与函数有关地新定义题型

合集下载

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。

新高考数学新定义 开放性和探究专题(解析版)

新高考数学新定义 开放性和探究专题(解析版)

新高考新定义开放性和探究专题题型一:数列新题型1(2023·河北张家口·统考二模)欧拉函数φn n ∈N * 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如:φ1 =1,φ3 =2.数列a n 满足a n =φ2n ,其前n 项和为S n ,则S 10=()A.1024B.2048C.1023D.2047【答案】C【分析】根据欧拉函数的定义可求出a n =φ2n =2n -1,再由等比数列的前n 项和公式即可求出答案.【详解】根据欧拉函数的定义可得a 1=φ2 =1,a 2=φ22 =2,a 3=φ23 =4,a 4=φ24 =8,一般地,a n =φ2n =2n -1.事实上,φ2n 表示从1到2n 的正整数中,与2n 互质的正整数的个数,相当于去掉从1到2n 的正整数中所有2的倍数的个数(共2n -1个数),因此,a n =φ2n =2n -2n -1=2n -1.所以,S 10=1+2+4+⋯+29=1023.故选:C .2(2023·陕西西安·西安一中校联考模拟预测)南宋数学家杨辉在《详解九章算术》中提出了高阶等差数列的问题,即一个数列a n 本身不是等差数列,但从a n 数列中的第二项开始,每一项与前一项的差构成等差数列b n (则称数列a n 为一阶等差数列),或者b n 仍旧不是等差数列,但从b n 数列中的第二项开始,每一项与前一项的差构成等差数列c n (则称数列a n 为二阶等差数列),依次类推,可以得到高阶等差数列.类比高阶等差数列的定义,我们亦可定义高阶等比数列,设数列1,1,2,8,64⋯是一阶等比数列,则该数列的第8项是( ).A.28 B.215C.221D.228【答案】C 【分析】设b n -1=a na n -1,得到b n 为等比数列,求得b n =2n -1,结合a n =b n -1⋅b n -2⋯b 1⋅a 1,进而求得a 8的值.【详解】由题意,数列1,1,2,8,64,⋯为a n ,且为一阶等比数列,设b n -1=a na n -1,所以b n 为等比数列,其中b 1=1,b 2=2,公比为q =b 2b 1=2,所以b n =2n -1,则a n =b n -1⋅b n -2⋯b 1⋅a 1=21+2+3+⋯+n -2=2n -1 n -22,n ≥2,所以第8项为a 8=221.故选:C .3(2023·上海黄浦·统考二模)设数列a n 的前n 项的和为S n ,若对任意的n ∈N *,都有S n <a n +1,则称数列a n 为“K 数列”.关于命题:①存在等差数列a n ,使得它是“K 数列”;②若a n 是首项为正数、公比为q 的等比数列,则q ∈[2,+∞)是a n 为“K 数列”的充要条件.下列判断正确的是()A.①和②都为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②都为假命题【答案】C【分析】根据给定的定义,按公差的取值情况分类探讨判断①;利用等比数列通项公式及前n项和公式,结合不等式恒成立即可推理作答.【详解】令等差数列a n的公差为d,当d≤0时,S1=a1≥a1+d=a2,不符合题意,当d>0时,S n-a n+1=na1+n(n-1)2d-(a1+nd)=d2n2-32d-a1n-a1,函数f(x)=d2x2-32d-a1x-a1的图象是开口向上的抛物线,对称轴x=32-a1d,存在x0>32-a1d,使得f(x0)>0,取不小于x0的正整数n,则有f(n)>0,即S n>a n+1,不符合题意,综上得①为假命题;等比数列a n首项a1>0,因为数列a n为“K数列”,则有a1=S1<a2=a1q,即q>1,S n=a1(1-q n)1-q,a n+1=a1q n,于是a1(1-q n)1-q<a1q n⇔q n+1-2q n+1>0⇔2-q<1q n,依题意,任意的n∈N*,2-q<1q n,函数y=1qx,x≥1在[1,+∞)单调递减,值域是0,1q ,因此2-q≤0⇔q≥2,所以q∈[2,+∞)是a n为“K数列”的充要条件,②是真命题,判断正确的是①为假命题,②为真命题.故选:C【点睛】关键点睛:数列是特殊的函数,根据数列的特性,准确构造相应的函数,借助函数性质分析求解是解题的关键,背景函数的条件,应紧扣题中的限制条件.题型二:立体几何新定义4(2023·辽宁沈阳·统考一模)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.则正八面体(八个面均为正三角形)的总曲率为()A.2πB.4πC.6πD.8π【答案】B【分析】利用正八面体的面积和减去六个顶点的曲率和可得结果.【详解】正八面体每个面均为等比三角形,且每个面的面角和为π,该正面体共6个顶点,因此,该正八面体的总曲率为6×2π-8π=4π.故选:B.5(2021·全国·统考模拟预测)图1中的机械设备叫做“转子发动机”,其核心零部件之一的转子形状是“曲侧面三棱柱”,图2是一个曲侧面三棱柱,它的侧棱垂直于底面,底面是“莱洛三角形”,莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,如图3.若曲侧面三棱柱的高为10,底面任意两顶点之间的距离为20,则其侧面积为()A.100πB.600C.200πD.300π【答案】C【分析】由莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,结合已知可得半径为20,由弧长公式求得底面周长,进而可求得结果.【详解】莱洛三角形由三段半径为20,圆心角为π3的圆弧构成,所以该零件底面周长为3×π3×20=20π,故其侧面积为200π.故选:C.6(2023·四川南充·四川省南充高级中学校考模拟预测)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即12V球=πR2⋅R-13πR12⋅R=23πR3.现将椭圆x24+y29=1绕y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于()A.32πB.24πC.18πD.16π【答案】D【解析】构造一个底面半径为2,高为3的圆柱,通过计算可得高相等时截面面积相等,根据祖暅原理可得橄榄球形几何体的体积的一半等于圆柱的体积减去圆锥的体积.【详解】解:构造一个底面半径为2,高为3的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为h0≤h≤3时,小圆锥底面半径为r,则h3=r2,∴r=23h,故截面面积为:4π-49πh2,把y=h代入x24+y29=1,即x24+h29=1,解得:x=±239-h2,∴橄榄球形几何体的截面面积为πx2=4π-49πh2,由祖暅原理可得橄榄球形几何体的体积为:V=2V圆柱-V圆锥 =2×4π×3-13×4π×3=16π.故选:D.【点睛】关键点点睛:本题解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,根据祖暅原理得到橄榄球形几何体的体积.题型三:函数新定义7(2023·陕西商洛·统考二模)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类一直在思考和探索数学的对称问题,图形中的对称性本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()①函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”;②函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”;③函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”;④若函数y =f x 是“优美函数”,则y =f x 的图象一定是中心对称图形.A.①② B.①③ C.②③ D.②④【答案】B【分析】根据“优美函数”的定义,可判断①③中的函数为奇函数,其图象为中心对称图形,可判断其正误,结合余弦函数的性质可判断②,作图分析,举出反例,判断④.【详解】对于①,f x =x 2x+2-x -1≤x ≤1满足f -x =-x2-x +2x =-f (x ),故为奇函数,则f x 图象原点对称,且连续,所以f x 可以是中心为原点且边长为2的正方形的“优美函数”,故①正确.对于②,令2x -π6=π2+k πk ∈Z ,得x =π3+k π2k ∈Z ,所以f x =4cos 2x -π6+3图象的对称中心为π3+k π2,3 k ∈Z ,故以π3+k π2,3k ∈Z 为中心的正方形都能被函数f x =4cos 2x -π6+3的图象平分,即f x =4cos 2x -π6+3可以同时是无数个正方形的“优美函数”,故②错误.对于③,令g x =ln 4x 2+1-2x ,x ∈R ,则g -x =ln 4x 2+1+2x =-ln 4x 2+1-2x =-f (x ),故g x 为奇函数.又因为f x 的图象是由g x 的图象向下平移一个单位长度得到的,所以f x 图象的对称中心为0,-1 ,故以0,-1 为中心的正方形都能被f x =ln 4x 2+1-2x -1的图象平分,故③正确.对于④,如图所示,图中两三角形面积相等,函数y =f x 是“优美函数”,但其图象不是中心对称图形,可知④错误,故选:B8(2021·陕西渭南·统考三模)已知符号函数sgn x =1,x >0,0,x =0,-1,x <0,偶函数f x 满足f x +2 =f x ,当x ∈0,1 时,f x =x ,则下列结论正确的是()A.sgn f x >0 B.f 40412=1C.sgn f 2k =0k ∈Z D.sgn f k =sgn k k ∈Z【答案】C【分析】利用偶函数以及函数周期为2,作出函数f x 的大致图象,数形结合即可逐个分析答案.【详解】根据题意得函数f x 是周期为2的函数,作出函数f x 的大致图象,如下图所示.数形结合易知f x ∈0,1 ,则sgn f x =0或sgn f x =1,故A 错误;f 40412=f 202012 =12,故B 错误;f 2k =0k ∈Z ,则sgn f 2k =0k ∈Z ,故C 正确;sgn k =1,k >00,k =0,-1,k <0(k ∈Z ),所以sgn k =1,k ≠00,k =0 (k ∈Z ),所以sgn f k ≠sgn k k ∈Z ,故D 错误.故选:C .9(2023·陕西安康·统考二模)宋代理学家周敦颐的《太极图》和《太极图说》是象数和义理结合的表达.《朱子语类》卷七五:“太极只是一个混沦底道理,里面包含阴阳、刚柔、奇偶,无所不有”.太极图(如下图)将平衡美、对称美体现的淋漓尽致.定义:对于函数f x ,若存在圆C ,使得f x 的图象能将圆C 的周长和面积同时平分,则称f x 是圆C 的太极函数.下列说法正确的是()①对于任意一个圆,其太极函数有无数个②f x =log 122x +1 +12x 是x 2+y +1 2=1的太极函数③太极函数的图象必是中心对称图形④存在一个圆C ,f x =sin x +cos x 是它的太极函数A.①④ B.③④ C.①③ D.②③【答案】A【分析】根据“太极函数”、函数的对称性、对数运算等知识对选项4个说法进行分析,由此确定正确答案.【详解】对于①:过圆心的直线都可以将圆的周长和面积平分,所以对于任意一个圆,太极函数有无数个,故①正确对于②:f -x =log 122-x+1 -12x =log 121+2x 2x-12x ,f x -f -x =log 122x+12x +12x+x =-x +x =0,所以f x 关于y 轴对称,不是太极函数,故②错误;对于③:中心对称图形必定是太极函数,对称点即为圆心.但太极函数只需平分圆的周长和面积,不一定是中心对称图形,故③错误;对于④:曲线f x =sin x +cos x =2sin x +π4存在对称中心,所以必是某圆的太极函数,故④正确.故选:A .题型四:向量新定义10(2022·浙江·高三专题练习)定义d a ,b =a -b 为两个向量a ,b 间的“距离”,若向量a ,b满足下列条件:(ⅰ)b =1;(ⅱ)a ≠b ;(ⅲ)对于任意的t ∈R ,恒有d a ,tb ≥d a ,b,现给出下面结论的编号,①.a ⊥b ②.b ⊥a -b ③.a ⊥a -b ④.a ≥1⑤.a +b ⊥a -b 则以上正确的编号为()A.①③B.②④C.③④D.①⑤【答案】B【分析】根据题意可得a -tb 2≥a -b 2,转化为t 2-2ta ⋅b +2a ⋅b -1 ≥0对于任意的t ∈R 恒成立,即Δ≤0,整理得a ⋅b -1 2≤0,再利用向量的数量积逐一判断即可.【详解】由于d a ,b =a -b ,又对于t ∈R ,恒有d a ,tb ≥d a ,b ,显然有a -tb ≥a -b ,即a -tb 2≥a -b 2,则t 2-2ta ⋅b +2a ⋅b-1 ≥0对于任意的t ∈R 恒成立,显然有Δ=-2a ⋅b 2-42a ⋅b-1 ≤0成立,即a ⋅b -1 2≤0,则a ⋅b=1,故序号①错误,进而a ⋅b =a ⋅bcos θ=1,∵b =1,于是cos θ=1a ≤1,得a ≥1,即序号④正确.再由a ⋅b -1=0得a ⋅b -b 2=0,得b a -b =0,∴b ⊥a -b ,显然序号②正确.从而序号③错误,再由②a ≠b ,故序号⑤错误.综上知本题正确的序号为②④.故选:B .【点睛】本题命制是以新定义为背景,考查向量长度及数量积等知识概念,同时考查了等价转换、不等式恒成立问题,符合以生考熟的高考理念,考查知识内容源于教材,试题面向全体考生,不同思维能力层次的考生度可以利用熟悉的通法来解决问题,从而增强考生的自信心,有利于考生正常发挥,属于中档题.11(2023·全国·高三专题练习)互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记P a ,b ,则在x 轴正方向和y 轴正方向的夹角为θ的斜坐标系中,下列选项错误的是()A.当θ=60°时A 1,2 与B 3,4 距离为23B.点A 1,2 关于原点的对称点为A -1,-2C.向量a=x 1,y 1 与b =x 2,y 2 平行的充要条件是y 1x 2=y 2x 1D.点A 1,2 到直线x +y -1=0的距离为2【答案】D【分析】根据“斜坐标系”的定义,结合向量运算对选项进行分析,从而确定正确答案.【详解】设x 轴正方向的单位向量为e 1 ,y 轴正方向的单位向量为e 2,对于A 选项:由已知得e 1 ,e 2 =60°,所以e 1 ⋅e 2 =1×1×12=12.由A 1,2 ,B 3,4 及斜坐标的定义可知OA =e 1 +2e 2 ,OB =3e 1 +4e 2,AB =OB -OA =2e 1 +e 2 =2e 1 +e 2 2=2e 1 2+2e 1 ⋅e 2 +e 2 2=21+1+1=23,故A 选项正确;对于B 选项:根据“斜坐标系”的定义可知:点A 1,2 ,则OA =e 1 +2e 2 ,设A 1,2 关于原点的对称点为Ax ,y ,则OA ' =-OA =-e 1 -2e 2 =x e 1 +y e 2 ,由于e 1 ,e 2 不共线,所以x =-1y =-2 ,故B 选项正确;对于C 选项:a =x 1e 1 +y 1e 2 ,b =x 2e 1 +y 2e 2 ,若a 是零向量,则a ⎳b 成立,同时x 1=y 1=0,所以x 1y 2=x 2y 1成立,此时a ⎳b⇔x 1y 2=x 2y 1;若a 是非零向量,则a ⎳b ⇔存在非零常数λ,使b =λa⇔x 2e 1 +y 2e 2 =λx 1e 1 +λy 1e 2 ⇔x 2=λx 1λy 1=y 2 ⇔λx 2y 1=λx 1y 2⇔y 1x 2=y 2x 1,所以a ⎳b⇔x 1y 2=x 2y 1.故C 选项正确;对于D 选项:设直线x +y -1=0上的动点为P x ,y ,OP =x e 1 +y e 2 ,因为x +y -1=0,所以x +y =1,设OC =e 1 ,OD =e 2 ,则点P x ,y 在直线CD 上,所以直线x +y -1=0过点C 1,0 ,D 0,1 ,因为OA =e 1 +2e 2 ,则AC =OC -OA =2e 2 =2,AD =OD -OA =e 1 +e 2 =e 1 +e 2 2=3,由于OC =OD =1,OC ,OD =60°,所以CD =1.所以AD 2+CD 2=AC 2,所以AD ⊥CD ,所以点A 到直线x +y -1=0的距离为AD=3,故D 选项错误.故选:D12(2023·全国·高三专题练习)向量的运算包含点乘和叉乘,其中点乘就是大家熟悉的向量的数量积.现定义向量的叉乘:给定两个不共线的空间向量a 与b ,a ×b 规定:①a ×b 为同时与a ,b垂直的向量;②a ,b ,a ×b 三个向量构成右手系(如图1);③a ×b =a b sin a ,b ;④若a=x 1,y 1,z 1 ,b =x 2,y 2,z 2 ,则a ×b=+y 1,z 1y 2,z 2 ,-x 1,z 1x 2,z 2 ,+x 1,y 1x 2,y 2 ,其中a ,b c ,d=ad -bc .如图2,在长方体中ABCD -A 1B 1C 1D 1,AB =AD =2,AA 1=3,则下列结论正确的是()A.AB ×AD =AA 1B.AB ×AD =AD ×ABC.AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1D.长方体ABCD -A 1B 1C 1D 1的体积V =AB ×AD ⋅C 1C【答案】C【分析】利用向量的叉乘的定义逐项分析即得.【详解】解法一:AA 1 同时与AB ,AD 垂直;AA 1 ,AB ,AD三个向量构成右手系,且AB ×AD =AB AD sin AB ,AD =2×2×sin90°=4≠AA 1=3,所以选项A 错误;根据右手系知:AB ×AD 与AD ×AB 反向,所以AB ×AD ≠AD ×AB,故选项B 错误;因为AB -AD ×AA 1 =DB ×BB 1=22×3×sin90°=62,且DB ×BB 1 =-BD ×BB 1 与CA同向共线;又因为AB ×AA 1 =2×3×sin90°=6,且AB ×AA 1 与DA同向共线,AD ×AA 1 =2×3×sin90°=6,AD ×AA 1与DC 同向共线,所以AB ×AA 1 -AD ×AA 1 =62,且AB ×AA 1 -AD ×AA 1 与CA 同向共线,AB -AD ×AA 1 =AB ×AA -AD ×AA 1,故选项C 正确;因为长方体ABCD -A 1B 1C 1D 1的体积为2×2×3=12.又因为由右手系知向量AB ×AD 方向垂直底面向上,与C 1C 反向,所以AB ×AD ⋅C 1C<0,故选项D 错误;故选:C .解法二:如图建立空间直角坐标系:AB =0,2,0 ,AD =-2,0,0 ,AA 1 =0,0,3 ,则AB ×AD=0,0,4 ,所以选项A 错误;C 1C =0,0,-3 ,则AB ×AD ⋅C 1C =-12,故选项D 错误;AD ×AB=0,0,-4 ,故选项B 错误;AB -AD =DB =2,2,0 ,则AB -AD ×AA 1 =6,-6,0 ,AB ×AA 1 =6,0,0 ,AD ×AA 1 =0,6,0 ,则AB ×AA 1 -AD ×AA 1 =6,-6,0 .所以AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1 ,故选项C 正确;故选:C .题型五:开放性题型13(2023·甘肃酒泉·统考三模)已知P 是平行四边形ABCD 对角线上的一点,且AP =λAB +μAD,其中λ∈0,1,μ∈ 0,1 ,写出满足条件的λ与μ的一组λ,μ 的值.【答案】13,23(答案不唯一,满足λ+μ=1或λ=μ即可)【分析】若P 在AC 上可得λ=μ,若P 在BD 上,根据共线定理的推论得到λ+μ=1,填写符合题意的答案即可.【详解】因为AC =AB +AD ,若P 在AC 上,则AC ⎳AP ,又AP =λAB +μAD ,所以λ=μ,若P 在BD 上,即P 、B 、D 三点共线,又AP =λAB +μAD,则λ+μ=1.故答案为:13,23(答案不唯一,满足λ+μ=1或λ=μ即可)14(2023·江西九江·瑞昌市第一中学校联考模拟预测)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心在直线x -y +7=0上.若⊙C 与⊙O 相切,则⊙C 的一个方程为.【答案】x +4 2+y -3 2=9(答案不唯一)【分析】先根据已知得出⊙C 的圆心在⊙O 的外面.然后分⊙C 与x 轴相切以及⊙C 与y 轴相切,结合已知可得出两圆外切.列出方程,化简整理求解,即可得出答案.【详解】由已知可得,⊙O :x 2+y 2=4的圆心为O 0,0 ,半径R =2,所以点O 0,0 到直线x -y +7=0的距离d =72=722>2,所以,直线与圆相离,所以⊙C 的圆心在⊙O 的外面.当⊙C 与x 轴相切时,设⊙C 的圆心C a ,a +7 ,则⊙C 的半径r 1=a +7 .因为⊙C 与⊙O 相切,且C 在⊙O 的外面,所以两圆外切.所以OC =R +r 1,即a 2+a +7 2=2+a +7 ,整理可得,a 2=4+4a +7 .若a ≤-7,整理可得a 2+4a +24=0无解,所以a >-7,所以a 2-4a -32=0,解得a =-4或a =8,所以⊙C 方程为x +4 2+y -3 2=9或x -8 2+y -15 2=225;当⊙C 与y 轴相切时,设圆心C a ,a +7 ,则⊙C 的半径r 2=a .由两圆外切可得,OC =R +r 2,即a 2+a +7 2=2+a ,整理可得a 2+14a +49=4+4a ,则a <0,所以有a 2+18a +45=0,解得a =-3或a =-15,所以⊙C 方程为x +3 2+y -4 2=9或x +15 2+y +8 2=225.故答案为:x +4 2+y -3 2=9.15(2023·新疆·校联考二模)已知函数f x 满足下列条件:①f x 是y =sin x 经过图象变换得到的;②对于∀x ∈R ,均满足-3=f -π6 ≤f x ≤f π3=1成立;③y =f x 的函数图象过点0,-2 .请写出符合上述条件的一个函数解析式.【答案】f x =2sin 2x -π6-1(答案不唯一)【分析】由①可设f x =A sin ωx +φ +B ,根据②,设A >0,求得A =2,B =-1,且ω=2,再由③求得φ的一个值为φ=-π6,即可求解.【详解】解:由①可设f x =A sin ωx +φ +B ,又由②可知,不妨设A >0,由-3=f -π6 ≤f x ≤f π3 =1,可得A =1-(-3)2=2,B =1+(-3)2=-1,且T =2π3--π6=π,所以ω=2πT=2,所以f x =2sin 2x +φ -1,由③,可得2sin φ-1=-2,即sin φ=-12,所以φ的一个值为φ=-π6,因此函数f x 的一个解析式为f x =2sin 2x -π6-1.故答案为:f x =2sin 2x -π6-1(答案不唯一).16(2023·江西南昌·校联考模拟预测)正割(Secant )及余割(Co sec ant )这两个概念是由伊朗数学家、天文学家阿布尔·威发首先引入,sec ,csc 这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割sec α=1cos α,余割csc α=1sin α.已知函数f x =1sec x +1csc x,给出下列说法:①f x 的定义域为x x ≠k π,k ∈Z ;②f x 的最小正周期为2π;③f x 的值域为-2,-1 ∪-1,1 ∪1,2 ;④f x 图象的对称轴为直线x =-π4+k πk ∈Z .其中所有正确说法的序号为()A.②③B.①④C.③D.②③④【答案】A【分析】首先化简函数f x =2sin x +π4,再结合原函数的特征,求函数的定义域,以及根据三角函数的性质判断周期,值域和对称性.【详解】f x =1sec x +1csc x =cos x +sin x =2sin x +π4 ,由cos x ≠0,sin x ≠0,得x ≠k π2k ∈Z ,即f x 的定义域为x x ≠k π2,k ∈Z ,①错误;f x 的定义域关于原点对称,故f x 的最小正周期与函数y =2sin x +π4的最小正周期一致,均为2π,②正确;当x =0,π2,π,3π2时,y =2sin x +π4的值分别为1,1,-1,-1,考虑周期性可知,f x 的值域为-2,-1 ∪-1,1 ∪1,2 ,③正确;令x +π4=π2+k πk ∈Z ,得x =π4+k πk ∈Z ,即f x 图象的对称轴为直线x =π4+k πk ∈Z ,④错误,故选:A .17(2023春·重庆沙坪坝·高三重庆一中校考阶段练习)林业部门规定:树龄500年以上的古树为一级,树龄300~500年之间的古树为二级,树龄100~299年的古树为三级,树龄低于100年不称为古树.林业工作者为研究树木年龄,多用年轮推测法,先用树木测量生长锥在树干上打孔,抽取一段树干计算年轮个数,由经验知树干截面近似圆形,年轮宽度依次构成等差数列.现为了评估某棵大树的级别,特测量数据如下:树干周长为3.14米,靠近树芯的第5个年轮宽度为0.4cm ,靠近树皮的第5个年轮宽度为0.2cm ,则估计该大树属于()A.一级B.二级C.三级D.不是古树【答案】C【分析】由条件抽象出等差数列的基本量,再结合等差数列的前n 项和,求n .【详解】设树干的截面圆的半径为r ,树干周长2πr =3.14,r =0.5m =50cm ,从内向外数:a 5=0.4,a n -4=0.2,S n =r =50=a 5+a n -4 ⋅n2=0.3n ,∴n =5003≈167年,所以为三级.故选:C18(2023春·江西·高三校联考阶段练习)若存在实数k 和m 使得函数f x 和g x 对其公共定义域上的任意实数x 都满足:g x ≤kx +m ≤f x 恒成立,则称此直线y =kx +m 为f x 和g x 的“分离直线”.有下列命题:①f x =x 2和g x =a ln x 之间存在唯一的“分离直线”y =2ex -e 时a =2e ;②f x =x 2和g x =1x(x <0)之间存在“分离直线”,且m 的最小值为-4,则()A.①、②都是真命題B.①、②都是假命題C.①是假命题,②是真命题D.①是真命题,②是假命题【答案】A【分析】命题①,f(x)=x2和g(x)=2e ln x有公共点e,e,故隔离直线过该点,设为点斜式,结合二次函数性质对参数分类讨论,即可求解;命题②,设隔离直线为y=kx+b,则x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,结合二次函数性质对参数分类讨论,即可求解;【详解】对于命题①,函数f(x)=x2和g(x)=2e ln x的图像在x=e处有公共点,若存在f(x)和g(x)的隔离直线,那么该直线过这个公共点e,e,设隔离直线的斜率为k,则隔离直线方程为y-e=k x-e,即y=kx-k e+e 由f(x)≥kx-k e+e x>0恒成立,即x2-kx+k e-e≥0x>0恒成立,(i)当k=0时,则x2≥e x>0不恒成立,不符合题意;(ii)当k<0时,令u x =x2-kx+k e-e x>0,对称轴x=k2<0,u x 在0,e上单调递增,且u e=0,故k<0不恒成立,不符合题意;(iii)当k>0时,令u x =x2-kx+k e-e x>0,对称轴x=k2>0,则u x min=uk2=-k24+k e-e=-k-2e24≥0,只有k=2e,即直线y=2e x-e下面证明g(x)=2e ln x≤2e x-e,令G(x)=2e x-e-2e ln x,求导G (x)=2e x-ex,令G(x)=0,得x=e,当x∈0,e时,G (x)<0,函数G(x)在区间0,e上单调递减;当x∈e,+∞时,G (x)>0,函数G(x)在区间e,+∞单调递增;故当x=e时,函数G(x)取得极小值,也是最小值,故G(x)≥0,即g(x)≤2e x-e 所以f(x)=x2和g(x)=2e ln x之间存在唯一的隔离直线y=2e x-e.所以命题①是真命题;对于命题②,设f(x)=x2和g(x)=1x(x<0)的隔离直线为y=kx+m,则x2≥kx+m1x≤kx+m对任意x<0恒成立,即x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,由kx2+mx-1≤0恒成立,得k≤0(i)当k=0时,则m=0符合题意;(ii)当k<0时,则x2-kx-m≥0对任意x<0恒成立,令h x =x2-kx-m x<0,对称轴x=k2<0,需Δ=k2+4m≤0,即k2≤-4m,故m≤0令d x =kx2+mx-1x<0,对称轴x=-m2k≤0,需Δ=m2+4k≤0,即m2≤-4k,所以k4≤16m2≤-64k,故-4≤k<0同理可得m4≤16k2≤-64m,即-4≤m<0,故m 的最小值为-4故命题①正确,命题②正确;故选:A专题强化一、单选题19(2023·山东潍坊·统考模拟预测)阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹.如图,在平面直角坐标系xOy 中,螺线与坐标轴依次交于点A 1-1,0 ,A 20,-2 ,A 33,0 ,A 40,4 ,A 5-5,0 ,A 60,-6 ,A 77,0 ,A 80,8 ,并按这样的规律继续下去.若四边形A n A n +1A n +2A n +3的面积为760,则n 的值为()A.18B.19C.21D.22【答案】A【分析】根据四边形的特点,将四边形的面积转化为四个直角三角形的面积,即可求解.【详解】如图,四边形A n A n +1A n +2A n +3的面积由四个直角三角形构成,得12n n +1 +12n +1 n +2 +12n +2 n +3 +12n n +3 =760,n n +1+n +3 +n +2 n +1+n +3 =1520,2n +4 2n +2 =1520,即n +2 n +1 =380,n ∈N *,解得:n =18故选:A20(2023春·湖北·高二校联考阶段练习)高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行1+2+3+⋯+100的求和运算时,他这样算的:1+100=101,2+99=101,⋯,50+51=101,共有50组,所以50×101=5050,这就是著名的高斯算法,课本上推导等差数列前n 项和的方法正是借助了高斯算法.已知正数数列a n是公比不等于1的等比数列,且a1a2023=1,试根据以上提示探求:若f(x)=41+x2,则f a1+f a2+⋯+f a2023=()A.2023B.4046C.2022D.4044【答案】B【分析】根据倒序相加法,结合等比数列的下标性质进行求解即可.【详解】根据等比数列的下标性质由a1⋅a2023=1⇒a n⋅a2024-n=1,∵函数f(x)=41+x2,∴f(x)+f1x=41+x2+41+1x2=4+4x21+x2=4,令T=f a1+f a2+⋯+f a2023,则T=f a2023+f a2023+⋯+f a1 ,∴2T=f a1 +f a2023+f a2+f a2022+⋯+f a2023+f a1 =4×2023,∴T=4046.故选:B21(2022秋·山东青岛·高三统考期末)已知定义域为0,1的“类康托尔函数”f x 满足:①∀0≤x1<x2≤1,f x1≤f x2;②f x =2fx3;③f x +f1-x=1.则f12023=()A.132B.164C.1128D.1256【答案】C【分析】根据函数的定义分别赋值得到f(1)=1,f12=12,然后再利用f x =2f x3 得到f(x)=2n⋅f x3n,再次赋值,利用∀0≤x1<x2≤1,f x1 ≤f x2 即可求解.【详解】因为∀0≤x1<x2≤1,f x =2fx3,令x=0可得:f(0)=0,又因为f x +f1-x=1,令x=0可得:f(1)=1,令x=12可得:f12=12,由f x =2fx3可得:f(x)=2f x3 =22⋅f x32=⋯=2n⋅f x3n ,令x=1,n=7,则有f(1)=27f137=128f12187,所以f12187=1128,令x=12,n=6,则有f12=26f1236=64f11458=12,所以f11458=1128,因为12187<12023<11458,所以f12187≤f12023≤f11458,也即1128≤f12023≤1128,所以f12023=1128,故选:C.22(2023·全国·高三专题练习)设定点F1,0,动点M满足以MF为直径的圆与y轴相切,设动点M的轨迹为C ,则下列说法正确的是()A.轨迹C 的方程为y 2=4xB.动点M 到直线l 1:4x -3y +6=0和l 2:x =-2的距离之和的最小值为2C.长度为8的线段两端点在轨迹C 上滑动,中点到y 轴距离的最小值为4D.轨迹C 上一点P 处的切线与x 轴交于Q ,若PQ =FQ ,则切线斜率为3【答案】A【分析】先用直接法求出动点M 的轨迹方程,然后根据轨迹方程为抛物线找出焦点和准线,将BC 两选项中的问题用抛物线的定义进行转化可判断BC 的真假;D 答案需要联立方程设而不求的思想可判断.【详解】设M x ,y ,MF 中点Q x +12,y2,∵以MF 为直径的圆与y 轴相切∴x +12 =12x -12+y 2⇒y 2=4x ,A 正确.对于B ,MM +MM =MM +MP +1=MM +MF +1,MM +MF ≥F 到l 1的距离=2,∴MM +MM ≥3,B 错.对于C ,设AB 中点M ,AB =8,分别过A ,B 作l 2的垂线,垂足为A ,B ,∴MM=AA +BB 2=AF -1+BF -12=AF +BF -22≥AB -22=3∴中点到y 轴距离的最小值为3,C 错.对于D ,切线:x =my +n ,x =my +ny 2=4x消y 可得y 2-4my -4n =0,Δ=0,∴n =-m 2,y =2mx =m2 ,∴Q -m 2,0 ,P m 2,2m ,PQ =FQ ,∴4m 4+4m 2=1+m 2,∴m 2=13,m =±33,斜率±3,D 错.故选:A23(2022·重庆江北·校考一模)已知斐波那契数列a n 满足a 1=a 2=1,a n +2=a n +1+a n ,若a s ,a t 是数列a n 中的任意两项,a s -a t =m ,当m ≤2时,称数组a s ,a t 为数列a n 的“平缓数组”(a s ,a t 与a t ,a s 为相同的“平缓数组”),m 为数组a s ,a t 的组差.现从a n 的所有“平缓数组”中随机抽取3个,则这3个“平缓数组”的组差中至少有2个相等的取法种数为()A.24B.26C.29D.35【答案】B【分析】先根据“平缓数组”的定义,找出所有的“平缓数组”,然后再计算随机抽取三个“平缓数组”的组差中至少有2个相等的取法种数即可.【详解】由题意得a n +1≥a n ,a n +2-a n +1≥a n +1-a n ,a 1=a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,又a 6-a 5=3,所以当n ≥5时,a n +1-a i ≥3i =1,2,⋅⋅⋅,n ,所以a n 的所有“平缓数组”有a 1,a 2 ,a 1,a 3 ,a 1,a 4 ,a 2,a 3 ,a 2,a 4 ,a 3,a 4 ,a 4,a 5 ,共7个,其中组差为0的有1个为a 1,a 2 ,组差为1的有3个为a 1,a 3 ,a 2,a 3 ,a 3,a 4 ,组差为2的有3个为a 1,a 4 ,a 2,a 4 ,a 4,a 5 ,所以这3个“平缓数组”的组差中至少有2个相等的取法种数为2C 23C 14+2C 33=26,故选:B24(2022秋·上海浦东新·高三华师大二附中校考期中)十七世纪法国数学家费马提出猜想:“当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”.经历三百多年,于二十世纪九十年代中期由美国数学家安德鲁怀尔斯证明了费马猜想,使它终成为费马大定理根据前面叙述,则下列命题正确的个数为()(1)存在至少一组正整数组x ,y ,z 是关于x ,y ,z 的方程x 3+y 3=z 3的解;(2)关于x ,y 的方程x 3+y 3=1有正有理数解;(3)关于x ,y 的方程x 3+y 3=1没有正有理数解;(4)当整数n >3时关于x ,y ,z 的方程x n +y n =z n 有正实数解A.0 B.1 C.2 D.3【答案】C【分析】当整数n >2时方程没有正整数解,(1)错误,x z 3+y z3=1,没有正有理数解,(2)错误,(3)正确,当x =y =1,z =21n满足条件,(4)正确,得到答案.【详解】当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解,故方程x 3+y 3=z 3没有正整数解,(1)错误;x 3+y 3=z 3没有正整数解.即x z3+y z3=1,z ≠0 ,没有正有理数解,(2)错误,(3)正确;方程x n+y n=z n,当x =y =1,z =21n满足条件,故有正实数解,(4)正确.故选:C25(2022秋·北京·高三北京铁路二中校考期中)德国著名数学家、解析数论的创始人狄利克雷(1805年2月13日~1859年5月5日),对函数论、三角级数论等都有重要贡献,主要著作有《数论讲义》《定积分》等.狄利克雷函数就是以其名字命名的函数,其解析式为D x =1,x 为有理数,0,x 为无理数, 则下列关于狄利克雷函数D(x )的判断错误的是()A.对任意有理数t ,D (x +t )=D (x )B.对任意实数x ,D (D (x ))=1C.D (x )既不是奇函数也不是偶函数D.存在实数x ,y ,D (x +y )=D (x )+D (y )【答案】C【分析】根据狄利克雷函数的定义判断ABD ,结合奇偶性的定义判断C .【详解】对于A ,对任意有理数t ,当x 为有理数时,x +t 为有理数,则D (x +t )=1=D (x );当x 为无理数时,x +t 为无理数,则D (x +t )=0=D (x ),故A 正确;对于B ,若x 为有理数,则D (D (x ))=D (1)=1;若x 为无理数,则D (D (x ))=D (0)=1,故B 正确;对于C ,当x 为有理数时,则-x 为有理数,则D (-x )=1=D (x );当x 为无理数时,则-x 为无理数,则D (-x )=0=D (x ),于是对任意实数x ,都有D (-x )=D (x ),即狄利克雷函数为偶函数,故C 错误;对于D ,取x =2,y =3,因为2+3为无理数,所以D (2+3)=0=D (2)+D (3),故D 正确.故选:C .二、多选题26(2023春·吉林白山·高三统考期中)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类对数学的对称问题一直在思考和探索,图形中对称性的本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()A.函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”B.函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”C.函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”。

42 二次函数创新题及新定义问题

42 二次函数创新题及新定义问题

二次函数创新题及新定义问题二次函数与新定义问题在二次函数与新定义问题中,重点是将题中给出的定义“翻译”成学过的知识,再结合二次函数的性质综合进行处理,其难点就在于“翻译定义”的过程,对学生的理解能力和初中知识的运用能力要求较高.典例1.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1,和y2=x2+bx+c,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.【答案】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0,解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),∵y1+y2与y1为“同簇二次函数”,∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4,∴函数y2的表达式为:y2=x2﹣2x+1.∴y2=x2﹣2x+1=(x﹣1)2,∴函数y2的图象的对称轴为x=1.∵1>0,∴函数y2的图象开口向上.当0≤x≤3时,∵函数y2的图象开口向上,∴y2的取值范围为0≤y2≤4.【精准解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y 1的图象经过点A (1,1)可以求出m 的值,然后根据y 1+y 2与y 1为“同簇二次函数”就可以求出函数y 2的表达式,然后将函数y 2的表达式转化为顶点式,再利用二次函数的性质就可以解决问题.练习1.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a=﹣c ,b=2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y=x 2+x+1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍【答案】解:(1)∵y=x 2+x+1,∴y=,∴二次函数y=x 2+x+1的顶点坐标为(﹣,),∴二次函数y=x 2+x+1的一个“反倍顶二次函数”的顶点坐标为(,),∴反倍顶二次函数的解析式为y=x 2﹣x+;(2)y 1+y 2=x 2+nx+nx 2+x=(n+1)x 2+(n+1)x ,y 1+y 2=(n+1)(x 2+x+)﹣,顶点坐标为(﹣,﹣),y 1﹣y 2=x 2+nx ﹣nx 2﹣x=(1﹣n )x 2+(n ﹣1)x ,y 1﹣y 2=(1﹣n )(x 2﹣x+)﹣,顶点坐标为(,﹣),由于函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,则﹣2×=﹣,解得n=.1.小爱同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是.(2)延伸思考:将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?写出平移过程,并直接写出当123y < 时,自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|2|1)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:2x =-或0x =或2x =;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是10a -<<.故答案为函数图象关于y 轴对称;2x =-或0x =或2x =;10a -<<.(2)将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,当123y < 时,自变量x 的取值范围是04x <<且2x ≠.2.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点(1,)A r 与点(,4)B s 是关于x 的“T 函数”()24(0)0,0,x y x tx x t t ⎧-<⎪=⎨⎪≠⎩是常数 的图象上的一对“T 点”,则r =,s =,t =(将正确答案填在相应的横线上);(2)关于x 的函数(y kx p k =+,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”2(0y ax bx c a =++>,且a ,b ,c 是常数)经过坐标原点O ,且与直线:(0l y mx n m =+≠,0n >,且m ,n 是常数)交于1(M x ,1)y ,2(N x ,2)y 两点,当1x ,2x 满足112(1)1x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【分析】(1)由A ,B 关于y 轴对称求出r ,s ,由“T 函数”的定义求出t ;(2)分0k =和0k ≠两种情况考虑即可;(3)先根据过原点得出0c =,再由“T 函数”得出b 的值,确定二次函数解析式后,和直线联立求出交点的横坐标,写出l 的解析式,确定经过的定点即可.【解答】解:(1)A ,B 关于y 轴对称,1s ∴=-,4r =,A ∴的坐标为(1,4),把(1,4)A 代入是关于x 的“T 函数”中,得:4t =,故答案为4r =,1s =-,4t =;(2)当0k =时,有y p =,此时存在关于y 轴对称得点,y kx p ∴=+是“T 函数”,且有无数对“T ”点,当0k ≠时,不存在关于y 轴对称的点,y kx p ∴=+不是“T 函数”;(3)2y ax bx c =++过原点,0c ∴=,2y ax bx c =++是“T 函数”,0b ∴=,2y ax ∴=,联立直线l 和抛物线得:2y ax y mx n ⎧=⎨=+⎩,即:20ax mx n --=,12m x x a +=,12n x x a-=,又112(1)1x x --+=,化简得:1212x x x x +=,∴m n a a-=,即m n =-,y mx n mx m ∴=+=-,当1x =时,0y =,∴直线l 必过定点(1,0).3.(2021•杭州)在直角坐标系中,设函数21(y ax bx a =++,b 是常数,0)a ≠.(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当x p =,(q p ,q 是实数,)p q ≠时,该函数对应的函数值分别为P ,Q .若2p q +=,求证:6P Q +>.【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;(2)写出一组a ,b ,使得240b ac ->即可;(3)已知1a b ==,则21y x x =++.容易得到2211P Q p p q q +=+++++,利用2p q +=,即2p q =-代入对代数式P Q +进行化简,并配方得出22(1)66P Q q +=-+ .最后注意利用p q ≠条件判断1q ≠,得证.【解答】解:(1)由题意,得104211a b a b ++=⎧⎨++=⎩,解得12a b =⎧⎨=-⎩,所以,该函数表达式为221y x x =-+.并且该函数图象的顶点坐标为(1,0).(2)例如1a =,3b =,此时231y x x =++,2450b ac -=>,∴函数231y x x =++的图象与x 轴有两个不同的交点.(3)由题意,得21P p p =++,21Q q q =++,所以2211P Q p p q q +=+++++224p q =++22(2)4q q =-++22(1)66q =-+ ,由条件p q ≠,知1q ≠.所以6P Q +>,得证.4.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由题意得:4x x=,解得2x =±,即可求解;(2)①抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,而1a >,04c <<;由M 、N 的存在,则△2540ac =->,而1a >,则254c <,即可求解;②求出点M 的坐标为4(a -,0)、点E 的坐标为2(a -,2a-,即可求解;(3)分两种情形:点C 在PB 的下方或上方,分别根据全等三角形解决问题.【解答】解:(1)由题意得:4x x=,解得2x =±,当2x =±时,42y x ==±,故“雁点”坐标为(2,2)或(2,2)--;(2)①“雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y x =,抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,1a >,故04c <<;M 、N 的存在,则△2540ac =->,而1a >,则254c <,综上,04c <<;②4ac =,则250ax x c ++=为2450ax x a ++=,解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =,解得2x a =-,即点E 的坐标为2(a -,2)a-,过点E 作EH x ⊥轴于点H ,则2HE a =,242(E M MH x x HE a a a=-=---==,故EMN ∠的度数为45︒;(3)存在,理由:当点C 在PB 的下方时,由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t ,过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-,90NPB MPC ∠+∠=︒,90MCP CPM ∠+∠=︒,NPB PCM ∴∠=∠,90CMP PNB ∠=∠=︒,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得101m =101-,当点C 在PB 的上方时,过点P 作PK OB ⊥于K ,CH KP ⊥交KP 的延长线于H .同法可证,CHP PKB ∆≅∆,可得CH PK =,HP BK =,t m n -=,3t n m -=-,223n m m =-++32m ∴=,154n =,3(2P ∴,15)4,故点P 的坐标为2(2-,32或(12+,3)2或3(2,15)4.5.(2021•江西)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯(1,3)B -(0,0)O (1,1)C -(A 2,)(3,3)D ⋯⋯(5,3)B '-(4,0)O '(3,1)C '(2,0)A '(1,3)D '-⋯①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L '都有唯一交点,这条抛物线的解析式可能是(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,当1x - 时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,当3x - 时,L '的函数值随着x 的增大而减小,找出公共部分即可;②设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,分下面两种情形:)i 当1a '=-时,)ii 当1a '≠-时,分别讨论计算即可;③观察图1和图2,可知直线y m =与抛物线22y x mx =-及“孔像抛物线”L '有且只有三个交点,即直线y m =经过抛物线L 的顶点或经过抛物线L '的顶点或经过公共点A ,分别建立方程求解即可.【解答】解:(1)①(1,3)B -、(5,3)B '-关于点A 中心对称,∴点A 为BB '的中点,设点(,)A m n ,1522m -+∴==,3302n -==,故答案为:(2,0);②所画图象如图1所示,(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,对称轴为直线1x =-,开口向上,当1x - 时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,对称轴为直线3x =-,开口向下,当3x - 时,L '的函数值随着x 的增大而减小,∴当31x -- 时,抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,故答案为:31x -- ;②抛物线22y x mx =-的“孔像抛物线”是2268y x mx m =-+-,∴设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,抛物线M 与抛物线L '有唯一交点,∴分下面两种情形:)i 当1a '=-时,无论b '为何值,都会存在对应的m 使得60b m '-=,此时方程无解或有无数解,不符合题意,舍去;)ii 当1a '≠-时,△22(6)4(1)(8)0b m a c m ='--'+'+=,即22212364(1)84(1)0b b m m a m c a '-'+-'+⋅-''+=,整理得22[3632(1)]124(1)0a m b m b c a -'+-'+'-''+=,当m 取不同值时,两抛物线都有唯一交点,∴当m 取任意实数,上述等式都成立,即:上述等式成立与m 取值无关,∴23632(1)01204(1)0a b b c a -'+=⎧⎪-'=⎨⎪'-''+=⎩,解得18a '=,0b '=,0c '=,则218y x =,故答案为:2y ax =;③抛物线222:2()L y x mx x m m =-=--,顶点坐标为2(,)M m m -,其“孔像抛物线”L '为:22(3)y x m m =--+,顶点坐标为2(3,)N m m ,抛物线L 与其“孔像抛物线”L '有一个公共点(2,0)A m ,∴二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点时,有三种情况:①直线y m =经过2(,)M m m -,2m m ∴=-,解得:1m =-或0m =(舍去),②直线y m =经过2(3,)N m m ,2m m ∴=,解得:1m =或0m =(舍去),③直线y m =经过(2,0)A m ,0m ∴=,但当0m =时,2y x =与2y x =-只有一个交点,不符合题意,舍去,综上所述,1m =±.6.(2021•云南)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-.(1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.【分析】(1)当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,可得对称轴为直线4x =-,且抛物线22y x bx c =-++经过点(0,2)-,列出方程组即可得答案;(2)由r 是抛物线22162y x x =---与x 轴的交点的横坐标,可得2810r r ++=,218r r +=-,两边平方得222(1)(8)r r +=-,4222164r r r ++=,即可得结果4222160r r r -+=;(3)1m >正确,可用比差法证明,由(2)可得426210r r -+=,即753620r r r -+=,而975395952111601601r r r r r r m r r r r +-++--=-=+-+-,再由2810r r ++=,判断0r <,956010r r +-<,故950601r r r >+-,从而1m >.【解答】(1)解:22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,即对称轴为直线4x =-,∴244c b =-⎧⎪⎨-=-⎪⎩-,解得162b c =-⎧⎨=-⎩;(2)证明:由题意,抛物线的解析式为22162y x x =---,r 是抛物线22162y x x =---与x 轴的交点的横坐标,221620r r ∴++=,2810r r ∴++=,218r r∴+=-222(1)(8)r r ∴+=-,4222164r r r ∴++=,4222160r r r ∴-+=;(3)1m >正确,理由如下:由(2)知:4222160r r r -+=;426210r r ∴-+=,753620r r r ∴-+=,而9753952111601r r r r r m r r +-++--=-+-9753959521(601)601r r r r r r r r r +-++--+-=+-7539562601r r r r r r -++=+-95601r r r =+-,由(2)知:2810r r ++=,281r r ∴=--,210r --<,80r ∴<,即0r <,956010r r ∴+-<,∴950601r r r >+-,即10m ->,1m ∴>.7.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数2y x =+,2y x x =-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0)y x x=>,y x b =-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC ∆的面积为3时,求b 的值;(3)若函数22()y x x m =- 的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当1W ,2W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【分析】(1)根据“等值点”的定义建立方程求解即可得出答案;(2)先根据“等值点”的定义求出函数3(0)y x x=>的图象上有两个“等值点”A ,同理求出1(2B b ,1)2b ,根据ABC ∆的面积为3可得111|||3222b b ⨯⨯=,求解即可;(3)先求出函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),再利用翻折的性质分类讨论即可.【解答】解:(1)在2y x =+中,令2x x =+,得02=不成立,∴函数2y x =+的图象上不存在“等值点”;在2y x x =-中,令2x x x -=,解得:10x =,22x =,∴函数2y x x =-的图象上有两个“等值点”(0,0)或(2,2);(2)在函数3(0)y x x =>中,令3x x=,解得:x =A ∴,在函数y x b =-+中,令x x b =-+,解得:12x b =,1(2B b ∴,1)2b ,BC x ⊥轴,1(2C b ∴,0),1||2BC b ∴=,ABC ∆的面积为3,∴111|||3222b b ⨯⨯=,当0b <时,2240b --=,解得b =-当0b < 时,2240b -+=,△2(4124840=--⨯⨯=-<,∴方程2240b -+=没有实数根,当b 时,2240b --=,解得:b =综上所述,b 的值为-;(3)令22x x =-,解得:11x =-,22x =,∴函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),①当1m <-时,1W ,2W 两部分组成的图象上必有2个“等值点”(1,1)--或(2,2),21:2()W y x x m =- ,22:(2)2()W y x m x m =--<,令2(2)2x x m =--,整理得:22(41)420x m x m -++-=,2W 的图象上不存在“等值点”,∴△0<,22(41)4(42)0m m ∴+--<,98m ∴<-,②当1m =-时,有3个“等值点”(2,2)--、(1,1)--、(2,2),③当12m -<<时,1W ,2W 两部分组成的图象上恰有2个“等值点”,④当2m =时,1W ,2W 两部分组成的图象上恰有1个“等值点”(2,2),⑤当2m >时,1W ,2W 两部分组成的图象上没有“等值点”,综上所述,当1W ,2W 两部分组成的图象上恰有2个“等值点”时,98m <-或12m -<<.8.(2021•大连)已知函数2211()22()x x m x m y x mx m x m ⎧-++<⎪=⎨⎪-+⎩ ,记该函数图象为G .(1)当2m =时,①已知(4,)M n 在该函数图象上,求n 的值;②当02x 时,求函数G 的最大值.(2)当0m >时,作直线12x m =与x 轴交于点P ,与函数G 交于点Q ,若45POQ ∠=︒时,求m 的值;(3)当3m 时,设图象与x 轴交于点A ,与y 轴交与点B ,过点B 作BC BA ⊥交直线x m =于点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,求m 的值.【分析】(1)先把2m =代入函数y 中,①把(4,)M n 代入222y x x =-+中,可得n 的值;②将02x 分为两部分确定y 的最大值,当02x < 时,将211222y x x =-++配方可得最值,再将2x =代入222y x x =-+中,可得2y =,对比可得函数G 的最大值;(2)分两种情况:Q 在x 轴的上方和下方;证明POQ ∆是等腰直角三角形,得OP PQ =,列方程可得结论;(3)分两种情况:①03m ,如图2,过点C 作CD y ⊥轴于D ,证明()ABO BCD ASA ∆≅∆,得OA BD =,列方程可得结论;②3m <,如图3,同理可得结论.【解答】解:(1)当2m =时,22112(2)2222(2)x x x y x x x ⎧-++<⎪=⎨⎪-+⎩ ,①(4,)M n 在该函数图象上,2424210n ∴=-⨯+=;②当02x < 时,22111112(222228y x x x =-++=--+,102-<,∴当12x =时,y 有最大值是128,当2x =时,222222y =-⨯+=,1228<,∴当02x 时,函数G 的最大值是128;(2)分两种情况:①如图1,当Q 在x 轴上方时,由题意得:12OP m =,45POQ ∠=︒,90OPQ ∠=︒,POQ ∴∆是等腰直角三角形,OP PQ ∴=,∴211111()22222m m m m =-⋅+⋅+,解得:10m =,26m =,0m >,6m ∴=;②当Q 在x 轴下方时,同理得:211111()22222m m m m =⋅-⋅-解得:10m =,214m =,0m >,14m ∴=;综上,m 的值是6或14;(3)分两种情况:①如图2,当03m 时,过点C 作CD y ⊥轴于D ,当0x =时,y m =,OB m ∴=,CD m =,CD OB ∴=,AB BC ⊥,90ABC ABO CBD ∴∠=∠+∠=︒,90CBD BCD ∠+∠=︒,ABO BCD ∴∠=∠,90AOB CDB ∠=∠=︒,()ABO BCD ASA ∴∆≅∆,OA BD ∴=,当x m <时,0y =,即211022x x m -++=,220x x m --=,解得:112x =,212x +=,12OA ∴=,且138m - ,点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,13OD c a ∴==-,13BD m OD m a ∴=-=+,OA BD =,∴13m =+,解得:10m =(此时,A ,B ,C 三点重合,舍),2209m =;②当0m <时,如图3,过点C 作CD y ⊥轴于D ,同理得:OA BD =,当x m 时,0y =,则20x mx m -+=,解得:1x =,2m =(舍),2m OA a +∴==,∴13c m a m =-=--,解得:10m=,216 21m=-;综上,m的值是209或1621-.。

专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:(3)①根据图象可知,I随R的增大而减小,总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;x…﹣4﹣3﹣2012…y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=4.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x≤4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4上,则Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。

专题10 代几综合题中的新定义-2023年中考数学毕业班二轮热点题型归纳与变式演练 (解析版)

专题10 代几综合题中的新定义-2023年中考数学毕业班二轮热点题型归纳与变式演练 (解析版)

专题10 代几综合题中的新定义目录【题型一】 二次函数中的新定义【典例分析】﹣x,其顶点(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x22为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.【分析】(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);﹣t,即可求解;(2)①设抛物线“不动点”坐标为(t,t),则t=t22②新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:x=m,与x轴的交点C(m,0),四边形OABC是梯形,则直线x=m在y轴左侧,而点A (1,﹣1),点B (m ,m ),则m =﹣1,即可求解.【解答】解:(1)∵a =1>0,y =x 22﹣x =(x 1﹣)21﹣故该抛物线开口向上,顶点A 的坐标为(1,﹣1),(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 22﹣t ,解得:t =0或3,故“不动点”坐标为(0,0)或(3,3);②当OC ∥AB 时,∵新抛物线顶点B 为“不动点”,则设点B (m ,m ),∴新抛物线的对称轴为:x =m ,与x 轴的交点C (m ,0),∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧,∵BC 与OA 不平行,∴OC ∥AB ,又∵点A (1,﹣1),点B (m m ),∴m =﹣1,故新抛物线是由抛物线y =x 22﹣x 向左平移2个单位得到的;当OB ∥AC 时,同理可得:抛物线的表达式为:y =(x 2﹣)2+2=x 24﹣x +6,当四边形OABC 是梯形,字母顺序不对,故舍去,综上,新抛物线的表达式为:y =(x +1)21﹣.【点评】本题为二次函数综合运用题,正确利用二次函数基本知识、梯形基本性质进行分析是解题关键.【提分秘籍】所谓“新定义”型问题,主要是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求同学们读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

2 时,等号成立,
所以 m 2 2 2 ,即 m , 2 2 2 .
故选:C.
【点睛】关键点睛:本题突破口是理解“隐对称点”的定义,将问题转化为 g(x) 与 f (x) 在 0, 上有交点的
问题,从而得解.
5.(2023·高二单元测试)能够把椭圆 x2 y2 1的周长和面积同时分为相等的两部分的函数称为椭圆的“可 4
f
3 1
2

当t
1 时, 2
f
t
max
f
1 2
21 8.
所以
f
x
的值域为
1 2
,
21 8
.
当 1 f x 0 时, y INT f x 1,
2
当 0 f x 1时, y INT f x 0 ,
当1 f x 2 时, y INT f x 1, 当 2 f x 21 时, y INT f x 2 ,
对选项
B:
f
x
ln
5 5
x x
,函数定义域满足
5 5
x x
0 ,解得
5
x
5 ,且
f
x
ln
5 5
x x
f
x ,函数为
奇函数,满足;
对选项 C: f x sin x 为奇函数,满足;
对选项 D: f x ex ex , f x ex ex f x ,函数为偶函数,且 f 0 2 0 ,不满足.
f
x
ex ex
1 1
,得
ex
f
1
x 1 f x
.
因为 ex
f x1 0 ,所以 1 f x
0 ,解得 1
f

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

专题04 三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为2π3,则角θ的正弦值为( ) A.2B .12C .12−D. 【答案】D【分析】根据面度数的定义,可求得角θ的弧度数,继而求得答案. 【详解】设角θ所在的扇形的半径为r ,则2212π23r r θ=, 所以4π3θ=,所以4ππsin sin sin 33θ==−=, 故选:D .2.(2023秋·江苏苏州·高一统考期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥−. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x −()222222(1-cos )1=151cos =17+16cos cos cos x x x x x −−−⎛⎫ ⎪⎝⎭ 21716cos 9x x≤−=,当且仅当21cos 4x =时等号成立,故9m ≥, 故选:D.3.(2022·全国·高一专题练习)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若2(sin cos )2sin cos αααα−=,则角α可取的值用密位制表示错误..的是( ) A .12-50 B .2-50 C .13-50 D .32-50【答案】C【分析】根据同角三角函数的基本关系及二倍角公式求出α,再根据所给算法一一计算各选项,即可判断; 【详解】解:因为2(sin cos )2sin cos αααα−=, 即22sin 2sin cos cos 2sin cos αααααα−+=, 即4sin cos 1αα=,所以1sin 22α=,所以22,6k k Z παπ=+∈,或522,6k k Z παπ=+∈, 解得,12k k Z παπ=+∈或5,12k k Z παπ=+∈ 对于A :密位制1250−对应的角为125052600012ππ⨯=,符合题意; 对于B :密位制250−对应的角为2502600012ππ⨯=,符合题意; 对于C :密位制1350−对应的角为135092600020ππ⨯=,不符合题意; 对于D :密位制3250−对应的角为3250132600012ππ⨯=,符合题意; 故选:C4.(2022秋·山东青岛·高三山东省青岛第五十八中学校考阶段练习)计算器是如何计算sin x ,cos x ,πx ,ln x 些函数,通过计算多项式的值求出原函数的值,如357sin 3!5!7!x x x x x =−+−+,246cos 12!4!6!x x x x =−+−+,其中!12n n =⨯⨯⨯,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到3sin 12π⎛⎫−+ ⎪⎝⎭的近似值为( )A .0.50B .0.52C .0.54D .0.56【答案】C【分析】将3sin 12π⎛⎫−+ ⎪⎝⎭化为cos1,根据新定义,取1x =代入公式246cos 12!4!6!x x x x =−+−+⋅⋅⋅中,直接计算取近似值即可.【详解】由题意可得,3sin 1cos12π⎛⎫−+= ⎪⎝⎭,故246111111cos1112!4!6!224720=−+−+=−+−+10.50.0410.0010.54=−+−+⋯≈,故选:C .5.(2022春·广东中山·高二统考期末)密位制是度量角与弧的常用制度之一,周角的16000称为1密位.用密位作为角的度量单位来度量角与弧的制度称为密位制.在密位制中,采用四个数字来记角的密位,且在百位数字与十位数字之间加一条短线,单位名称可以省去,如15密位记为“00—15”,1个平角=30—00,1个周角=60—00,已知函数()2cos f x x =−,3,22x ππ⎡⎤∈⎢⎥⎣⎦,当()f x 取到最大值时对应的x 用密位制表示为( ) A .15—00 B .35—00 C .40—00 D .45—00【答案】C【分析】利用导数研究()f x 在给定区间上的最大值,结合题设密位制定义确定()f x 取到最大时x 用密位制.【详解】由题设,()2sin f x x '=,在4[,)23x ππ∈时()0f x '>,在43(,]32x ππ∈时()0f x '<,所以()f x 在4[,)23x ππ∈上递增,在43(,]32x ππ∈上递减,即max 4()()3f x f π=,故()f x 取到最大值时对应的x 用密位制表示为40—00. 故选:C6.(2022春·云南昆明·高二校考期末)在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P与原点O 之间距离为r ,比值rx 叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值x y 叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=−;乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】当甲错误时,乙一定正确,从而推导出丙、丁均错误,与题意不符,故甲一定正确;再由丙丁必有一个错误,得到乙一定正确,由此利用三角函数的定义能求出结果.【详解】解:当甲:5sec 4β=−错误时,乙:5csc 3β=正确,此时53r y =,r =5k ,y =3k ,则|x |=4k ,(k >0), 4tan 3y x β∴==或4tan 3β=−,∴丙:3tan 4β=−不正确,丁:4cot 3β=不正确,故错误的同学不是甲;甲:5sec 4β=−,从而r =5k ,x =﹣4k ,|y |=3k ,(k >0),此时,乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=必有两个正确,一个错误,∵丙和丁应该同号,∴乙正确,丙和丁中必有一个正确,一个错误,∴y =3k >0,x =﹣4k <0,34tan ,cot 43ββ∴=−=−,故丙正确,丁错误, 综上错误的同学是丁. 故选:D .7.(2023秋·湖南邵阳·高一统考期末)设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1−B .C .12−D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x xf x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫−=−≥ ⎪⎝⎭则22,4k x k k Z ππππ≤−≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为当cos sin x x >时,即sin cos 04x x x π⎛⎫−=−< ⎪⎝⎭则222,4k x k k Z πππππ+<−<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B8.(2023秋·浙江杭州·高一浙江大学附属中学校考期末)正割()secant 及余割()cos ecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】由参变量分离法可得出2211716cos cos m x x ⎛⎫≥−+ ⎪⎝⎭,利用基本不等式可求得m 的取值范围,即可得解.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥−, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x xxx −⎛⎫−=−−=−+ ⎪⎝⎭179≤−=, 当且仅当21cos 4x =时,等号成立,故9m ≥. 故选:D.9.(2022春·江西景德镇·高二景德镇一中校考期中)对集合{}12,,,k a a a ⋯和常数m ,把()()()222122sin sin sin k a m a m a m kσ−+−++−=定义为集合{}12,,,k a a a ⋯相对于m 的“正弦方差",则集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为( )A .32B C .12D .与m 有关的值【答案】C【分析】先确定集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”的表达式,再利用半角公式,两角和与差的余弦公式化简可得结果.【详解】由题知,集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为2222sin sin sin 6263m m m πππσ⎛⎫⎛⎫⎛⎫−−+−++− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1cos 21cos 21cos 21333222m m m πππ⎛⎫⎛⎫⎛⎫−−−−− ⎪ ⎪ ⎪−−⎝⎭⎝⎭ ⎪=++ ⎪ ⎪⎝⎭ ()13cos 2cos 2cos 2633m m m πππ⎡⎤⎛⎫⎛⎫⎛⎫=−++−+−⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦把()()1cos 2cos 2232m m m π⎛⎫+= ⎪⎝⎭,()()cos 2cos 2m m π−=−, ()()1cos 2cos 2232m m m π⎛⎫−= ⎪⎝⎭,代入上式整理得,212σ=.故选:C.10.(2022秋·山东·高三山东聊城一中校联考阶段练习)现有如下信息:(1)黄金分割比(简称:黄金比)是指把一条线段分割为两部分,较短部分与较长部分的长度之比等于较(2)黄金三角形被誉为最美三角形,是较短边与较长边之比为黄金比的等腰三角形. (3)有一个内角为36o 的等腰三角形为黄金三角形, 由上述信息可求得126sin =( ) AB12CD【答案】D【分析】如图作三角形,先求出5cos364=126sin 的值. 【详解】如图,等腰三角形ABC ,36ABC ∠=,,AB BC a AC b ===,取AC 中点,D 连接BD .b a =, 由题意可得1511512sin 22224bABC b a a ∠−−====,所以22cos 12sin 12ABC ABC ∠∠=−=−= 所以5cos364=所以5126364sin cos ︒==. 故选:D. 11.(2021秋·四川巴中·高一校联考期末)定义运算a bad bc c d=−,如果()()105,(0,0)2sin 2f x x πωϕωϕ=><<+的图像的一条对称轴为,4x πϕ=满足等式2cos 3tan ϕϕ=,则ω取最小值时,函数()f x 的最小正周期为( ) A .2πB .πC .3π2D .2π【答案】C【分析】根据2cos 3tan ϕϕ=,利用切化弦和同角三角函数关系转化成sin ϕ的二次方程,可求出ϕ的值,结合对称轴可求出ω,最后利用周期公式进行求解即可. 【详解】105()10sin()102sin()f x x x ωϕωϕ==+−+,因为2cos 3tan ϕϕ=,所以sin 2cos 3cos ϕϕϕ=,即22cos 3sin ϕϕ=,22(1sin )3sin ϕϕ−=, 所以(sin 2)(2sin 1)0ϕϕ+−=,解得1sin 2ϕ=或2−(舍去), 而02πϕ<<,所以6πϕ=,即()10sin()106f x x πω=+−,而()y f x =的图象的一条对称轴为4x π=,所以10sin 1046ππω⎛⎫⨯+=± ⎪⎝⎭,即462k πππωπ⨯+=+,Z k ∈,解得443k ω=+,Z k ∈,所以正数ω取最小值为43,此时函数()f x 的最小正周期为23423ππ=.故选:C .12.(2020·全国·高三校联考阶段练习)对于集合{}12,,,n x x x ⋅⋅⋅,定义:()()()22210200cos cos cos n x x x x x x n−+−+⋅⋅⋅+−Ω=为集合{}12,,,n x x x ⋅⋅⋅相对于0x 的“余弦方差”,则集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”为( ) A .14B .12CD【答案】B【解析】根据所给“余弦方差”定义公式,代入集合中的各元素,即可得Ω的表达式,结合余弦降幂公式及诱导公式化简,即可求解.【详解】由题意可知,集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”代入公式可得2222000032cos cos cos cos 1051054x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Ω=0000321cos 21cos 21cos 21cos 210510522224x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++=0000321cos 21cos 21cos 21cos 21051058x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=00002344cos 2cos 2cos 2cos 255558x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=因为0000423cos 2cos 20,cos 2cos 205555x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫++−=++−= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以原式4182Ω==, 故选:B.【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.13.(2020秋·江西宜春·高三奉新县第一中学校考阶段练习)已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是 A . B .C .D .【答案】A【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1T ππωπ===, 所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 14.(2022春·陕西延安·高一校考阶段练习)对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的“下确界”为12−,则m 的取值范围是( ) A .,62ππ⎛⎤− ⎥⎝⎦B .,62ππ⎛⎫− ⎪⎝⎭C .5,66ππ⎛⎤− ⎥⎝⎦D .5,66ππ⎛⎫− ⎪⎝⎭【答案】A【分析】由下确界定义,()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,由余弦函数性质可得.【详解】由题意()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,又21()3cos()13cos163332f ππππ−=−−+=+=−, 由13cos(2)132x π−+≥−,得1cos(2)32x π−≥−,22222333k x k πππππ−≤−≤+,,62k x k k Z ππππ−≤≤+∈,0k =时,62x ππ−≤≤,所以62m ππ−<≤.故选:A .【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.15.(2020·全国·高一假期作业)如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π上是凸函数,那么在ABC ∆中,sin sin sin A B C ++的最大值是( )A .32B .3CD 【答案】D【分析】利用“凸函数”的定义得到恒成立的不等式,利用三角形的内角和为π,即可求出最大值. 【详解】因为sin y x =在区间[0,]π上是“凸函数”,所以sin sin sin sin sin 333A B C A B C π++++=…得sin sin sin A B C ++…即:sin sin sin A B C ++的最大值是2故选:D.【点睛】本题考查理解题中的新定义,并利用新定义求最值,还运用三角形的内角和.二、多选题16.(2022·全国·高一专题练习)定义:()()()22210200cos cos cos n nθθθθθθμ−+−++−=为集合{}12,,,n A θθθ=相对常数0θ的“余弦方差”.若0,2πθ⎡⎤∈⎢⎥⎣⎦,则集合,03A π⎧⎫=⎨⎬⎩⎭相对θ的“余弦方差”的取值可能为( ) A .38B .12C .34D .45【答案】ABC【分析】根据所给定义及三角恒等变换公式将函数化简,再根据0θ的取值范围,求出026θπ+的取值范围,再根据正弦函数的性质计算可得.【详解】解:依题意()2200cos cos 0πθθμ⎛⎫−+− ⎪ 22000cos cos sin cos 332sin ππθθθ=+⎛⎫+ ⎪⎝⎭220001cos cos 22θθθ⎛⎫+ ⎝⎪⎭=2220000013cos sin sin cos 4242θθθθθ++=200013cos sin 2242θθθ+= 001cos 221442θθ+=00111cos 224222θθ⎛⎫=+ ⎪⎝⎭+⎪ 011sin 2462πθ⎛⎫=+ ⎪⎝⎭+, 因为00,2πθ⎡⎤∈⎢⎥⎣⎦,所以02,7666πππθ⎡⎤+∈⎢⎥⎣⎦,所以01s 22n 1i 6,πθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎣−⎝⎭⎦,所以33,84μ⎡⎤∈⎢⎥⎣⎦;故选:ABC17.(2021秋·全国·高三校联考期中)数学中一般用{}min ,a b 表示a ,b 中的较小值,{}max ,a b 表示a ,b 中的较大值;关于函数:(){}min sin ,sin f x x x x x =;(){}max sin ,sin g x x x x x =,有如下四个命题,其中是真命题的是( ) A .()f x 与()g x 的最小正周期均为π B .()f x 与()g x 的图象均关于直线32x π=对称 C .()f x 的最大值是()g x 的最小值 D .()f x 与()g x 的图象关于原点中心对称 【答案】BD【分析】先求出()f x ,()g x ,结合函数()f x 与()g x 的图象即可求解【详解】设()sin 2sin(),()sin 2sin(),33h x x x x t x x x x ππ==+==−则{}32sin(),22,322()min (),()2sin(),22,322x k x k f x h x t x x k x k ππππππππππ⎧++≤≤+⎪⎪==⎨⎪−−+<<+⎪⎩,{}32sin(),22,322()max (),()2sin(),22,322x k x k g x h x t x x k x k ππππππππππ⎧−+≤≤+⎪⎪==⎨⎪+−+<<+⎪⎩函数()f x 与()g x 的大致图象如下所示:对A ,由图知,()f x 与()g x 的最小正周期均为2π;故A 错误; 对B ,由图知,32x π=为函数()f x 与()g x 的对称轴,故B 正确. 对C ,12f π⎛⎫= ⎪⎝⎭,由图知∶函数()f x 的值域为[]2,1−,函数()g x 的值域为[]1,2−,故C 错误;对D ,由图知,()f x 与()g x 的图象关于原点中心对称,故D 正确; 故选:BD.18.(2022·江苏·高一专题练习)已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=−,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=【答案】AC【分析】由题可得1sin 4α=,根据诱导公式化简计算判断每个选项即可. 【详解】若α与β广义互余,则2()2k k Z παβπ+=+∈,即2()2k k Z πβπα=+−∈.又由()1sin 4πα+=−,可得1sin 4α=.对于A ,若α与β广义互余,则sin sin(2)cos 24k πβπαα=+−===±,由sin β=可得α与β可能广义互余,故A 正确;对于B ,若α与β广义互余,则1cos cos(2)sin 24k πβπαα=+−==,由()1cos 4πβ+=可得 1cos 4β=−,故B 错误;对于C ,综上可得sin β=1cos 4β=,所以sin tan cos βββ==C 正确,D 错误. 故选:AC .19.(2022春·辽宁沈阳·高一沈阳市第一二〇中学校考阶段练习)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义1cos θ−为角θ的正矢,记作sin ver θ,定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题正确的是( ) A .161sin32ver π= B .sin sin 2ver cover πθθ⎛⎫−= ⎪⎝⎭C .若sin 12sin 1cover x ver x −=−,则()21sin sin 5cover x ver x −=D .函数()sin 2020sin 202036f x ver x cover x ππ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭的最大值为2【答案】BC【分析】利用诱导公式化简可得A 错误,B 正确;化简已知等式得到tan x ,将所求式子化简为正余弦齐次式,由此可配凑出tan x 求得结果,知C 正确;利用诱导公式化简整理得到()22sin 20206f x x π⎛⎫=−+ ⎪⎝⎭,由此可知最大值为4,知D 错误.【详解】对于A ,16163sin 1cos 1cos 51cos 33332ver πππππ⎛⎫=−=−+=+= ⎪⎝⎭,A 错误; 对于B ,sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,B 正确;对于C ,sin 11sin 1tan 2sin 11cos 1cover x x x ver x x −−−===−−−, ()()22222sin cos sin sin 1sin 1cos 12sin cos 1sin cos x xcover x ver x x x x x x x∴−=−−+=−=−+22tan 411tan 15x x =−=−+15=,C 正确; 对于D ,()1cos 20201sin 202036f x x x ππ⎛⎫⎛⎫=−−+−+= ⎪ ⎪⎝⎭⎝⎭2cos 2020sin 2020266x x πππ⎡⎤⎛⎫⎛⎫−−++−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin 20206x π⎛⎫=−+ ⎪⎝⎭,∴当sin 202016x π⎛⎫+=− ⎪⎝⎭时,()max 224f x =+=,D 错误.故选:BC.【点睛】关键点点睛:本题考查了三角函数的新定义的问题,解题关键是能够充分理解已知所给的定义,结合三角函数的诱导公式、正余弦齐次式的求解等知识来判断各个选项.20.(2022秋·河南濮阳·高一濮阳一高校考期末)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:•定义1cos θ−为角θ的正矢,记作sin ver θ,•定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题中正确的是( ) A .函数sin y ver x =在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数B .函数sin sin ver xy cover x=的最小正周期为πC .sin(sin 2ver )cover πθθ−=D .sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+=⋅+⋅ 【答案】AC【分析】由余弦函数的单调性可判断A 选项;验证得()()y x y x π≠+,可判断B 选项;由定义的诱导公式可判断C 选项;取4παβ==,代入验证可判断D 选项.【详解】因为sin 1cos y ver x x ==−,而cos y x =在3,22ππ⎡⎤⎢⎥⎣⎦上是增函数,所以函数sin 1cos y ver x x ==−在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数,故A 正确; 函数versin 1cos 1cos ();()coversin 1sin 1sin π−+==+=−+x x xy x y x x x x,所以()()y x y x π≠+,所以B 错误;sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,故C 正确;取4παβ==,sin(1cos12ver )παβ+=−=,sin sin sin sin ver cover cover ver αβαβ⋅+⋅1cos 1sin 1sin 1cos 34444+ππππ⎛⎫⎛⎫⎛⎫⎛⎫=−⋅−−⋅−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+≠⋅+⋅, 故D 错误, 故选:AC.【点睛】本题考查函数的新定义,三角函数的诱导公式,同角三角函数间的关系,余弦函数的性质,属于中档题.三、填空题21.(2023·高一课时练习)我们规定把2221cos ()cos cos ()3y B A B B A ⎡⎤=+++−⎣⎦叫做B 对A 的余弦方差,那么对任意实数B ,B 对π3的余弦方差是______.【答案】12##0.5【分析】根据余弦方差的定义求得正确答案. 【详解】依题意,B 对π3的余弦方差是:2221ππcos ()cos cos ()333y B B B ⎡⎤=+++−⎢⎥⎣⎦2π2π1cos(2)1cos(2)11cos 2333222B B B ⎡⎤+++−⎢⎥+=++⎢⎥⎢⎥⎣⎦ 12π2π3cos(2)cos 2cos(2)633B B B ⎡⎤=++++−⎢⎥⎣⎦12π2π2π2π3cos 2cos sin 2sin cos 2cos 2cos sin 2sin 63333B B B B B ⎛⎫=+−+++ ⎪⎝⎭ 11113cos 2cos 2cos 26222B B B ⎛⎫=−+−= ⎪⎝⎭. 故答案为:1222.(2022·全国·高一专题练习)已知()(),f x g x 都是定义在R 上的函数,若存在实数,m n ,使得()()()h x mf x ng x =+,则称()h x 是()f x ,()g x 在R 上生成的函数.若()()22cossin ,sin 22=−=x xf xg x x ,以下四个函数中:①π6y x ⎛⎫=− ⎪⎝⎭;②ππcos 2424x x y ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭;③2π2cos 124xy ⎛⎫=−− ⎪⎝⎭; ④22sin 2=y x .所有是()(),f x g x 在R 上生成的函数的序号为________. 【答案】①②③.【详解】()()22cossin cos ,sin 22x xf x xg x x =−==.①:πππcos sin sin )666y x x x x x ⎛⎫=−=+= ⎪⎝⎭,因此有m n ==()(),f x g x 在R 上生成的函数;②:πππcos )24242x x y x x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因此有0m n ==,本函数是()(),f x g x 在R 上生成的函数; ③:2ππ2cos 1cos()sin 242xy x x ⎛⎫=−−=−= ⎪⎝⎭,因此有0,1m n ==,本函数是()(),f x g x 在R 上生成的函数; ④:2222sin 28sin cos y x x x ==,显然不存在实数,m n ,使得228sin cos cos sin x x m x n x =+成立,因此本函数不是()(),f x g x 在R 上生成的函数, 故答案为:①②③23.(2021春·江苏淮安·高一校联考阶段练习)形如a bc d 的式子叫做行列式,其运算法则为a b ad bc c d=−,则行列式sin15cos15︒︒的值是___________. 【答案】12−【分析】根据新定义计算即可.【详解】由题意sin151sin 45sin15cos 45cos15cos 602cos15︒=︒︒=︒︒−︒︒=−︒=−︒. 故答案为12−.24.(2023·高一课时练习)若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①()1sin cos f x x x =+;②()2f x x =()3sin f x x =;④())4sin cos f x x x =+.其中“同形”函数有__________.(选填序号)【答案】①②【分析】利用三角恒等变换转化函数解析式,对比各函数的最小正周期及振幅即可得解.【详解】由题意,()1sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,())4sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,四个函数的最小正周期均相同,但振幅相同的只有①,②, 所以“同形”函数有①②. 故答案为:①②.25.(2023·高一课时练习)在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数.在[],x ππ∈−上,下列函数中,为一阶格点函数的是___________.(选填序号)①sin y x =;②e 1x y =−;③ln y x =;④2y x = 【答案】①②③【分析】根据题目定义以及各函数的图象与性质即可判断.【详解】当[],x ππ∈−时,函数sin y x =,e 1x y =−的图象只经过一个格点()0,0,符合题意; 函数ln y x =的图象只经过一个格点()1,0,符合题意;函数2y x =的图象经过七个格点,()()()()()()()3,9,2,4,1,1,0,0,1,1,2,4,3,9−−−,不符合题意.故答案为:①②③.26.(2022春·河南商丘·高一商丘市第一高级中学校考开学考试)在平面直角坐标系xoy 中,已知任意角θ以坐标原点o 为顶点,x 轴的非负半轴为始边,若终边经过点00(,)p x y ,且(0)op r r =>,定义:00y x sos rθ+=,称“sos θ”为“正余弦函数”,对于“正余弦函数y sosx =”,有同学得到以下性质:①该函数的值域为⎡⎣; ②该函数的图象关于原点对称;③该函数的图象关于直线34x π=对称; ④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为32,244k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦.其中正确的是__________.(填上所有正确性质的序号) 【答案】①④⑤.【详解】分析:根据“正余弦函数”的定义得到函数)4y sosx x π==+,然后根据三角函数的图象与性质分别进行判断即可得到结论.详解:①中,由三角函数的定义可知00cos ,sin x r x y r x ==,所以00sin cos )[4y x y sosx x x x r π+===+=+∈,所以是正确的;②中,)4y sosx x π==+,所以()0)104f π=+=≠,所以函数关于原点对称是错误的;③中,当34x π=时,33()sin()0444f ππππ+==≠34x π=对称是错误的;④中,)4y sosx x π==+,所以函数为周期函数,且最小正周期为2π,所以是正确的;⑤中,因为)4y sosx x π==+,令22242k x k πππππ−≤+≤+,得322,44k x k k Z ππππ−≤≤+∈,即函数的单调递增区间为3[2,2],44k k k Z ππππ−+∈,所以是正确的,综上所述,正确命题的序号为①④⑤.点睛:本题主要考查了函数的新定义的应用,以及三角函数的图象与性质的应用,其中解答中根据函数的新定义求出函数y sosx =的表达式是解答的关键,同时要求熟练掌握三角函数的图象与性质是解答额基础,着重考查了分析问题和解答问题的能力,属于中档试题.27.(2015秋·广东揭阳·高一统考期中)定义一种运算,令,且,则函数的最大值是_______________【答案】54【详解】试题分析::∵,∴0≤sinx≤1∴()22255cos sin sin sin 1sin 144y x x x x x =+=−++=−−+≤ 由题意可得,()22215cos sin ,sin cos cos 224f x x x f x x x x π⎛⎫⎛⎫=+−=−=−++ ⎪ ⎪⎝⎭⎝⎭函数的最大值54考点:三角函数的最值四、解答题28.(2023春·云南文山·高一校考阶段练习)人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点()11,A x y ,()22,B x y ,则曼哈顿距离为:()1212,d A B x x y y =−+−,余弦相似度为:()cos ,A B =()1cos ,A B −(1)若()1,2A −,34,55B ⎛⎫⎪⎝⎭,求A ,B 之间的曼哈顿距离(),d A B 和余弦距离;(2)已知()sin ,cos M αα,()sin ,cos N ββ,()sin ,cos Q ββ−,若()1cos ,5M N =,()2cos ,5M Q =,求tan tan αβ的值【答案】(1)145,15−(2)3−【分析】(1)根据公式直接计算即可.(2)根据公式得到1sin sin cos cos 5αβαβ+=,2sin sin cos cos 5αβαβ−=,计算得到答案.【详解】(1)()3414,12555d A B =−−+−=,()34cos ,55A B ==,故余弦距离等于()1cos ,15A B −=−; (2)()cos ,M N =1sin sin cos cos 5αβαβ=+=;()cos ,M Q =2sin sin cos cos 5αβαβ=−=故3sin sin 10αβ=,1cos cos 10αβ=−,则sin sin tan tan 3cos cos αβαβαβ==−. 29.(2023·高一课时练习)知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.与之类似,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对()sad .如图,在ABC 中,AB AC =.顶角A 的正对记作sad A ,这时sad BCA AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad60的值为( )A .12 B .1 C D .2 (2)对于0180A <∠<,A ∠的正对值sad A 的取值范围是______. (3)已知3sin 5α=,其中α为锐角,试求sad α的值. 【答案】(1)B(2)()0,2(3)sad α=【分析】(1)在等腰ABC 中,取60A ∠=,AB AC =,利用正对的定义可得出sad60sad A =的值; (2)在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,推导出sad 2sin 2AA =,结合正弦函数的基本性质可求得sad A 的取值范围;(3)利用同角三角函数的基本关系求出cos α,利用二倍角公式可求得sin 2α,由此可得出sad 2sin2αα=的值.【详解】(1)解:在等腰ABC 中,60A ∠=,AB AC =,则ABC 为等边三角形, 所以,sad60sad 1BCA AB===, 故选:B.(2)解:在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,则2sad 2cos 2cos 902sin 22BC BD A A A B AB AB ⎛⎫====−= ⎪⎝⎭, 因为0180A <∠<,则0902A <<,故()sad 2sin 0,22AA =∈. 故答案为:()0,2.(3)解:π02α<<,则π024α<<,所以,24cos 12sin 52αα===−,所以,sin2α=sad 2sin 2αα==. 30.(2020秋·全国·高三校联考阶段练习)若函数()()sin cos ,f x a x b x a b =+∈R ,平面内一点坐标(),M a b ,我们称M 为函数()f x 的“相伴特征点”,()f x 为(),M a b 的“相伴函数”.(1)已知()1sin sin cos 2222x x x f x ⎛⎫=+− ⎪⎝⎭,求函数()f x 的“相伴特征点”;(2)记122M ⎛' ⎝⎭的“相伴函数”为()g x ,将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),再将所得的图象上所有点向右平移4π个单位长度,得到函数()h x ,作出()h x 在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象.【答案】(1)11,22⎛⎫− ⎪⎝⎭;(2)作图见解析.【分析】(1)利用二倍角的降幂公式化简得出()11sin cos 22f x x x =−,由此可得出函数()y f x =的“相伴特征点”的坐标;(2)由题中定义可得出()sin 3g x x π⎛⎫=+ ⎪⎝⎭,利用三角函数图象变换得出()52sin 312h x x π⎛⎫=− ⎪⎝⎭,然后通过列表、描点、连线,可得出函数)y h x =在区间529,3636ππ⎡⎤⎢⎥⎣⎦上的图象. 【详解】(1)()211cos sin 111sinsin cos sin cos 222222222x x x x x f x x x −=+−=+−=−Q , 故函数()y f x =的“相伴特征点”为11,22⎛⎫− ⎪⎝⎭;(2)由题意可得()1sin sin 23g x x x x π⎛⎫==+ ⎪⎝⎭, 将函数()y g x =图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),可得到函数2sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得的图象上所有点向右平移4π个单位长度,可得到函数()52sin 32sin 34312h x x x πππ⎡⎤⎛⎫⎛⎫=−+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,当529,3636x ππ⎡⎤∈⎢⎥⎣⎦时,503212x ππ≤−≤,列表如下:故函数()y h x =在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示.【点睛】本题考查三角函数的新定义、利用三角函数图象变换求解析式,同时也考查了五点作图法,考查分析问题和解决问题的能力,属于中等题. 五、双空题31.(2022秋·内蒙古包头·高一统考期末)对任意闭区间I ,I M 表示函数sin 6y x π⎛⎫=+ ⎪⎝⎭在区间I 上的最大值,则0,2M π⎡⎤⎢⎥⎣⎦=______,若[0,][,2]2t t t M M =,则t 的值为______.【答案】 1;23π或π 【分析】由题可得2,663x πππ⎡⎤+∈⎢⎥⎣⎦,故0,2M π⎡⎤⎢⎥⎣⎦=1;对t 分类讨论,利用正弦函数的性质得出符合条件的t 即可.【详解】当0,2x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴当62x ππ+=时,max 1y =,∴0,2M π⎡⎤⎢⎥⎣⎦=1;当62t ππ+<,即3t π<时,[0,]sin 6t M t π⎛⎫=+ ⎪⎝⎭,[,2][0,]sin 6t t t M t M π⎛⎫+= ⎪>⎝⎭, 这与[0,][,2]2t t t M M =矛盾, 当62t ππ+≥且5262t ππ+<,即736t ππ≤<时,[0,]1t M =,[,2]sin 6t t M t π=⎛⎫+ ⎪⎝⎭或[,2]sin 26t t M t π=⎛⎫+ ⎪⎝⎭,由[0,][,2]2t t t M M =可得,1sin 62t π⎛⎫+= ⎪⎝⎭或1sin 262t π⎛⎫+= ⎪⎝⎭,所以23t π=或t π=, 当5262t ππ+≥,即76t π≥时,[0,]1t M =,[,2]1t t M =,这与[0,][,2]2t t t M M =矛盾; 综上所述,t 的值为23π或π. 故答案为:1;23π或π.32.(2019秋·北京海淀·高三人大附中校考阶段练习)已知集合M 是满足下列性质的函数()f x 的全体,存在非零常数T ,对任意x ∈R ,有()()f x T Tf x +=成立.(1)给出下列两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.(2)若函数()sin f x kx M =∈,则实数k 的取值集合为__________. 【答案】 2()f x {|,}k k m m Z π=∈ 【分析】(1)根据集合M 的性质判断.(2)根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】(1)若1()f x M ∈,则存在非零点常数T ,使得11()()f x T Tf x +=,则x T Tx +=,(1)0T x T −+=对x R ∈恒成立,这是不可能的,1()f x M ∉;若2()f x M ∈,则存在非零点常数T ,使得22()()f x T Tf x +=,则22a Ta =,对x R ∈恒成立,1T =,2()f x M ∈; (2)函数()sin f x kx M =∈,则存在非零点常数T ,使得()()f x T T f x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x R ∈知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈−,sin ()[1,1]k x T +∈−,因此要使sin ()sin k x T T kx+=成立,只有1T =±,若1T =,则sin()sin kx k kx +=,2,T m m Z π=∈,若1T =−,则sin()sin kx k kx −=−,即sin()sin kx k kx π−+=,2k m ππ−+=,(21),k m m Z π=−−∈, 综上实数k 的取值范围是{|,}k k m m Z π=∈. 故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】本题考查新定义问题,此类问题的特点是解决问题只能以新定义规则为依据,由新定义规则把问题转化,转化为熟悉的问题进行解决.。

一次函数压轴题专题突破13:一次函数与新定义7(含解析)

一次函数压轴题专题突破13:一次函数与新定义7(含解析)

一次函数压轴题专题突破13:一次函数与新定义7(含解析)一次函数压轴题之新定义1.在平面直角坐标系中,对于点P(x,y)和Q(x,y'),给出如下定义:如果y' = y,则称点Q为点P的“伴随点”。

例如:点(5,6)的“伴随点”为点(5,6);点(-5,6)的“伴随点”为点(-5,-6)。

1) 点A(2,1)的“伴随点”A'的坐标为(2,1)。

2) 点B(m,m+1)在函数y=kx+3的图像上,若其“伴随点”B'的纵坐标为2,求函数y=kx+3的解析式。

设B的横坐标为x,则B'的横坐标也为x。

由题意可知,B'的纵坐标为2,即kx+3=2,解得k=-1/2.因此,函数y=-1/2x+3的图像经过点B。

3) 在(2)的条件下,点C在函数y=kx+3的图像上,点D是点C关于原点的对称点,点D的“伴随点”为D'。

若点C在第一象限,且CD=DD',直接写出此时“伴随点”D'的坐标。

由对称性可知,C和D'的纵坐标相等,即kx+3=-kx+3,解得x=0.因此,D'的坐标为(0,k*0+3)=(0,3)。

2.定义:对于给定的一次函数y=ax+b(a≠0),把形如y=kx+b的函数称为一次函数y=ax+b(a≠0)的衍生函数。

已知矩形ABCD的顶点坐标分别为A(1,3),B(1,2),C(-3,2),D(-3,3)。

1) 已知函数y=2x+1.①若点P(-1,m)在这个一次函数的衍生函数图像上,则m=-5.②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为(-2,-3)和(3,7)。

2) 当函数y=kx-3(k>0)的衍生函数的图像与矩形ABCD有2个交点时,k的取值范围是(0,3)。

3.在平面直角坐标系xOy中,对于半径为r(r>0)的圆O和点P,给出如下定义:若r≤PO≤2r,则称P为圆O的“近外点”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与函数有关的新定义题型1.(201625题10分)若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值围.2.(201525题10分)在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点......称之为“中国结”.(1)求函数y =3x +2的图象上所有“中国结”的坐标;(2)若函数y =k x(k ≠0,k 为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;(3)若二次函数y =(k 2-3k +2)x 2+(2k 2-4k +1)x +k 2-k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?3.(201425题10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(2,2),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数y =n x(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y =3kx +s -1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足-2<x 1<2,|x 1-x 2|=2,令t =b 2-2b +15748,试求t 的取值围.4.(201325题10分)设a ,b 是任意两个不等实数,我们规定:满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.(1)反比例函数y =2013x是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由; (2)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式;(3)若二次函数y =15x 2-45x -75是闭区间[a ,b ]上的“闭函数”,数a ,b 的值.5. (201725题10分)若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;(2)若M(t ,y 1),N (t +1,y 2),R (t +3,y 3)三点均在函数y =k x(k 为常数,k ≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,数t 的值;(3)若直线y =2bx +2c(bc ≠0)与x 轴交于点A (x 1,0),与抛物线y =ax 2+3bx +3c(a ≠0)交于B (x 2,y 2),C (x 3,y 3)两点.①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”;②若a >2b >3c ,x 2=1,求点P (c a ,b a)与原点O 的距离OP 的取值围.6.(201125题10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x -1,令y =0,可得x =1,我们就说1是函数y =x -1的零点.已知函数y =x 2-2mx -2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为x 1和x 2,且1x 1+1x 2=-14,此时函数图象与x 轴的交点分别为A 、B (点A 在点B 左侧),点M 在直线y =x -10上,当MA +MB 最小时,求直线AM 的函数解析式.7.(201826题10分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD 交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.5. (2017雅礼实验中学月考)已知y 是关于x 的函数,若其图象经过点P(t ,t ),则称点P 为函数图象上的“bingo 点”,例如:y =2x -1上存在“bingo 点”P (1,1).(1)直线____________(填写直线解析式)上的每一个点都是“bingo 点”;双曲线y =1x上的“bingo 点”是________;(2)若抛物线y =12x 2+(13a +1)x -19a 2-a +2上有“bingo 点”,且“bingo 点”A 、B (点A 和点B 可以重合)的坐标为A (x 1,y 1),B (x 2,y 2),求x 21+x 22的最小值;(3)若函数y =14x 2+(n -k +1)x +m +k -1的图象上存在唯一的一个“bingo 点”,且当-2≤n ≤1时,m 的最小值为k ,求k 的值.6. (2018原创)在平面直角坐标系,若点P (x ,y)满足2x +y =0,则称点P 是“反倍点”,例如点P(2,-4)就是一个反倍点.(1)已知点A 是第二象限的一个“反倍点”,且点A 到x 轴的距离为2,求经过点A 的反比例函数y =k x的解析式; (2)已知“反倍点”B 在一次函数y =mx +2图像上,且点B 的纵、横坐标均为整数,求点B 的坐标;(3)已知二次函数y =-(x -h)2+c 的顶点D 是“反倍点”,当抛物线与y 轴的交点C 的纵坐标y C 取得最大值时,在抛物线上及抛物线共有几个“反倍点”,并求出这些点的坐标.7. (2017雅礼实验中学一模)若直线l 与曲线L 相交于A 、B 两点,直线l 与y 轴交于点C ,且AC =2BC ,则称直线l 与曲线L 互为“倍数函数”,A 、B 两点间的水平距离为“倍长量”.(1)若直线l :y =ax +b 经过点C(0,1),与曲线L :y =k x其中一个交点为(1,2),那么直线l 与曲线L 是否互为“倍数函数”,请说明理由;(2)若当k >1时,直线l :y =kx +1与曲线L :y =x 2+2kx +k 互为“倍数函数”,求直线l 的解析式;(3)直线l :y =kx +d 与曲线L :y =2x 2+bx +c 互为“倍数函数”,且|b -k |=3,c ≠d ,AB 的“倍长量”是否为定值,若为定值,求出定值;若不为定值,说明理由.8. (2018原创)在平面直角坐标系xOy 中,对于点P (a ,b )和点Q(a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a≥1-b ,a<1,则称点Q 为点P 的限变点.如点(2,3)限变点坐标是(2,3),点(-2,5)限变点坐标是(-2,-5).(1)若点A (-1,2)是函数y =a x图象上某一个点的限变点,求a 的值; (2)若反比例函数y =p +2x和一次函数y =px +2(p≠0)同时过点B (p ,3)的限变点C ,求此时p 的值;(3)若点P 在二次函数y =x 2+4x -1(-3≤x ≤k ,k ≥-3)的图象上,其限变点Q 的纵坐标b′的取值围是-1≤b ′≤5,求k 的取值围.9. (2018原创)若抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,且△ABC恰好是直角三角形,则称抛物线y =ax 2+bx +c 是“勾股抛物线”,其中较短直角边所在直线为“勾线”,较长直角边所在直线为“股线”.(1)若“勾股抛物线”y =x 2+mx +n 的“勾线”经过点(1,1),求m 和n 的值;(2)已知“勾股抛物线”y =-12x 2+bx +c 与x 轴的一个交点为(-1,0),其“股线”与反比例函数y =k x的一个交点的横坐标是-2,求反比例函数解析式; (3)已知“勾股抛物线”y =33x 2+bx -3c (b≠0)的“勾线”、“股线”及x 轴围成的三角形面积S 的取值围是23≤S ≤43,设t =-2b 4+4b 2+3,求t 的最大值.10. (2017雅礼教育集团期中考试)我们将自变量为x 的函数记作f (x),若点A (m ,n )和B (n ,t )都在函数f(x)的图象上,则称点B 是点A 在函数f(x )作用下的传承点.如点(1,3)是点(-1,1)在函数y =x +2作用下的传承点.(1)求点(2,-1)在函数y =-x +1作用下的传承点的坐标;(2)直线y =kx +2与双曲线y =k x交于C ,D 两点,且点D 是点C 在这两个函数作用下的传承点,求直线与双曲线的解析式;(3)抛物线y =ax 2+bx +c 与直线y =ax +d 交于抛物线对称轴两侧的E ,F 两点,点E 的横坐标为1,且点F 是点E 在这两个函数作用下的传承点,抛物线y =ax 2+bx +c 的对称轴是直线x =-1,二次函数y =ax 2+bx +c 在E ,F 两点之间的最大值与最小值之差为8,求E ,F两点的坐标.11. 已知y 是关于x 的函数,若其图象经过点P (t ,2t ),则称点P 为函数图象上的“偏离点”.例如:直线y =x -3上存在“偏离点”P(-3,-6).(1)在双曲线y =x1上是否存在“偏离点”?若存在,请求出“偏离点”的坐标;若不存在,请说明理由;(2)若抛物线y =-12x 2+(23a +2)x -29a 2-a +1上有“偏离点”,且“偏离点”为A (x 1,y 1)和B(x 2,y 2),求w =x 21+x 22-ka 3的最小值(用含k 的式子表示); (3)若函数y =14x 2+(m -t +2)x +n +t -2的图象上存在唯一的一个“偏离点”,且当-2≤m ≤3时,n 的最小值为t ,求t 的值.12. 定义:若一次函数y =ax +b 与反比例函数y =-c x 满足a b =b c,则称y =ax 2+bx +c 为一次函数和反比例函数的“等比”函数.(1)试判断(需写出判断过程)一次函数y =x +b 与反比例函数y =-9x是否存在“等比”函数?若存在,请写出它们的“等比”函数的解析式;(2)若一次函数y =9x +b(b <0)与反比例函数y =-c x存在“等比”函数,且“等比”函数的图象与y =-c x 的图象的交点的横坐标为x =-13,求反比例函数的解析式; (3)若一次函数y =ax +b 与反比例函数y =-c x(其中a >0,c >0,a =3b)存在“等比”函数,且y =ax +b 的图象与“等比”函数图象有两交点A (x 1,y 1)、B(x 2,y 2),试判断“等比”函数图象上是否存在一点P (x ,y)(其中x 1<x <x 2),使得△ABP 的面积最大?若存在,请用c 表示△ABP面积的最大值;若不存在,请说明理由.13. (2017青竹湖湘一二模)若将函数C 1的图象沿直线x =a 对折,与函数C 2的图象重合,则称函数C 1与C 2互为“镜面函数”,直线x =a 叫作函数C 1、C 2的“镜面直线”,如:函数y =1x与函数y =-1x互为“镜面函数”,y 轴为它们的“镜面直线”; (1)若“镜面直线”为x =1,求一次函数C 1:y =-12x 的“镜面函数”C 2的解析式; (2)若函数C 1:y =x 2+4x +3与x 轴交于A 、B 两点(x A >x B ),顶点为P ,射线P A 与双曲线y=6x交于点Q ,且Q 点在函数C 1的“镜面函数”C 2上,求函数C 1、C 2的“镜面直线”; (3)若“镜面直线”为x =1,函数L 2:y =-12x 2-x +c +4的“镜面函数”L 1与x 轴交于C 、D 两点,C 点在D 点左侧,顶点为M ,与y 轴交于点E ,若ME ⊥DE ,求代数式OC·OE OD的值.14. (2017中考模拟卷八)对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p时,其函数值等于p ,则称p 为这个函数的不变值....在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.....特别地,当函数只有一个不变值时,其不变长度q 为零.例如,图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数y =x -1、y =1x、y =x 2有没有不变值?如果有,求出其不变长度; (2)函数y =2x 2-bx .①若其不变长度为0,求b 的值;②若1≤b ≤3,求其不变长度q 的取值围;(3)记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2.函数G的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q ≤3,求m 的取值围.第14题图15. (2017中考模拟卷三)若y 是关于x 的函数,H 是常数(H >0),若对于此函数图象上的任意两点(x 1,y 1),(x 2,y 2),都有|y 1-y 2|≤H ,则称该函数为有界函数,其中满足条件的所有常数H 的最小值,称为该函数的界高.如图所表示的函数的界高为4.(1)若函数y =k x(k >0)(-2≤x ≤-1)的界高为6,则k =________; (2)若函数y =kx +1(-2≤x ≤1)的界高为4,求k 的值;(3)已知函数y =x 2-2ax +3a (-2≤x ≤1)的界高为254,求a 的值.第15题图16. (2017麓山国际实验学校二模)概念:P、Q分别是两条线段a、b上任意一点,线段PQ 长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述概念,当m=2,n=2时,如图①,线段BC与线段OA的距离是______;当m =5,n=2时,如图②,线段BC与线段OA的距离(即线段AB长)为________;(2)如图③,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式;(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为点H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.第16题图17. (2017中考模拟卷四)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q与垂直于x 轴的直线P 2Q 的交点).(1)已知点A(-12,0),点B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,求满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点, ①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图③,点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第17题图18.(2017中考模拟卷七)在平面直角坐标系xOy中,图形W在坐标轴上的投影长度定义如下:设点P(x1,y1)、Q(x2,y2)是图形W上的任意两点.若|x1-x2|的最大值为m,则图形W在x 轴上的投影长度l x=m;若|y1-y2|的最大值为n,则图形W在y轴上的投影长度l y=n.如图①,图形W在x轴上的投影长度l x=|3-1|=2;在y轴上的投影长度l y=|4-0|=4.(1)已知点A(3,3)、B(4,1).如图②,若图形W为△OAB,则l x=________,l y=________;(2)已知点C(3,0),点D在直线y=2x+6上,若图形W为△OCD,当l x=l y时,求点D的坐标;(3)若图形W为函数y=x2(a≤x≤b)的图象,其中0≤a<b.当该图形满足l x=l y≤1时,请求出a 的取值围.第18题图。

相关文档
最新文档