料:当前,中国互联网产业发展迅速,互联网教育市场增长率位居全行业前列.以下是根据某媒体发布的2012 2015年互联网教育市场规模的相关数据,绘制的统计图表的一部分.(1)2015年互联网教育市场规模约是亿元(结果精确到1亿元),并补全条形 统计图;(2)截至2015年底,约有5亿网民使用互联网进行学习,互联网学习用户的年龄分布 如右图所示,请你补全扇形统计图,并估年份年增长率/%年份市场规模/亿元 NDOECDBA学习用户分布图截至2015年底互联网36-55岁9%其他7-17岁18-35岁56%7-17岁 %GHEFB C DA计7-17岁年龄段有 亿网民通过互联 网进行学习;(3)根据以上材料,写出你的思考、感受或建议(一条即可).25.如图,在Rt △ACB 中,∠C =90°,D 是AB 上一点,以BD 为直径的⊙O 切AC于点E ,交BC 于点F ,连接DF . (1)求证:DF=2CE ; (2)若BC =3,sin B =54,求线段BF 的长.26.阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD 面积相等的正方形.小骏发现:延长AD 到E ,使得DE =CD , 以AE 为直径作半圆,过点D 作AE 的垂线, 交半圆于点F ,以DF 为边作正方形DFGH , 则正方形DFGH 即为所求.请回答:AD ,CD 和DF 的数量关系为 . 参考小骏思考问题的方法,解决问题:画一个和已知□ABCD 面积相等的正方形,并写出画图的简要步骤.FOE DC BA B CDA27.已知关于x 的方程()021222=-+-+m m x m x .(1) 求证:无论m 取何值时,方程总有两个不相等的实数根;(2) 抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3) 在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值.28.如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形;②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.29.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是90°.E GD C BAMAB C DGE yDCB A12345(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为90°,则满足条件的点为 ;(2)将函数2ax y =)31(≤≤a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的坐标角度︒≤≤︒9060m .直接写出满足条件的r 的取值范围.答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案CBDDCBAABD二、填空题(本题共18分,每小题3分) 11.()241x -;12.0.53;13.如3y x=,答案不唯一; 14.选择队员甲,理由:甲乙成绩的平均数相同,甲的成绩比乙的成绩稳定; 15.225︒;16.50.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式=323333-+-⨯………………………………………………4分 =523-.…………………………………………………………5分18.解:原式=2221227x x x x -+--+ ………………………………………2分 =248x x --+.……………………………………………………3分2410x x ++=∴241x x +=- .……………………………………………………… 4分∴原式=()248x x -++189.=+= ………………………………………………………5分 19. 解:去分母得:2(1)(21)1x x x x +--=-…………………………………1分 解得:2x =………………………………………………………………4分 经检验,2x =是原方程的解……………………………………………5分 ∴原方程的解为2x =20.证明:∵EF ⊥AC ,∴∠A +∠ADE =90°.∵∠ABC =90°,∴∠F +∠FDB =90°,∠DBF =90°∴∠A =∠F ………………………………1分在△ABC 和△FBD 中A FABC FBD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩D E A∴△ABC ≌△FBD ………………………………4分∴AB =BF .………………………………………5分 21.解:(1)∵12y x b =+与8y x =交于点P (2,m ),∴4m =,3b =.………………………………………………………2分(2)法一:由中心对称可知,四边形OA PM 是平行四边形 ∴OM ∥AP 且OM =AP∵一次函数12y x b =+的图象与y 轴交于点A (0,3)(2,4),(0,0)A P O ∴∴由平移规律可得点A 关于点B 对称点M 的坐标为(2,1).………5分 法二:∵一次函数12y x b =+的图象与y 轴交于点A ∴(0,3)A . ∵B 为OP 的中点∴(1,2)B .∴点A 关于点B 对称点M 的坐标为(2,1).………………5分22.解:如图建立坐标系………………………………………………………………1分设抛物线表达式为216y ax =+ …………………………………………………2分 由题意可知,B 的坐标为(20,0) ∴400160a += ∴125a =-∴211625y x =-+…………………………………………………………………4分 ∴当5x =时,15y =答:与CD 距离为5米的景观灯杆MN 的高度为15米.………………………5分23.(1)证明:由已知得BD //CE ,BD =CE . ∵CD 垂直平分AB ,∴AD =BD ,∠CDA =90°.∴AD //CE ,AD =CE .∴四边形ADCE 是平行四边形.…………………………………1分 ∴平行四边形ADCE 是矩形. …………………………………2分(2) 解:过D 作DF ⊥AC 于F ,xyNM DCB AOEC D BA在Rt △ADC 中,∠CDA =90°,∵CD =1,AD =2, 由勾股定理可得:AC =5.∵O 为AC 中点,∴OD =52. …………………………………3分 ∵AC DF AD DC ⋅=⋅,∴DF =255. ………………………4分 在Rt △ODF 中,∠OFD =90°,∴sin ∠COD =DF OD =45………5分 24.(1)1610,并补全图形; ……………………………………………………2分 (2)1.6; ………………………………………………………………………4分 (3)略.…………………………………………………………………………5分 25.(1)证明:连接OE 交DF 于G ,∵AC 切⊙O 于E ,∴∠CEO =90°. 又∵BD 为⊙O 的直径,∴∠DFC =∠DFB =90°.∵∠C =90°,∴四边形CEGF 为矩形.∴CE =GF ,∠EGF =90°…………………1分 ∴DF =2CE .………………………………2分(2)解:在Rt △ABC 中,∠C =90°,∵BC =3,4sin 5B =,∴AB =5.…………………………………3分设OE =x ,∵OE //BC ,∴△AOE ∽△ABC . ∴OE AO BC AB =,∴535x x -=,∴158x =.………………………4分 ∴BD =154. 在Rt △BDF 中,∠DFB =90°,∴BF =94…………………………5分 26.解:2DF AD CD =⋅………………………………………………………………1分解决问题:法一:过点A 作AM ⊥BC 于点M ,延长AD 到E ,使得DE =AM ,以AE 为直径作半圆,过点 D 作AE 垂线,交半圆于点F ,以DF 为边 作正方形DFGH ,正方形DFGH 即为所求.……………………………………………………………………………………5分GFO ED C A GHEF CDA法二:如图,过点A 作AM ⊥BC 于点M ,过点D 作DN ⊥BC 交BC 延长线于点N ,将平行四边形转化为等面积矩形,后同小骏的画法. ……………………………………………………………………………………5分 说明:画图2分,步骤2分.27.解:(1)∵1=a ,()12-=m b ,m m c 22-=∴()()0424144222>=---=-=∆m m m ac b ∴无论m 取任何实数时,方程总有两个不相等的实数根. ……2分(2)令,则()021222=-+-+m m x m x ()()02=-++m x m x∴m x -=或2+-=m x∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3) 0=b 或3-=b . …………………………………………………….. 7分28.(1)①补全图形,如图所示.…………………………………..1分②法一:证明:过F 作FH ⊥BG 于H ,连接EH ……..2分F EG D C B A DAG H E F D A由已知得AE ⊥EF ,AE =EF .在正方形ABCD 中,∵∠B =∠AEF =∠EHF =90°,∴∠AEB +∠FEC =90°∠AEB +∠BAE =90°∴∠BAE =∠HEF∴△ABE ≌△EHF .…………………………………………………..3分∴BE =FH ,AB =EH ,∵E 为BC 中点,∴BE =CE =CH =FH .∴∠DCF =∠HCF=45°. …………………………………………..4分法二证明:取线段AB 的中点H ,连接EH . …………………………………..2分由已知得AE ⊥EF ,AE =EF .∴∠AEB +∠FEC =90°.在正方形ABCD 中,∵∠B =90°,∴∠AEB +∠BAE =90°.∴∠FEC =∠BAE . ∵AB =BC ,E ,H 分别为AB ,BC 中点,∴AH=EC ,∴△ECF ≌△AHE .…………………………………………………..3分∴∠ECF =∠AHE =135°,∴∠DCF =∠ECF ∠ECD =45°.∴∠DCF =∠HCF .…………………………………………………..4分(2)证明:在BA 延长线上取一点H ,使BH =BE ,连接EH . …………..5分在正方形ABCD 中,∵AB =BC ,∴HA =CE . ∵∠B =90°,∴∠H =45°. ∵CM 平分∠DCG ,∠DCG =∠BCD =90°,∴∠MCE =∠H=45°.∵AD //BG ,∴∠DAE =∠AEC .∵∠AEM =∠HAD =90°, ∴∠HAE =∠CEM .∴△HAE ≌△CEM .………………………………………………. 6分∴AE =EM . ………………………………………………………. 7分H F E G D CB A HMA B C D GE9. (1)满足条件的点为)0,1(-D ,)2,2(-E ……………………………… 3分(2)当1=a 时,角的两边分别过点)(1,1-,)(1,1,此时坐标角度︒=90m ; 当3a =时,角的两边分别过点)(1,33-,)(1,33,此时坐标角度︒=60m ,所以︒≤≤︒9060m ;……………………………………………………… 6分(3)3233≤≤-r .…………………………………………………….8分。

北京海淀区2019中考二模试题及解析—数学

北京海淀区2019中考二模试题及解析—数学

北京海淀区2019中考二模试题及解析—数学数学2018.6下面各题均有四个选项,其中只有一个..是符合题意的、 1.-5的倒数是A 、15B 、15-C 、5-D 、52.2018年4月22日是第43个世界地球日,中国国土资源报社联合腾讯网发起“世界地球日”微话题,共有18891511人次参与了这次活动,将18891511用科学记数法表示〔保 留三个有效数字〕约为A.18.9⨯106B.0.189⨯108C.1.89⨯107D.18.8⨯1063.把2x 2−4x +2分解因式,结果正确的选项是A 、2(x −1)2B 、2x (x −2)C 、2(x 2−2x +1)D 、(2x −2)24.右图是由七个相同的小正方体堆砌而成的几何体, 那么这个几何体的俯视图是ABCD5、从1,-2,3这三个数中,随机抽取两个数相乘,积为正数的概率是A 、0B 、13C 、23D 、16.如图,在△ABC 中,∠C =90°,BC =3,D ,E 分别在AB 、AC 上,将△ADE 沿DE 翻折后,点A 落在点A ′处,假设A ′为CE 的中点,那么折痕DE 的长为8、如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB =DC =2,AD =1, R 、P 分别是BC 、CD 边上的动点〔点R 、B 不重合,点P 、C 不重合〕,E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,那么以下 F E PBCD A图象中,能表示y与x的函数关系的图象大致是ABCD【二】填空题〔此题共16分,每题4分〕9.假设二次根式23-x有意义,那么x的取值范围是.10、假设一个多边形的内角和等于540︒11.如图,在平面直角坐标系xOy中,点A、B、C在双曲线xy6=上,BD⊥x轴于D,CE⊥y轴于E,点F在x轴上,且AO=AF,那么图中阴影部分的面积之和为.12的颗数与所得分数的对应关系如下表所示:按表中规律,当所得分数为71分时,那么挪动的珠子数为颗;当挪动颗珠子时〔n为大于1的整数〕,所得分数为〔用含n的代数式表示〕∵点A(2,0-)在一次函数图象上,∴022k=-+.∴k=1.……………………………………………………2分∴一次函数的解析式为2y x=+.…………………………………3分〔2〕ABC∠的度数为15︒或105︒、〔每解各1分〕……………………5分18、解:∵∠ADB=∠CBD=90︒,∴DE∥CB.∵BE∥CD,∴四边形BEDC是平行四边形.………1分∴BC=DE.在Rt△ABD中,由勾股定理得8AD===.………2分设DE x=,那么8EA x=-、∴8EB EA x==-、在Rt△BDE中,由勾股定理得222DE BD EB+=.∴22248x x+=-()、……………………………………………………3分∴3x=、∴3BC DE==、……………………………………………………4分xDECBA∴1116622.22ABD BDCABCD S S S BD AD BD BC ∆∆=+=⋅+⋅=+=四边形…………5分 【四】解答题〔此题共20分,第19题、第20题各5分,第21题6分,第22题4分〕 19、解:〔1〕甲图文社收费s 〔元〕与印制数t 〔张〕的函数关系式为0.11s t =.……1分〔2〕设在甲、乙两家图文社各印制了x 张、y 张宣传单,依题意得{1500,0.110.13179.x y x y +=+=…………………………………………2分 解得800,700.x y =⎧⎨=⎩………………………………………………3分答:在甲、乙两家图文社各印制了800张、700张宣传单.………………4分〔3〕乙.………………………………………………………5分20.〔1〕证明:连结OC .∴∠DOC =2∠A .…………1分 ∵∠D =90°2A -∠, ∴∠D +∠DOC =90° ∴∠OCD =90°.∵OC 是⊙O 的半径,∴直线CD 是⊙O 的切线.……………………………………………2分 〔2〕解:过点O 作OE ⊥BC 于E ,那么∠OEC =90︒.∵BC =4, ∴CE =12BC =2.∵BC //AO ,∴∠OCE =∠DOC .∵∠COE +∠OCE =90︒,∠D +∠DOC =90︒,∴∠COE =∠D .……………………………………………………3分 ∵tan D =12,∴tan COE ∠=12.∵∠OEC =90︒,CE =2, ∴4tan CEOE COE==∠. 在Rt △OEC 中,由勾股定理可得OC ==在Rt △ODC 中,由1tan 2OC D CD ==,得CD =,……………………4分由勾股定理可得10.OD =∴10.AD OA OD OC OD =+=+=…………………………………5分21、解:〔1〕(64)50%20+÷=.所以李老师一共调查了20名学生.…………………1分 〔2〕C 类女生有3名,D 类男生有1名;补充条形统计图略.说明:其中每空1分,条形统计图1分.……………………………………4分 〔3〕解法一:由题意画树形图如下:………………………5分从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种. 所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=.………………6分 解法二:由题意列表如下:………………………5分由上表得出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选 两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P (所选两位同学恰好是一位男同学和一位女同学)=3162=.………………6分 22.解:〔1〕画图如下:(答案不唯一)…………………………………2分〔2〕图3中△FGH 7a 4分【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕 23.解:〔1〕∵抛物线2(1)(2)1y m x m x =-+--与x 轴交于A 、B 两点,∴210,(2)4(1)0.m m m ì-?ïïíïD =-+->ïî 由①得1m ¹,① ②…………………………………………1分由②得0m ¹,∴m 的取值范围是0m ¹且1m ¹、……………………………………………2分 〔2〕∵点A 、B 是抛物线2(1)(2)1y m x m x =-+--与x 轴的交点,∴令0y =,即2(1)(2)10m x m x -+--=、 解得11x =-,211x m =-、 ∵1m >, ∴10 1.1m >>-- ∵点A 在点B 左侧,∴点A 的坐标为(1,0)-,点B 的坐标为1(,0)1m -.…………………………3分 ∴OA=1,OB =11m -、∵OA :OB =1:3, ∴131m =-.∴43m =、 ∴抛物线的解析式为212133y x x =--、………………………………………4分 〔3〕∵点C 是抛物线212133y x x =--与y 轴的交点, ∴点C 的坐标为(0,1)-. 依题意翻折后的图象如下图、 令7y =,即2121733x x --=、 解得16x =,24x =-、∴新图象经过点D (6,7) 当直线13y x b =+经过D 点时,可得5b =. 当直线13y x b =+经过C 点时,可得1b =-、当直线1(1)3y x b b =+<-与函数2121(33y x x x =-->的图象仅有一个公共点P (x 0,y 0)时,得20001121333x b x x +=--. 整理得2003330.x x b ---= 由2(3)4(33)12210b b D =----=+=,得74b =-、 结合图象可知,符合题意的b 的取值范围为15b -<≤或74b <-、……………7分 说明:15b -<≤〔2分〕,每边不等式正确各1分;74b <-〔1分〕24.解:〔1〕∵22222221212112()()4422y x x x mx m m x m mm m m m =-=-+-⋅=--,∴抛物线的顶点B 的坐标为11(,)22m m -.……………………………1分〔2〕令2220x x m -=,解得10x =,2x m =.∵抛物线xx my 222-=与x 轴负半轴交于点A , ∴A (m ,0),且m <0.…………………………………………………2分∴DF =1.2BC由抛物线的对称性得AC=OC . ∴AF :AO =3:4. ∵DF //EO ,∴△AFD ∽△AOE . ∴.FDAF OE AO= 由E (0,2),B 11(,)22m m -,得OE =2,DF =14m -.∴134.24m -= ∴m =-6.∴抛物线的解析式为2123y x x=--.………………………………………3分 〔3〕依题意,得A 〔-6,0〕、B (-3,3)、C (-3,0).可得直线OB 的解析式为x y -=,直线BC 为3x =-.作点C 关于直线BO 的对称点C '(0,3),连接AC '交BO 于M ,那么M 即为所求.由A 〔-6,0〕,C '(0,3),可得直线AC '的解析式为321+=x y . 由13,2y x y x⎧=+⎪⎨⎪=-⎩解得2,2.x y =-⎧⎨=⎩ ∴点M 的坐标为(-2,2).……………4分 由点P 在抛物线2123y x x =--上,设P (t ,213t -(ⅰ)当AM 为所求平行四边形的一边时.如右图,过M 作MG ⊥x 轴于G , 过P 1作P 1H ⊥BC 于H , 那么x G =x M =-2,x H =x B =-3.由四边形AMP 1Q 1为平行四边形, 可证△AMG ≌△P 1Q 1H . 可得P 1H =AG =4.∴t -(-3)=4. ∴t =1. ∴17(1,)3P -.……………………5分如右图,同 方法可得P 2H=AG =4. ∴-3-t =4. ∴t =-7. ∴27(7,)3P --.……………………6分(ⅱ)当AM 为所求平行四边形的对角线时, 如右图,过M 作MH ⊥BC 于H , 过P 3作P 3G ⊥x 轴于G , 那么x H =x B =-3,x G =3P x =t .由四边形AP 3MQ 3为平行四边形, 可证△AP 3G ≌△MQ 3H . 可得AG =MH =1. ∴t -(-6)=1. ∴t =-5. ∴35(5,)3P -.……………………………………………………7分 综上,点P 的坐标为17(1,)3P -、27(7,)3P --、35(5,)3P -. 25.解:〔1〕BN 与NE 的位置关系是BN ⊥NE ;CE BM=2.证明:如图,过点E 作EG ⊥AF 于G ,那么∠EGN =90°、∵矩形ABCD 中,AB =BC , ∴矩形ABCD 为正方形.∴AB=AD =CD ,∠A =∠ADC =∠DCB =90°、∴EG//CD ,∠EGN =∠A ,∠CDF =90°、………………………………1分 ∵E 为CF 的中点,EG//CD ,∴GF =DG =11.22DF CD = ∴1.2GE CD = ∵N 为MD (AD )的中点,321GFEA (M )CD NB∴AN =ND =11.22AD CD ∴GE =AN ,NG=ND+DG=ND+AN=AD=AB .……………………………2分∴△NGE ≌△BAN 、 ∴∠1=∠2.∵∠2+∠3=90°, ∴∠1+∠3=90°、 ∴∠BNE =90°.∴BN ⊥NE 、……………………………………………………………3分 ∵∠CDF =90°,CD =DF , 可得∠F =∠FCD =45°,CFCD=.于是12CFCE CE CE BM BA CD CD ====……………………………………4分 〔2〕在〔1〕中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H 、∵四边形ABCD 是矩形,∴AB ∥CG 、∴∠MBN =∠DGN ,∠BMN =∠GDN . ∵N 为MD 的中点,∴MN =DN 、∴△BMN ≌△GDN 、∴MB =DG ,BN =GN . ∵BN =NE , ∴BN =NE =GN .∴∠BEG =90°、………………5分 ∵EH ⊥CE , ∴∠CEH =90°、 ∴∠BEG =∠CEH 、 ∴∠BEC =∠GEH 、由〔1〕得∠DCF =45°、 ∴∠CHE =∠HCE =45°、 ∴EC=EH ,∠EHG =135°、∵∠ECB =∠DCB +∠HCE =135°, ∴∠ECB =∠EHG 、 ∴△ECB ≌△EHG 、 ∴EB =EG ,CB =HG 、 ∵BN =NG ,∴BN ⊥NE.…6分∵BM=DG=HG -HD=BC -HD=CD -CE ,HGA BC DEM N F∴.…7分BM.……8分〔3〕BN⊥NE;BM。

2019北京中考数学二模——22一次函数、反比例函数专题(12区)无答案

2019北京中考数学二模——22一次函数、反比例函数专题(12区)无答案

22.在平面直角坐标系xOy 中,直线2y kx =+与双曲线6y x=的一个交点是(,3)A m . (1)求m 和k 的值;(2)设点P 是双曲线6y x=上一点,直线AP 与x 轴交于点B .若=3AB PB ,结合图象,直接写出点P 的坐标.【2019西城二模】22. 在平面直角坐标系xOy 中,直线l :y =ax +b 与双曲线交于点A 1,m ()和B -2,-1().点A 关于x 轴的对称点为点C .(1)①求k 的值和点C 的坐标;②求直线l 的表达式;(2)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E .若30°£ÐCED £45°,直接写出点E 的横坐标t 的取值范围.y =kx23.如图,在平面直角坐标系xOy 中,直线y x b =+与x 轴、y 轴分别交于点A ,B ,与双曲线2y x =的交点为M ,N .(1)当点M 的横坐标为1时,求b 的值;(2)若3MN AB ≤,结合函数图象,直接写出b 的取值范围.【2019朝阳二模】23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点P (3,4). (1)求k 的值; (2)求OP 的长;(3)直线(0)y mx m =≠与反比例函数的图象有两个交点A ,B ,若AB >10,直接写出m 的取值范围.23. 在平面直角坐标系xOy 中,直线l :y = kx +b (k ≠0)与反比例函数4=y x的图象的一个交点为M (1, m ). (1)求m 的值;(2)直线l 与x 轴交于点A ,与y 轴交于点B ,连接OM . 设△AOB 的面积为S 1,△MOB 的面积为S 2,若S 1≥3 S 2,求k 的取值范围.【2019石景山二模】23.在平面直角坐标系xOy 中,A (-3,2),B (0,1),将线段AB 沿x 轴的正方向平移n (n >0)个单位,得到线段A B '',且点A B '',恰好都落在反比例函数()0my m x=≠的图象上.(1)用含n 的代数式表示点A B '',的坐标; (2)求n 的值和反比例函数my x=的表达式; (3)点C 为反比例函数()0my m x=≠图象上的一个动点,直线CA '与x 轴交于点 D ,若2CD A D '=,请直接写出点C 的坐标.22.如图,在平面直角坐标系xOy 中,一次函数y x b =-+的图象与反比例函数4y x=-的图象交于点A (4-,n )和B . (1)求b 的值和点B 的坐标;(2)如果P 是x 轴上一点,且AP = AB ,直接写出点P 的坐标.【2019房山二模】23. 在平面直角坐标系xOy 中,函数(0)ky x x=>的图象G 与直线l :7y x =-+交于 A (1,a ),B 两点.(1)求k 的值;(2)记图象G 在点A ,B 之间的部分与线段AB 围成的区域(不含边界)为W. 点P 在区域W内,若点P 的横纵坐标都为整数,直接写出点P 的坐标.23. 如图,在平面直角坐标系xOy 中,直线=+y kx k 与双曲线4=y x(x >0)交于点1)(,A a .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线=+y kx k ,点P (m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4=m 时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【2019平谷二模】23.如图,一次函数y=kx +b (k ≠0)和反比例函数()120y x x=>经过点A (4,m ) . (1)求点A 的坐标;(2)用等式表示k ,b 之间的关系(用含k 的代数式表示b );(3)连接OA ,一次函数y=kx +b (k ≠0)与x 轴交于点B ,当△OAB 是等腰三角形时,直接写出点B 的坐标.22. 如图,在平面直角坐标系xOy 中,直线y=-x+1与函数的图象交于A (-2,a ),B 两点.(1)求a ,k 的值;(2)已知点P (0,m ),过点P 作平行于x 轴的直线, 交函数的图象于点C(x 1,y 1),交直线 y=-x+1的图象于点D(x 2,y 2),若 ,结合函数图象,直接写出m 的取值范围.【2019昌平二模】22.如图,在平面直角坐标系xOy 中,函数ky x=(0x >)的图象与直线y =2x -2交于点为A (2,m ).(1)求k ,m 的值; (2)点B 为函数ky x=(0x >)的图象上的一点,直线AB 与y 轴交于点C ,当AC = 2AB 时,求点C 的坐标.xky =xky =21x x >。

北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)

北京四中2019-2020学年九年级中考综合练习二数学试题(含答案及解析)

北京四中2019-2020学年九年级中考综合练习二数学试题一、选择题1.若式子2x x +有意义,则x 的取值范围是( ) A. 0x ≠B. 2x ≥-且0x ≠C. 2x ≥-D. 0x ≥且2x ≠ 【答案】B【解析】【分析】根据二次根式有意义的条件和分式有意义的条件得到x+2≥0且x≠0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得x+2≥0且x≠0,所以x 的取值范围为x≥-2且x≠0.故选:B .【点睛】本题考查了二次根式有意义的条件:式子a 有意义的条件为a≥0.也考查了分式有意义的条件. 2.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( )A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:4 400 000 000=4.4×109,故选C .3.实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.4.下列各式中,从左边到右边的变形是因式分解的是( )A. ()ax ay a a x y ++=+B. 221()1x y xy xy x y --=--C. 22244(2)a ab b a b -+=-D. 22(2)(2)4x y x y x y +-=- 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、∵(1)ax ay a a x y ++=++,故A 错误;B 、应把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成几个整式积的形式,故C 正确;D 、是整式的乘法,故D 错误;故选:C .【点睛】本题考查了因式分解的定义,因式分解是将一个多项式化为几个整式积的形式,而整式乘法是将几个整式的积展开成一个多项式,它们是互逆的恒等变形.5.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A. 3B. 1C. ﹣1D. ﹣3【答案】D【解析】由11m n -=1利用分式的加减运算法则得出m-n=-mn ,代入原式=222m mn n m mn n--+-计算可得. 【详解】∵11m n-=1, ∴n m mn mn-=1, 则n m mn -=1, ∴mn=n-m ,即m-n=-mn ,则原式=()22m n mnm n mn ---+=22mn mn mn mn ---+=3mn mn-=-3, 故选D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用. 6.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如表:则当1x ≥时,y 的最小值是( )A. 2B. 1C. 12D. 0【答案】B【解析】【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【详解】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2, ∵1052a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得145a b c =⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为y=x 2-4x+5,∴其对称轴为直线x=42 22ba--=-=.∵x≥1,∴当x=2时,y最小=2420161 44ac ba--==.故选择:B.【点睛】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.7.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是()A. 12B. 14C. 16D. 18【答案】C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】 由抛物线的开口方向、对称轴位置、与y 轴的交点位置判断出a 、b 、c 与0的关系,进而判断①;根据抛物线对称轴为x =2b a-=1判断②;根据函数的最大值为:a+b+c 判断③;求出x =﹣1时,y <0,进而判断④;对ax 12+bx 1=ax 22+bx 2进行变形,求出a (x 1+x 2)+b =0,进而判断⑤.【详解】解:①抛物线开口方向向下,则a <0,抛物线对称轴位于y 轴右侧,则a 、b 异号,即b >0,抛物线与y 轴交于正半轴,则c >0,∴abc <0,故①错误;②∵抛物线对称轴为直线x =2b a-=1, ∴b =﹣2a ,即2a+b =0,故②正确;③∵抛物线对称轴为直线x =1,∴函数的最大值为:a+b+c ,∴当m≠1时,a+b+c >am 2+bm+c ,即a+b >am 2+bm ,故③错误;④∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b+c <0,故④错误;⑤∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=﹣b a,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的是②⑤,有2个.故选:B.【点睛】本题主要考查二次函数图象与系数之间的关系,解题的关键是会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题9.当m= 时,方程133x mx x-=--无解.【答案】2.【解析】【分析】按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x只能使最简公分母为0 的值,从而求出m.【详解】解:原方程化为整式方程得:x-1=m因为方程无解所以:x-3=0∴x=3当x=3时,m=3-1=2.考点:分式方程的解.10.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.11.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.12.如图,在平面直角坐标系中,菱形ABCD的顶点A、B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为_____.【答案】5 【解析】【分析】连接AC分别交BD、x轴于点E、F.由菱形ABCD的面积为452,可求出AE的长,设点B的坐标为(4,y),则A点坐标为(1,y+154),由反比例函数图像上点的坐标特征可列方程求出y的值,从而可求出点B的坐标,进而可求出k的值.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3,∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD =4×12AE•BE=452,∴AE=154,设点B的坐标为(4,y),则A点坐标为(1,y+154)∵点A、B同在y=kx图象上∴4y=1•(y+154)∴y=54,∴B 点坐标为(4,54) ∴k =5故答案为5. 【点睛】本题考查了菱形的性质,反比例函数的图像与性质. 反比例函数k y x=(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .13.根据下列表格中2y ax bx c =++的自变量x 与函数值y 的对应值, x6.17 6.18 6.19 6.20 2y ax bx c =++0.03- 0.01- 0.02 0.04判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是________.【答案】6.18<x <6.19.【解析】【分析】利用二次函数和一元二次方程的性质.【详解】解:由表格中的数据看出-0.01和0.02更接近于0,故x 应取对应的范围.故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.14.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.【答案】3【解析】【分析】过A 作关于直线MN 的对称点A ′,连接A′B ,由轴对称的性质可知A′B 即为PA+PB 的最小值,【详解】解:连接OB ,OA′,AA′,∵AA ′关于直线MN 对称,∴''AN A N =∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O 作OQ ⊥A′B 于Q ,Rt △A′OQ 中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 15.某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为_________. 【答案】13【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x ,可得:0.51600800x x =++ ; 解得:x=2400,经检验:x=2400是原方程的解且符合实际意义∴由题意可得,捞到鲤鱼的概率为16001160024008003=++, 故答案为:13. 【点睛】本题考查了应用频率估计的概率应用,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:a .男生人数多于女生人数;b .女生人数多于教师人数;c .教师人数的2倍多于男生人数.①若教师人数为4,则女生人数的最大值为________ ②该小组人数的最小值为_______ 【答案】 (1). 6 (2). 12 【解析】 【分析】首先根据题意,设男生数,女生数,教师数分别为a b c 、、,然后根据条件列出a b c 、、的大小关系式,即可推断取值.【详解】设男生数,女生数,教师数分别为a b c 、、,则2,,,c a b c a b c N ∈>>> ①max 846a b b ⇒=>>>②min 3,635,412c a b a b a b c =⇒==⇒++=>>> 故答案为:6;12.【点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断.三、解答题17.计算:02021|3(4)2tan60(1)π-+--+-︒. 【答案】3- 【解析】 【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+- =3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.18.解不等式组:2+1-1{1+2x-13x x ≥>,并把不等式组的解集在数轴上表示出来.【答案】﹣1≤x<4 【解析】【分析】求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 【详解】解:解不等式①得:x≥-1; 解不等式②得:x <4.则不等式组的解集是:-1≤x <4.19.如图,正方形 ABCD 中, G 为 BC 边上一点, BE ⊥ AG 于 E , DF ⊥ AG 于 F ,连接 DE.(1)求证: ∆ABE ≅ ∆DAF ;(2)若 AF = 1,四边形 ABED 的面积为6 ,求 EF 的长. 【答案】(1)证明见详解;(2)2 【解析】 【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF ,即可根据AAS 证明△ABE ≌△DAF ; (2)设EF=x ,则AE=DF=x+1,根据四边形ABED 的面积为6,列出方程即可解决问题. 【详解】证明:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∵DF ⊥AG ,BE ⊥AG ,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°, ∴∠BAE=∠ADF , 在△ABE 和△DAF 中BAE ADF AEB DFA AB AD ∠∠∠∠⎧⎪⎨⎪⎩=== ,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,∵S四边形ABED=2S△ABE+S△DEF=6∴2×12×(x+1)×1+12×x×(x+1)=6,整理得:x2+3x-10=0,解得x=2或-5(舍弃),∴EF=2.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.20.已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.【答案】(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+16.∵方程有两个不相等的实数根,∴△>0.即﹣8m+16>0.解得m<2;(2)∵m<2,且m 为非负整数,∴m=0 或m=1,当m=0 时,原方程为x2-2x-3=0,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=0,解得 x 1=x 2=, 综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),则当售价x 定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.【答案】(1)y =﹣2x +200 (40≤x ≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x ≤80,理由见解析 【解析】 【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况. (3)求得W =1350时x 的值,再根据二次函数的性质求得W ≥1350时x 的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案. 【详解】(1)设y =kx +b ,将(50,100)、(60,80)代入,得:501006080k b k b +=⎧⎨+=⎩, 解得:k 2b 200=-⎧⎨=⎩,∴y=﹣2x+200 (40≤x≤80);(2)W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,W取得最大值为1800,答:售价为70元时获得最大利润,最大利润是1800元.(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,解得:x=55或x=85,∵该抛物线的开口向下,所以当55≤x≤85时,W≥1350,又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,∴该商品每千克售价的取值范围是55≤x≤80.【点睛】考查二次函数的应用,解题关键是明确题意,列出相应的函数解析式,再利用二次函数的性质和二次函数的顶点式解答.22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率m n(结果保留小数点后两位)0.68 0.74 0.68 0.69 0.68 0.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36 【解析】 【分析】(1)利用频率估计概率求解;(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360n +4000×0.5(1-360n)=3000,然后解方程即可.【详解】(1)转动该转盘一次,获得铅笔的概率约为0.7; 故答案为 0.7(2)4000×0.5×0.7+4000×3×0.3=5000,所以该商场每天大致需要支出的奖品费用为5000元; (3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度, 则4000×3×360n +4000×0.5(1﹣360n)=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度. 故答案为36.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.23.如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x >0)交于点1)(,Aa .(1)求a ,k 的值;(2)已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P (m ,n )(m >3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x >0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.【答案】(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤. 【解析】 【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】解:(1)将1)(,A a 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+ ∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点 ∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DFA=45,AN=210,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.【解析】【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45,AN=210,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O 直径的长度.【详解】解:(1)连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME ∥AC ,∴∠M=∠C=2∠OAF .∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF ,∠BAC=90°﹣∠C=90°﹣2∠OAF ,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC ,∴CA=CN . (2)连接OC ,如图2所示. ∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45.设CH=4a ,则AC=5a ,AH=3a ,∵CA=CN ,∴NH=a ,∴AN=2222=(3)=10210AH NH a a a ++=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点睛】本题考查切线的性质;勾股定理;圆周角定理;解直角三角形.25.如图,在Rt ABC 中ACB 90∠=,BC 4=,AC 3.=点P 从点B 出发,沿折线B C A --运动,当它到达点A 时停止,设点P 运动的路程为x.点Q 是射线CA 上一点,6CQ x=,连接BQ.设1CBQ y S =,2ABP y S=.()1求出1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2补全表格中1y 的值;x1 2 3 4 6 1y______________________________以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x 的取值范围内画出1y 的函数图象:()3在直角坐标系内直接画出2y 函数图象,结合1y 和2y 的函数图象,求出当12y y <时,x 的取值范围.【答案】(1)112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;(2)12,6,4,3,2,(3)22x 6<<,见解析. 【解析】 【分析】()1根据题意可以分别求得1y ,2y 与x 的函数关系式,并注明x 的取值范围; ()2根据()1中的函数解析式,可以将表格补充完整,并画出相应的函数图象;()3根据()1中2y 的函数解析式,可以画出2y 的函数图象,然后结合图象可以得到当12y y <时,x 的取值范围,注意可以先求出12y y =时x 的值. 【详解】()1由题意可得,164BC CQ 12x y 22x⨯⋅===, 当0x 4<≤时,2x 33xy 22⋅==, 当4x 7<≤时,()27x 4y 2x 142-⨯==-+,即112y (0x 7)x =<≤,23x(0x 4)y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩;()1122y (0x 7)x=<≤,∴当x 1=时,y 12=;当x 2=时,y 6=;当x 3=时,y 4=;当x 4=时,y 3=;当x 6=时,y 2=; 故答案为12,6,4,3,2;在x 的取值范围内画出1y 的函数图象如图所示;()23x (0x 4)3y 22x 14(4x 7)⎧<≤⎪=⎨⎪-+<≤⎩, 则2y 函数图象如图所示, 当123x x 2=时,得x 22=122x 14x=-+时,x 6=; 则由图象可得,当12y y <时,x 的取值范围是22x 6<<.【点睛】本题考查一次函数的图象、反比例函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.26.平面直角坐标系xOy 中,直线44y x =+与轴,y 轴分别交于点A ,B .抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标和抛物线的对称轴;(2)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【答案】(1)C (5,4);对称轴x=1;(2)a≥13或a <43-或a=-1. 【解析】【分析】(1)根据坐标轴上点的坐标特征可求点B 的坐标,根据平移的性质可求点C 的坐标;根据坐标轴上点的坐标特征可求点A 的坐标,进一步求得抛物线的对称轴;(2)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解【详解】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);又∵与x轴交点:令y=0代入直线y=4x+4得x=-1,∴A(-1,0),∵点B向右平移5个单位长度,得到点C,将点A(-1,0)代入抛物线y=ax2+bx-3a中得0=a-b-3a,即b=-2a,∴抛物线的对称轴x=21 22b aa a--=-=;(2)∵抛物线y=ax2+bx-3a经过点A(-1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a<4,a>43 -,将x=5代入抛物线得y=12a,∴12a≥4,a≥13,∴a≥13;②a<0时,如图2,将x=0代入抛物线得y=-3a,∵抛物线与线段BC恰有一个公共点,∴-3a>4,a<43 -,将x=5代入抛物线得y=12a,∴12a<4∴a<13,∴a<43 -;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a-2a-3a,解得a=-1.综上所述::a≥13或a<43-或a=-1.【点睛】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.27.在菱形ABCD 中,60BAD ∠=︒.(1)如图1,点E 为线段AB 的中点,连接DE ,CE .若4AB =,求线段EC 的长.(2)如图2,M 为线段AC 上一点(不与A ,C 重合),以AM 为边向上构造等边三角形AMN ∆,线段AN 与AD 交于点G ,连接NC ,DM ,Q 为线段NC 的中点.连接DQ ,MQ 判断DM 与DQ 的数量关系,并证明你的结论.(3)在(2)的条件下,若3AC =DM CN +的最小值.【答案】(1)EC=27(2)DM=2DQ ;(3)DM+CN 的最小值为2.【解析】【分析】(1)如图1,连接对角线BD ,先证明△ABD 是等边三角形,根据E 是AB 的中点,由等腰三角形三线合一得:DE ⊥AB ,利用勾股定理依次求DE 和EC 的长;(2)如图2,作辅助线,构建全等三角形,先证明△ADH 是等边三角形,再由△AMN 是等边三角形,得条件证明△ANH ≌△AMD (SAS ),则HN=DM ,根据DQ 是△CHN 的中位线,得HN=2DQ ,由等量代换可得结论.(3)先判断出点N 在CD 的延长线上时,CN+DM 最小,最小为CH ,再判断出∠ACD=30°,即可用三角函数求出结论.【详解】解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD 是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=12∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE=224223-=,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC=22224(23)27DC DE+=+=;(2)如图2,延长CD至H,使DH=CD,连接NH、AH,∵AD=CD ,∴AD=DH ,∵CD ∥AB ,∴∠HDA=∠BAD=60°,∴△ADH 是等边三角形,∴AH=AD ,∠HAD=60°,∵△AMN 是等边三角形,∴AM=AN ,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM ,∴∠HAN=∠DAM ,在△ANH 和△AMD 中,AH AD HAN DAM AN AM =⎧⎪∠=∠⎨⎪=⎩∴△ANH ≌△AMD (SAS ),∴HN=DM ,∵D 是CH 的中点,Q 是NC 的中点,∴DQ 是△CHN 的中位线,∴HN=2DQ ,∴DM=2DQ .(3)如图2,由(2)知,HN=DM ,∴要CN+DM 最小,便是CN+HN 最小,即:点C ,H ,N 在同一条线上时,CN+DM 最小,此时,点D 和点Q 重合,即:CN+DM 的最小值为CH ,如图3,由(2)知,△ADH 是等边三角形,∴∠H=60°.∵AC 是菱形ABCD 的对角线,∴∠ACD=12∠BCD=12∠BAD=30°, ∴∠CAH=180°-30°-60°=90°,在Rt △ACH 中,CH=cos30AC =2, ∴DM+CN 的最小值为2.【点睛】此题是四边形综合题,主要考查了菱形的性质、三角形的中位线、三角形全等的性质和判定、等边三角形的性质和判定,本题证明△ANH ≌△AMD 是关键,并与三角形中位线相结合,解决问题;第二问有难度,注意辅助线的构建.28.定义:点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如,如图1,正方形ABCD 满足1,0A ,()2,0B ,()2,1C ,()1,1D ,那么点()0,0O 到正方形ABCD 的距离为1.(1)如果点()0,G b ()0b <到抛物线2yx 的距离为3,请直接写出b 的值________. (2)求点()3,0M 到直线3y x 的距离.(3)如果点N 在直线2x =上运动,并且到直线4y x =+的距离为4,求N 的坐标.【答案】(1)b=-3;(2)()3,0M 到直线3y x 的距离为32;(3)(2, 6-42)或(2, 6+42)【解析】【分析】 (1)作草图可知,当G 在原点下方时,b=-3;(2)过点M 作直线y=x+3的垂线,与直线y=x+3相交于点H ,则线段MH 的长即为点M 到直线y=x+3的距离.由等腰直角三角形MH=22ME 求解即可;(3)分N 在直线y=x+4的上方和下方求解即可.【详解】解:(1)由图可知线段GO 长即为点G 到抛物线2y x 的距离,故GO=3,所以b=-3(2)如图,直线y=x+3与x ,y 轴分别交于点E(-3,0),F(0,3),直线y=x+3与x 轴所成的角为45°,过点M 作MH ⊥EF ,交EF 与H ,线段MH 的长度即为点M 到直线y=x+3的距离,且易知H 点与F 点重合.∵FEM ∆为等腰直角三角形,∴EM=2FM , 又∵EF=3-(-3)=6,∴MF=22EM=22×6=32 ∴MH=32即点()3,0M 到直线3yx 的距离为32;(3)如图K 为直线x=2与x 轴的交点,故K(2,0),F 为直线x=2和直线y=x+4的交点,故F(2,6)①当点N 在直线y=x+4的下方N 1处时,过点N 1作N 1S 垂直直线y=x+4,∵点N 到直线4y x =+距离为4,∴SN 1=4,点E 是直线y=x+4与x 轴的交点,∴E(-4,0),且∠FEK=45°,∴1,EFK SFN ∆∆为等腰直角三角形∴EK=FK=2-(-4)=6,F N 1=21S=42∴KN 1=FK- F N 1=6-42∴N 1(2, 6-42②当点N 在直线y=x+4的上方N 2处时,过点N 2作N 2T 垂直直线y=x+4,同理可得:N 2T=4,N 2F=2T=∴N 2K=KF+FN 2=6+∴N 2(2, 6+故点N 在直线2x =上运动,并且到直线4y x =+的距离为4,N 的坐标为(2, 6-或(2, 6+【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

2019年北京市门头沟区初三数学二模试题及详细解析

2019年北京市门头沟区初三数学二模试题及详细解析

2019年北京市门头沟区九年级第二学期综合练习(二)数学试卷及详细解析2019年5月一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013年12月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离,“玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972天,约23 000小时.将23 000用科学记数法表示为 A .2.3 × 103B .2.3 × 104C .23 × 103D .0.23 × 1052.在下面四个几何体中,俯视图是矩形的是A B C D3.在下列运算中,正确的是 A .235a a a ⋅=B .()325a a =C .623a a a ÷=D .55102a a a +=4.如果23a b -=222a b ab a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为 A 3 B .23 C .33 D .435.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七 巧板拼成的正方形,如果在此正方形中随机取一点, 那么此点取自黑色部分的概率为 A .932B .516C .38D .7166.已知点A (1,m )与点B (3,n )都在反比例函数ky x=(0k >)的图象上,那么m 与n 的关系是 A .m n <B .m n >C .m = nD .不能确定OABCDFEDCBA7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB = 30°,OD = 2,那么DC 的长等于 A .2 B .4 C 3D .238.团体购买某公园门票,票价如下表:购票人数 1 ~ 50 51 ~ 100 100以上 门票价格13元 / 人11元 / 人9元 / 人某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1 290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为 A .20B .35C .30D .40二、填空题(本题共16分,每小题2分) 9. 函数131y x =-的自变量x 的取值范围是 .10.写出一个比2大且比3小的无理数: .11.如图,在矩形ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB = 4,BC = 6,DE = 3,那么AF 的长为 .12.用一组a ,b ,c (0c ≠)的值说明命题“如果a b <,那么a bc c<”是错误的,这组值可以是a = ,b = ,c = .13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 .14.下图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(2-,3-),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为 .北第14题图 第15题图15.如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD 得到△AOB 的过程:. 16.当三角形中一个内角α是另一个内角β的一半时,我们称该三角形为“特征三角形”,其中α称为“特征角”三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:()054sin 451π-+︒+-.18.解不等式1211232x x --≤,并把它的解集在数轴上表示出来.–1–2–3–4123419.已知:关于x 的一元二次方程2420x x m -+=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.ba20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程.已知:如图1,线段a 和线段b .求作:△ABC ,使得AB = AC ,BC = a ,BC 边上的高为b . 作法:如图2,① 作射线BM ,并在射线BM 上截取BC = a ; ② 作线段BC 的垂直平分线PQ ,PQ 交BC 于D ; ③ 以D 为圆心,b 为半径作圆,交PQ 于A ; ④ 连接AB 和AC .则△ABC 就是所求作的图形. 根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明:证明:由作图可知BC = a ,AD = b .∵ PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴ AB = AC ( )(填依据). 又∵ AD 在线段BC 的垂直平分线PQ 上, ∴ AD ⊥BC .∴ AD 为BC 边上的高,且AD = b .21.如图,在□ABCD 中,点E 是BC 边的一点,将边AD 延长至点F ,使得AFC DEC ∠=∠,连接CF ,DE .(1)求证:四边形DECF 是平行四边形; (2)如果AB =13,DF =14,12tan 5DCB ∠=,求CF 的长. FEDCBA图1图222.如图,在平面直角坐标系xOy 中,一次函数y x b =-+的图象与反比例函数4y x=-的图象交于点A (4-,n )和B . (1)求b 的值和点B 的坐标;(2)如果P 是x 轴上一点,且AP = AB ,直接写出点P 的坐标.23.如图,点C 在⊙O 上,AB 为直径,BD 与过点C 的切线垂直于D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)如果1cos 2ABD ∠=,OA = 2,求DE 的长.B24.如图,E 为半圆O 直径AB 上一动点,C 为半圆上一定点,连接AC 和BC ,AD 平分∠CAB交BC 于点D ,连接CE 和DE .如果AB = 6 cm ,AC = 2.5 cm ,设A ,E 两点间的距离为x cm ,C ,E 两点间的距离为y 1 cm ,D ,E 两点间的距离为y 2 cm .EO小明根据学习函数经验,分别对函数y 1和y 2随自变量x 变化而变化的规律进行了探究. 下面是小明的探究过程,请将它补充完整:(1)按下表中自变量x 值进行取点、画图、测量,得到了y 1和y 2与x 几组对应值:问题:上表中的m = cm ;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 2)和(x ,y 1),并画出函数y 1和y 2的图象;(3)结合函数的图象,解决问题:当△ACE 为等腰三角形时,AE 的长度约为 cm(结果精确到0.01).25.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a. 关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):频数(发言人数)Array次数 / 次b. 关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)表中m的值为;(2)在此次采访中,参会教师更感兴趣的问题是(填“面向未来的教育”或“家庭教育”),理由是;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有位.26.在平面直角坐标系xOy 中,抛物线223y ax ax a =--(0a ¹)顶点为P ,且该抛物线与x轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线223y ax ax a =--顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线223y ax ax a =--经过(1, 3).① 求a 的值;② 在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线223y ax ax a =--在“G 区域”内有4个整点,直接写出a 的取值范围.27.如图,在等边三角形ABC 中,点D 为BC 边上的一点,点D 关于直线AB 的对称点为点E ,连接AD 、DE ,在AD 上取点F ,使得∠EFD = 60°,射线EF 与AC 交于点G . (1)设∠BAD = α,求∠AGE 的度数(用含α的代数式表示); (2)用等式表示线段CG 与BD 之间的数量关系,并证明.AB CD EFG28.对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q 两点间距离的最大值为d max ,P ,Q 两点间距离的最小值为d min ,我们把d max + d min 的值叫点P 和图形N 间的“和距离”,记作(),d P N 图形. (1)如图,正方形ABCD 的中心为点O ,A (3,3).① 点O 到线段AB 的“和距离”(),d O AB =线段 ;② 设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(),7d P ABCD =正方形, 求点P 的坐标.x图1(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(),6d M AC <+线段M 点横坐标t 取值范围.x图22019年北京市门头沟区九年级第二第二学期综合练习(二)参考答案及评分标准2019年5月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin45 1.π-+︒+-141=+ (3)分2=+…………………………………………………………………………………………5分18.(本小题满分5分)解:1211232x x--≤3643x x≤--……………………………………………………………………………………1分3463x x≤--……………………………………………………………………………………2分3x≤-…………………………………………………………………………………………3分3.x≥-………………………………………………………………………………………4分把它的解集在数轴上表示为:–1–2–3–41234……………………………………………5分19.(本小题满分5分)解:(1)由题意得2(4)4120m>∆=-+⨯⨯,………………………………………………………1分H FEDCB A解得2.m < ………………………………………………………………………………… 2分(2)∵ m 为非负整数,∴0,1.m = ………………………………………………………………………………… 3分当0m =时,原方程为240x x -=, 解得 10x =,2 4.x =当1m =时,原方程为2420x x -+=, 解得此方程的根不是整数, ∴ 1m =应舍去.∴0.m =……………………………………………………………………………………… 5分 20.(本小题满分5分) 解:(1)尺规作图正确;………………………………………………………………………………… 3分 (2)填空正确. (5)分21.(本小题满分5分)(1)证明:∵ 四边形ABCD 是平行四边形, ∴ A D ∥B C .……………………………………………………………………………… 1分∴ ∠ADE =∠DEC . ∵ ∠AFC =∠DEC , ∴ ∠AFC =∠ADE , ∴ DE ∥FC .∴ 四边形D E C F 是平行四边形.………………………………………………………… 2分 (2)解:如图,过点D 作DH ⊥BC 于点H , ……………………………………………………… 3分∵ 四边形ABCD 是平行四边形, ∴ AB=CD =13∵ 12tan 5BCD ∠=,CD =13, ∴ DH =12,CH =5.………………… 4分 ∵ DF =14, ∴ CE =14. ∴ EH =9.∴ DE.∴CF=DE =15.………………………………………………………………………………… 5分 22.(本小题满分5分)BB 解:(1)把A (-4,n )代入4y x=-中,得1n =,………………………………………………… 1分把A (-4,1)代入y x b =-+中,得3b =- ……………………………………………2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩ ∴ 点B 的坐标是(1,4)- ………………………………………………………………… 3分(2)点P 的是坐标(3,0)或(11,0)-. ………………………………………………………… 5分23.(本小题满分6分) (1)证明:连接OC ,∵ DC 是⊙O 的切线, ∴ DC ⊥OC .…………………… 1分 又∵ DC ⊥BD , ∴ OC ∥BD .∴ ∠1=∠3. ……………………………………………………………………………… 2分∵ OC =OB , ∴ ∠1=∠2. ∴ ∠2=∠3.∴ B C 平分∠D B A ;……………………………………………………………………… 3分 (2)解:连接AE 和AC ,∵ AB 是⊙O 的直径,DC ⊥BD ,∴ ∠ACB =∠AEB =∠CDB =90°. ∵ 1cos 2ABD ∠=,OA = 2,BC 平分∠DBA , ∴ ∠ABD =60°,∠2=∠3=30°,AB =4. 在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴ BC =在Rt △CDB 中,∠CDB =90°,BC =,∠3=30°, ∴ BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°, ∴ BE =2.∴DE =1. ……………………………………………………………………………………… 6分24.(本小题满分6分)解:(1)3.00; (1)分(2)略;…………………………………………………………………………………………… 3分(3)2.5,2.,3.00. …………………………………………………………………………… 6分25.(本小题满分6分)解:(1)11; (2)分 (2)略;…………………………………………………………………………………………… 4分(3)200 . ………………………………………………………………………………………… 6分26.(本小题满分6分)解:(1)∵()222314y ax ax a a x a =--=--,……………………………………………………… 1分∴ 该抛物线的顶点为()1,4.a - ……………………………………………………………… 2分(2)① ∵ 抛物线223y ax ax a =--经过(1, 3),∴323a a a =--,解得3.4a =- (3)分 ②6个. ……………………………………………………………………………………… 4分(3)2132a --≤<,12.23a <≤ …………………………………………………………………… 6分27.(本小题满分7分)解:(1)∵ △ABC 是等边三角形,∴∠BAC=60°. ……………………………………………………………………………… 1分∵ ∠BAD = α, ∴∠D A C=∠B A C-∠B A D=60°-α. (2)分又∵ ∠AFG = ∠EFD = 60°,∴ ∠A G E =180°-∠D A C -∠A F G = 60°+MHA B CD E F Gxα. ……………………………………………… 3分 (2)线段C G 与B D 之间的数量关系是C G=2B D . (4)分证明如下:在AC 上截取CH =BD ,交AC 于H ,连接BE ,BH ,AE , BH 交AD 于M . ∵ D ,E 关于AB 对称,∴ ∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴ BD = BE ,AD = AE .∴ ∠EAC =∠BAE +∠BAC =60°+α. ∴ ∠EAC =∠AGE . ∴ EA = EG .∵ 等边△ABC 中,AB = BC ,∠ABD =∠C = 60°. ∴ △A B D ≌△B CH (S A S ). (5)分∴ AD =BH ,∠HBC = ∠DAB = α. ∴ EG = BH .∴ ∠ABM =∠ABC -∠HBC = 60°-α. ∴ ∠BMD =∠ABM +∠BAD = 60°. ∴ ∠BMD =∠EFD = 60°. ∴ EG // BH . ∴ 四边形E G H B 是平行四边形. (6)分∴ BE = GH .∴ BE = GH = CH = BD . ∴ C G = G H + C H= 2B D . ……………………………………………………… 7分28.(本小题满分7分)解:(1)①3② 如图,设P (0,t ). ∵ 点P 在线段EF 上, ∴ -3≤t ≤3 .当0≤t ≤3时,由题意可知d max =PC ,d min =PE . ∴ PE = 3-t ,PF = t +3,CF =3. ∵(),7d P ABCD =正方形, ∴ PC + PE =7. ∴ PC = 4+ t .在Rt △PCF 中,由勾股定理得 ()()222433t t +=++, 解得1.t =………………………………………………………………………………… 4分∴ P (0,1).当0>t≥-3时,由对称性可知P(0,-1).综上,P的坐标为(0,1)和(0,-1). ………………………………………………5分(2)-<<…………………………………………………………………………………7分3 3.t说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

2019年北京中考数学二模试卷 解析版

2019年北京中考数学二模试卷  解析版

2019年北京十一中分校中考数学二模试卷一.选择题1.(3分)十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013 2.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π5.(3分)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P 的距离为()A.40海里B.60海里C.70海里D.80海里6.(3分)某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元7.(3分)一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.B.C.D.8.(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°9.(3分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm 之间的人数有()A.12B.48C.72D.9610.(3分)若正整数按如图所示的规律排列,则第8行第5列的数字是()A.64B.56C.58D.60二、填空题11.(3分)计算:(﹣3)2+(﹣4)0=.12.(3分)分解因式:2x2﹣2=.13.(3分)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是.14.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”)15.(3分)如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°,则线段CQ的取值范围是.16.(3分)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题17.在下面16x8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:(1)△ABC的中心对称图形,A点为对称中心;(2)△ABC关于点P的位似△A′B′C′,且位似比为1:2;(3)以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D.18.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?19.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?20.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.21.如图,在平面直角坐标系xOy中,点A(,2),B(3,n),在反比例函数y=(m 为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点D(1,0),过点C作CE∥x轴交直线l于点E.(1)求m的值,并求直线l对应的函数解析式;(2)求点E的坐标;(3)过点B作射线BN∥x轴,与AE的交于点M(补全图形),求证:tan∠ABN=tan ∠CBN.22.如图,在正方形ABCD中,点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),且AB∥y轴,AD∥x轴.点P是抛物线y=x2+2x上一点,过点P作PE⊥x轴于点E,PF⊥y轴于点F.(1)直接写出点B的坐标;(2)若点P在第二象限,当四边形PEOF是正方形时,求正方形PEOF的边长;(3)以点E为顶点的抛物线y=ax2+bx+c(a≠0)经过点F,当点P在正方形ABCD内部(不包含边)时,求a的取值范围.23.阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是;(2)当图③中的∠BCD=120°时,∠AEB′=°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.2019年北京十一中分校中考数学二模试卷参考答案与试题解析一.选择题1.(3分)十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3.(3分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为()A.πB.πC.πD.π【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.【点评】此题主要考查了弧长公式应用以及圆周角定理,正确得出∠BOC的度数是解题关键.5.(3分)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.6.(3分)某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元【分析】直接利用2月份比1月份减少了10%,表示出2月份产值.【解答】解:∵1月份产值x亿元,2月份的产值比1月份减少了10%,∴2月份产值达到(1﹣10%)x亿元.故选:A.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.7.(3分)一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A .B .C .D .【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于6的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率==.故选:A .【点评】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.8.(3分)如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE =32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°【分析】由折叠可得,∠DGH =∠DGE =74°,再根据AD ∥BC ,即可得到∠GHC =180°﹣∠DGH =106°.【解答】解:∵∠AGE =32°,∴∠DGE =148°,由折叠可得,∠DGH =∠DGE =74°,∵AD ∥BC ,∴∠GHC =180°﹣∠DGH =106°,故选:D .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.(3分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm 之间的人数有()A.12B.48C.72D.96【分析】根据直方图求出身高在169.5cm~174.5cm之间的人数的百分比,然后乘以300,计算即可.【解答】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:×100%=24%,所以,该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题10.(3分)若正整数按如图所示的规律排列,则第8行第5列的数字是()A.64B.56C.58D.60【分析】观察数据的排列规律得到每一行的第一列的数字为行数的平方,每列的数从第一列开始依次减小1,据此可得.【解答】解:由题意可得每行的第一列数字为行数的平方,所以第8行第1列的数字为82=64,则第8行第5列的数字是64﹣5+1=60,故选:D.【点评】此题考查数字的变化规律,找出数字之间的排列规律,利用规律解决问题.二、填空题11.(3分)计算:(﹣3)2+(﹣4)0=10.【分析】直接利用有理数的乘方运算法则以及零指数幂的性质化简得出答案.【解答】解:原式=9+1=10.故答案为:10.【点评】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确化简各数是解题关键.12.(3分)分解因式:2x2﹣2=2(x+1)(x﹣1).【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.(3分)已知x=3是关于x的不等式3x﹣的解,则a的取值范围是a<4.【分析】将x=3代入不等式,再求a的取值范围.【解答】解:∵x=3是关于x的不等式3x﹣的解,∴9﹣>2,解得a<4.故a的取值范围是a<4.故答案为:a<4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,根据不等式的解的定义得出9﹣>2是解题的关键.14.(3分)已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1>y2(填“>”或“=”或“<”)【分析】由反比例函数系数小于0,可得出该反比例函数在第二象限单增,结合m﹣1、m﹣3之间的大小关系即可得出结论.【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是找出函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质找出其单调性是关键.15.(3分)如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°,则线段CQ的取值范围是≤CQ<12.【分析】根据直径所对的圆周角是直角,则分析以CQ为直径的圆和斜边AB的公共点的情况:一是半圆和AB相切;二是半圆和AB相交.首先求得相切时CQ的值,即可进一步求得相交时CQ的范围.【解答】解:∵Rt△ABC中,AC=5,BC=12,∠ACB=90°,∴AB=13,①当半圆O与AB相切时,如图,连接OP,则OP⊥AB,且AC=AP=5,∴PB=AB﹣AP=13﹣5=8;设CO=x,则OP=x,OB=12﹣x;在Rt△OPB中,OB2=OP2+OB2,即(12﹣x)2=x2+82,解之得x=,∴CQ=2x=;即当CQ=且点P运动到切点的位置时,△CPQ为直角三角形.②当<CQ<12时,半圆O与直线AB有两个交点,当点P运动到这两个交点的位置时,△CPQ为直角三角形③当0<CQ<时,半圆O与直线AB相离,即点P在AB边上运动时,均在半圆O外,∠CPQ<90°,此时△CPQ不可能为直角三角形.∴当≤CQ<12时,△CPQ可能为直角三角形.故答案为:≤CQ<12.【点评】综合运用了直角三角形的性质、圆周角定理的推论以及切线的性质和勾股定理进行计算.16.(3分)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题17.在下面16x8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:(1)△ABC的中心对称图形,A点为对称中心;(2)△ABC关于点P的位似△A′B′C′,且位似比为1:2;(3)以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D.【分析】(1)由A为对称中心,故A点不动,连接BA并延长,使AD=AB,连接CA 并延长,使AE=AC,连接ED,三角形AED为三角形ABC关于A中心对称的图形,如图所示;(2)连接AP并延长,使A′P=2AP,连接BP并延长,使B′P=2BP,连接CP并延长,使C′P=2CP,连接A′B′,A′C′,B′C′,△A′B′C′为所求作的三角形;(3)满足题意的D点有3个,分别是以AB为对角线作出的平行四边形ACBD1,以AC 为对角线的平行四边形ABCD2,以BC为对角线的平行四边形ABD3C,如图所示.【解答】解:(1)如图所示:△AED为所求作的三角形;(2)如图所示:△A′B′C′为所求作的三角形;(3)如图所示:D1,D2,D3为所求作的点.【点评】此题考查了作图﹣位似变换及旋转变换,以及平行四边形的判定与性质,其中画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形,同时第三问满足题意的点D的位置有3处,注意找全.18.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?【分析】(1)根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,得出等式进而求出即可;(2)根据(1)中所求即可得出怎样购买合算;(3)首先假设进价为y,则可得出(300+3500×0.8)﹣y=25%y进而求出即可.【解答】(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.【点评】此题主要考查了一元一次方程的应用,正确得出买卡后付费等式是解题关键.19.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?【分析】(1)设经过x秒,使△PBQ的面积等于8cm2,根据等量关系:△PBQ的面积等于8cm2,列出方程求解即可;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,根据面积之间的等量关系和判别式即可求解;(3)分三种情况:①点P在线段AB上,点Q在线段CB上(0<x<4);②点P在线段AB上,点Q在射线CB上(4<x<6);③点P在射线AB上,点Q在射线CB上(x >6);进行讨论即可求解.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,n2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意分类思想的运用.20.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是20,女生收看“两会”新闻次数的中位数是3;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.【分析】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.【解答】解:(1)20,3;(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则,解得:x=25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为,女生收看“两会”新闻次数的方差为:因为2>,所以男生比女生的波动幅度大.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.21.如图,在平面直角坐标系xOy中,点A(,2),B(3,n),在反比例函数y=(m 为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点D(1,0),过点C作CE∥x轴交直线l于点E.(1)求m的值,并求直线l对应的函数解析式;(2)求点E的坐标;(3)过点B作射线BN∥x轴,与AE的交于点M(补全图形),求证:tan∠ABN=tan ∠CBN.【分析】(1)将点A(,2)代入y=求出m的值,再将A(,2),D(1,0)分别代入y=kx+b,求出k、b的值;(2)由反比例函数图象的中心对称性可知点C的坐标为C(﹣,﹣2),由y E=y C求出E点坐标.(3)作AF⊥BN于点G,与射线BN交于点G,作CH⊥BN于点H,由于点B(3,n)在反比例函数图象上,求出n=,在Rt△ABG中、Rt△BCH中,求出tan∠ABH和tan ∠CBH的值即可.【解答】解:(1)∵点A(,2)在反比例函数y=(m为常数)的图象上,∴m=×2=1.∴反比例函数y=(m为常数)对应的函数表达式是y=.设直线l对应的函数表达式为y=kx+b(k,b为常数,k≠0).∵直线l经过点A(,2),D(1,0),∴,解得,∴直线l对应的函数表达式为y=﹣4x+4.(2)由反比例函数图象的中心对称性可知点C的坐标为C(﹣,﹣2).∵CE∥x轴交直线l于点E,∴y E=y C.∴点E的坐标为E(,﹣2).(3)如图,作AF⊥BN于点G,与射线BN交于点G,作CH⊥BN于点H,∵点B(3,n)在反比例函数图象上,∴n=,∴B(3,),G(,),H(﹣,).在Rt△ABG中,tan∠ABH===,在Rt△BCH中,tan∠CBH===,∴tan∠ABN=tan∠CBN.【点评】本题考查了反比例函数综合题,涉及待定系数法求函数解析式、反比例函数的性质、三角函数的定义等知识,值得关注.22.如图,在正方形ABCD中,点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),且AB∥y轴,AD∥x轴.点P是抛物线y=x2+2x上一点,过点P作PE⊥x轴于点E,PF⊥y轴于点F.(1)直接写出点B的坐标;(2)若点P在第二象限,当四边形PEOF是正方形时,求正方形PEOF的边长;(3)以点E为顶点的抛物线y=ax2+bx+c(a≠0)经过点F,当点P在正方形ABCD内部(不包含边)时,求a的取值范围.【分析】(1)先利用A点和D点坐标得到正方形ABCD的边长为4,然后写出B点坐标;(2)设点P(x,x2+2x),利用正方形的性质得到PE=PF,即x2+2x=﹣x,然后解方程求出x即可得到正方形PEOF的边长;(3)设P(m,m2+2m)(m≠0),则E(m,0),F(0,m2+2m),利用顶点式表示以E为顶点的抛物线解析式为y=a(x﹣m)2,再把F(0,m2+2m)代入得m=,接着求出抛物线y=x2+2x与BC的交点坐标为(1,3),则利用点P在正方形ABCD内部(不包含边)得到﹣1<m<1且m≠0,然后分别解﹣1<<0和0<<1即可.【解答】解:(1)∵点A的坐标为(3,﹣1),点D的坐标为(﹣1,﹣1),∴正方形ABCD的边长为4,∴B(3,3);(2)设点P(x,x2+2x),∵四边形PEOF是正方形,∴PE=PF,即x2+2x=﹣x,解得x1=0,x2=﹣3,∴P(﹣3,3),∴正方形PEOF的边长为3;(3)设P(m,m2+2m)(m≠0),则E(m,0),F(0,m2+2m),以E为顶点的抛物线解析式为y=a(x﹣m)2,把F(0,m2+2m)代入得a(0﹣m)2=m2+2m,解得m=,当y=3时,x2+2x=3,解得x1=﹣3,x2=1,抛物线y=x2+2x与BC的交点坐标为(1,3),∵点P在正方形ABCD内部(不包含边),∴﹣1<m<1且m≠0,当﹣1<m<0时,﹣1<<0,解得a<﹣1;当0<m<1时,0<<1,解得a>3,综上所述,a的取值范围为a<﹣1或a>3.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和正方形的性质;会利用待定系数法求函数解析式,会解不等式;理解坐标与图形性质.23.阅读理解:如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;(2)当图③中的∠BCD=120°时,∠AEB′=80°;(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个(包含四边形ABCD).拓展提升:当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.【分析】(1)由平行四边形、矩形、菱形、正方形的性质和“完美筝形”的定义容易得出结论;(2)先证出∠AEB′=∠BCB′,再求出∠BCE=∠ECF=40°,即可得出结果;(3)由折叠的性质得出BE=B′E,BC=B′C,∠B=∠CB′E=90°,CD=CD′,FD=FD′,∠D=∠CD′F=90°,即可得出四边形EBCB′、四边形FDCD′是“完美筝形”;由题意得出∠OD′E=∠OB′F=90°,CD′=CB′,由菱形的性质得出AE=AF,CE =CF,再证明△OED′≌△OFB′,得出OD′=OB′,OE=OF,证出∠AEB′=∠AFD′=90°,即可得出四边形CD′OB′、四边形AEOF是“完美筝形”;即可得出结论;当图③中的∠BCD=90°时,四边形ABCD是正方形,证明A、E、B′、F四点共圆,得出,由圆周角定理即可得出∠AB′E的度数.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C≠90°,∠B=∠D≠90°,∴AB≠AD,BC≠CD,∴平行四边形不一定为“完美筝形”;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例综合题
2018昌平二模
22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数
k
y k x
=≠(0)的图象交于点A (4,1)和B (1-,n ).
(1)求n 的值和直线+y ax b =的表达式;
(2)根据这两个函数的图象,直接写出不等式0k
ax b x
+-<的解集.
2018朝阳二模
21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2
>=x x
k y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;
(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2
>=x x
k y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.
x
2018东城二模 22. 已知函数1
y x
=
的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;
(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.
2018房山二模
22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2
y x
=-相交于 点A (m ,2).
(1)求直线y kx m =+的表达式; (2)直线y kx m =+与双曲线2
y x
=-
的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标 .
2018丰台二模
22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数k
y x
=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.
2018海淀二模
22.已知直线l 过点(2,2)P ,且与函数(0)
k
y x x
=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为
矩形,且矩形OFBM 的面积为3. (1)求k 的值;
(2)当点B 的横坐标为3时,求直线l 的解析式及线
段BC 的长;
(3)如图是小芳同学对线段,AD BC 的长度关系的思
考示意图.
记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填
“增大”、“减小”或“不变”)
2018平谷二模
21.如图,在平面直角坐标系xOy 中,函数()0k
y k x
=≠的图象与直线y =x -2交于 点A (a ,1). (1)求a ,k 的值;
(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,
y 1),交函数()0k
y k x
=
≠的图象于点N (x 1,y 2)
,结合函数的图象,直接写出12y y -的取值范围.
2018石景山二模
22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2
A ,
B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;
(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .
2018西城二模
23. 如图,在平面直角坐标系xOy 中,函数m
y x
=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.
(1)求m ,n 的值;
(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.
2018怀柔二模
23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m x
m
y 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式;
(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.
2018门头沟二模
20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x
=(k ≠0)的图象
相交于点(2,2)M . (1)求k 的值;
(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比
例函数k y x
=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接
写出a 的取值范围.
2018顺义二模
20.如图,在平面直角坐标系xOy 中,函数k
y x
=(x >0)的图象与直线21y x =+交于点A (1,m ).
(1)求k 、m 的值;
(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交
函数k
y x
=
(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数; ②若k
y x
=
(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.。

相关文档
最新文档