最新人教版八年级数学第十一章:三角形教案39294

合集下载

人教版数学八年级上册第11章 《全等三角形》教学设计

人教版数学八年级上册第11章 《全等三角形》教学设计

人教版数学八年级上册第11章《全等三角形》教学设计一. 教材分析人教版数学八年级上册第11章《全等三角形》是学生在掌握了三角形的基本概念、性质和判定方法的基础上,进一步学习全等三角形的性质和判定方法。

本章内容在全等三角形的性质和判定方法方面,既是对学生已有知识的巩固,又是为学生后面学习几何证明和解决实际问题打下基础。

本章主要包括全等三角形的性质、全等三角形的判定方法、全等三角形的应用等内容。

二. 学情分析学生在学习本章之前,已经掌握了三角形的基本概念、性质和判定方法,具备了一定的逻辑思维能力和空间想象能力。

但全等三角形的概念和性质较为抽象,对于部分学生来说,理解和运用可能会存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导,帮助学生理解和掌握全等三角形的性质和判定方法。

三. 教学目标1.理解全等三角形的概念和性质,掌握全等三角形的判定方法。

2.能够运用全等三角形的性质和判定方法解决简单的几何问题。

3.培养学生的逻辑思维能力和空间想象能力,提高学生解决实际问题的能力。

四. 教学重难点1.全等三角形的概念和性质的理解。

2.全等三角形的判定方法的掌握和运用。

3.几何证明中全等三角形的运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论,自主探索全等三角形的性质和判定方法。

2.运用几何画板等教学工具,直观展示全等三角形的变换过程,帮助学生理解和掌握全等三角形的性质和判定方法。

3.通过例题分析和练习,巩固学生对全等三角形的理解和运用。

4.分组合作学习,培养学生团队合作精神和沟通能力。

六. 教学准备1.教学课件和教学素材。

2.几何画板等教学工具。

3.练习题和测试题。

七. 教学过程1.导入(5分钟)通过回顾三角形的基本概念、性质和判定方法,引导学生思考:如果两个三角形的三边分别相等,这两个三角形是否全等?从而引入全等三角形的概念。

2.呈现(15分钟)利用几何画板展示两个全等的三角形,让学生观察和思考:全等三角形的对应边和对应角是否相等?引导学生总结出全等三角形的性质。

新人教版八年级数学第十一章三角形教案(共8课时)

新人教版八年级数学第十一章三角形教案(共8课时)

第十一章三角形 11.1.1三角形的边三维目标知识与能力:认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.过程与方法:经历度量三角形边长的实践活动中,理解三角形三边不等的关系. 情感态度与价值观:懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.重点:1.对三角形有关概念的了解,能用符号语言表示三条形. 难点: 1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形. 教学过程 一、看一看 1.图形见章前图.教师叙述:三角形是一种最常见的几何图形之一.(看条件许可,可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P1的图,到微小的分子结构,处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形. (2)选派代表说明三角形的存在于我们的生活之中. 2.板书:在黑板上老师画出以下几个图形.(1)CBA(2)CBA(3)E DCBA(4)EDBA(5)DCBA(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC 、CB 、AB 是否首尾顺序相接.(是) (2)观察发现,以上的图,哪些是三角形? (3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”. 教师提问:上述对三角形的描述中你认为有几个部分要引起重视. 学生回答:a.不在一直线上的三条线段.b.首尾顺次相接. 二、读一读指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题: (1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点? (3)三角形ABC 用符号表示________.(4)三角形ABC 的边AB 、AC 和BC 可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ABC,三角形ABC 的三边,AB 可用边AB 的所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 三、做一做画出一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗? 同学们在画图计算的过程中,展示议论,并指定回答以上问题:(1)小虫从B 出发沿三角形的边爬到C 有如下几条路线. a.从B→C b.从B→A→C(2)从B 沿边BC 到C 的路线长为BC 的长.从B 沿边BA 到A,从A 沿边C 到C 的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的. 四、议一议1.在用一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边. 五、想一想三角形按边分可以,分成几类?按角分呢? (1)三角形按边分类如下:不等边三角形三角形 底和腰不等的等腰三角形等腰三角形 等边三角形(2)三角形按角分类如下:直角三角形三角形 锐角三角形斜三角形 钝角三角形六、练一练有三根木棒长分别为3cm 、6cm 和2cm,用这木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形,关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和8cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm ∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆:今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8练习1、211.1.2三角形的高、中线与角平分线三维目标知识与能力:经历折纸,画图等实践过程认识三角形的高、中线与角平分线.过程与方法:会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于点.情感态度与价值观:以学生实践为主,在已学内容的基础上进行更进一步的探究,从而发现新的结论,以此培养学生发现和解决问题的能力.重点:(1)了解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.(2)钝角三角形高的画法.(3)不同的三角形三条高的位置关系.教学过程2.仔细观察投影表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?三角形的中线是连结一个顶点和它对边的中点的线段,而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系? 三角形的角平分线是三角形的一个内角平分线与它的对边相交,这个角顶点与交点之间的线段,而角平分线指的是一条射线.3.三角形的高、中线和角平分线是代表线段还是代表射线或直线? 三角形的高、中线和角平分线都代表线段,这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上. 二、做一做1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.(如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部. 2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.(如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?无论是锐角三角形还是直角三角形或钝角三角形,它们的三条角平分线都在三角形内,并且交于一点.三、议一议:通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.四、练习1.课本P5,练习1.2.2.画钝角三角形的三条高. 五、作业:P8习题11.13.4. 11.1.3三角形的稳定性三维目标:知识与能力: 1、通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用。

人教版八年级数学上册第十一章三角形优秀教学案例

人教版八年级数学上册第十一章三角形优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用实物模型、图片等教学资源,创设贴近学生生活实际的情景,引出三角形的概念。如展示一个三角形框架,让学生观察并描述其特征。
2.提出问题:“你们认为什么样的图形可以称为三角形?”引导学生思考并发表自己的观点。
3.教师总结学生的回答,给出三角形的定义,并强调三角形的三个基本要素:边、角、顶点。
五、案例亮点
1.生活情境导入:通过展示三角形在日常生活中的应用实例,如测量角度、计算三角形面积等,激发学生学习三角形的兴趣,使学生感受到数学与生活的密切联系。
2.问题导向:教师提出具有针对性和启发性的问题,引导学生深入思考,激发他们的求知欲。同时,鼓励学生提出问题,培养他们的问题意识,教会他们如何提出有价值的问题。
(三)小组合作
1.合理划分学习小组,培养学生团队协作、相互尊重、积极进取的精神风貌。
2.设计具有挑战性和综合性的学习任务,引导学生进行小组讨论、合作交流,提高他们的合作能力。
3.教师关注小组合作的过程,及时给予指导和反馈,促进学生全面发展。
4.鼓励பைடு நூலகம்生展示小组合作成果,培养他们的表达能力和自信心理品质。
3.小组合作:合理划分学习小组,培养学生团队协作、相互尊重、积极进取的精神风貌。设计具有挑战性和综合性的学习任务,引导学生进行小组讨论、合作交流,提高他们的合作能力。
4.数形结合:教师引导学生运用数形结合的思想方法,将几何问题转化为数学问题,提高他们的逻辑思维能力。同时,通过展示三角形框架,让学生观察并描述其特征,加深对三角形性质的理解。
(四)反思与评价
1.教师引导学生对学习过程进行反思,总结自己在三角形知识学习中的优点和不足,提高自我认知。
2.学生通过自我评价、同伴评价等方式,对学习成果进行评价,培养他们的评价能力和自我改进意识。

人教版数学八年级上册第11章三角形(教案)

人教版数学八年级上册第11章三角形(教案)
五、教学反思
在今天的教学中,我发现学生们对三角形的分类和性质这部分内容掌握得相对较好,他们能够迅速理解等腰三角形和等边三角形的特征。然而,在讲解全等三角形的判定时,部分学生对于SSS、SAS、ASA判定条件的应用还是显得有些迷茫。我意识到需要通过更多的实例和练习来帮助他们巩固这一部分。
课堂上,我尝试用生活实例导入新课,让学生感受到三角形在现实生活中的普遍存在。这种方式似乎能够激发他们的学习兴趣,但从学生的反馈来看,案例的选择可能还可以更加贴近他们的生活实际,以便更好地吸引他们的注意力。
4.等腰三角形的性质与判定
-性质:等腰三角形的两腰相等,来自角相等。-判定:两边和夹角对应相等的两个三角形为等腰三角形。
5.三角形相似的判定与性质
-判定:两角对应相等的两个三角形相似。
-性质:相似三角形的对应边成比例,对应角相等。
6.三角形面积的计算
-海伦公式:已知三角形三边长,可以计算其面积。
-正弦公式:已知三角形两边和它们夹角的正弦值,可以计算其面积。
-外角定理:三角形的一个外角等于与它不相邻的两个内角的和。
3.三角形全等的判定
- SSS(Side-Side-Side):三边对应相等的两个三角形全等。
- SAS(Side-Angle-Side):两边和夹角对应相等的两个三角形全等。
- ASA(Angle-Side-Angle):两角和一边对应相等的两个三角形全等。
3.重点难点解析:在讲授过程中,我会特别强调三角形的分类和全等判定这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形内角和定理的基本原理。

人教版八年级数学上册第十一章三角形数学活动教学设计

人教版八年级数学上册第十一章三角形数学活动教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学的三角形知识,总结三角形的基本性质、分类、相似三角形的判定和应用。
2.学生分享自己的学习心得,教师给予鼓励和指导。
3.教师强调本章节的重点和难点,提醒学生课后加强练习,巩固所学知识。
4.教师布置课后作业,要求学生在课后进一步巩固三角形相关知识。
五、作业布置
4.通过数学学习,使学生认识到数学与现实生活的密切联系,体会数学在生活中的重要作用,培养学生的数学素养。
在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习,提高学生的数学素养。同时,教师要善于运用教育机智,灵活处理教学中的各种问题,使学生在掌握知识的同时,培养良好的情感态度与价值观。
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的求知欲,培养学生的创新思维能力。
(3)采用小组合作、讨论交流等形式,促进学生之间的互动,培养学生的团队协作能力和沟通能力。
2.教学策略:
(1)注重直观演示,结合实际生活中的三角形实例,帮助学生建立对三角形的直观认识,为后续的抽象思维打下基础。
二、学情分析
八年级的学生已经具备了一定的数学基础,对几何图形有了初步的认识,特别是在之前的课程中,学生对三角形的基本概念和性质有了初步的了解。在此基础上,本章的教学将更加深入地探讨三角形的性质、分类及应用。然而,学生在探究三角形相似、计算面积等方面可能还存在一定的困难,需要教师在教学过程中给予适当的引导和帮助。
4.小组合作完成一份关于三角形的数学手抄报,内容可以包括三角形的定义、性质、分类、相似三角形的判定和应用等。要求:版面设计美观,知识点清晰,能够体现出小组合作的精神。
5.预习下一节课内容,提前思考以下问题:如何运用三角形的性质来解决一些特殊的几何问题?相似三角形在实际问题中的应用有哪些?

人教版八年级数学上册第十一章三角形单元教材分析教学设计

人教版八年级数学上册第十一章三角形单元教材分析教学设计
针对以上学情,教师应充分运用多样化的教学方法和策略,关注学生的个体差异,激发学生的学习兴趣,培养其几何思维和问题解决能力。同时,注重情感态度的培养,让学生在轻松愉快的氛围中学习,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.重点:三角形的基本性质、分类及判定;勾股定理及其逆定理;三角函数的定义和应用。
3.小组合作题要求组内成员共同参与,分工合作,形成高质量的讨论报告或研究报告。
4.教师在批改作业时,要关注学生的解题思路和方法,给予针对性的评价和建议,以提高学生的学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以生活中的三角形实物为切入点,如三角板、三角形屋顶等,引导学生观察并思考这些三角形的共同特点,激发学生的学习兴趣。
2.提出问题:让学生尝试回答以下问题:(1)三角形是什么?(2)三角形有哪些基本性质?(3)我们为什么要学习三角形?
3.创设情境:通过展示一些三角形在生活中的应用,如桥梁、自行车架等,让学生感受到三角形在实际生活中的重要性,为新课的学习奠定基础。
3.培养学生团队合作意识,让学生在小组合作中学会倾听、交流、协作,提高人际沟通能力。
4.培养学生的审美观念,让学生在探究三角形美的过程中,感受数学的魅力,提高对数学美的鉴赏能力。
5.培养学生的创新意识,鼓励学生多角度、多方法解决问题,激发学生的创造潜能。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了平面几何的基本概念和性质,具有一定的几何图形识别和分析能力。在此基础上,学生对三角形的认识将从直观感知逐步过渡到理性认识。然而,学生对三角形性质的深入理解和运用尚需进一步培养和引导。此外,学生在解决实际问题时,对数学知识的应用能力有待提高。因此,在教学过程中,应关注以下几个方面:

最新人教版八年级数学第十一章:三角形教案

最新人教版八年级数学第十一章:三角形教案

11.1.1三角形的边教学目标1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形 ;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题. 重点难点1、三角形的有关概念和符号表示,三角形三边间的不等关系是重点;2、用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程] 一、情景导入三角形是一种最常见的几何图形,[课件]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢? 二、三角形及有关概念 不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示. 三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B→C ,(2)从B→A→C ;不一样, AB+A C >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ② AB+BC >AC ③ 由式子①②③我们可以知道什么? 三角形的任意两边之和大于第三边. 四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形 直角三角形斜三角形 锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。

人教版数学八年级上册第11章三角形小结教学设计

人教版数学八年级上册第11章三角形小结教学设计
(一)导入新课
1.教师以生活中常见的三角形物体为例,如三角尺、自行车三角架等,引导学生思考:为什么这些物体要设计成三角形呢?三角形具有哪些独特的性质呢?
2.学生回答问题,教师总结:三角形是一种非常稳定的几何图形,具有很多特殊的性质和判定方法。
3.教师通过PPT展示一组三角形图片,引导学生观察并总结三角形的分类、性质等基础知识。
4.引导学生运用数学软件、网络资源等辅助工具,拓展学习渠道,提高他们的信息素养。
(三)情感态度与价值观
1.激发学生对三角形学习的兴趣,培养他们积极、主动学习的态度。
2.使学生感受到数学与现实生活的紧密联系,认识到数学在生活中的重要性。
3.通过对三角形知识的探索,培养学生勇于探索、敢于创新的精神。
4.培养学生的空间观念和几何直观,提高他们的审美素养。
(三)学生小组讨论
1.教师将学生分成若干小组,每组分配一个讨论题目,如:等腰三角形的性质、三角形内角和定理的应用等。
2.学生在小组内进行讨论,分享自己的观点和思考,共同解决问题。
3.教师巡回指导,关注学生的讨论过程,及时解答学生的疑问,引导学生深入探讨三角形的相关知识。
(四)课堂练习
1.教师设计具有针对性的练习题,涵盖本节课的重点知识点,让学生独立完成。
2.自主探究,合作交流:在教学过程中,教师应引导学生自主探究三角形的基本性质,鼓励他们通过小组合作、讨论交流的方式,共同解决问题。
3.分层次教学,关注个体差异:针对学生的不同层次,设计不同难度的例题和练习,使每个学生都能在原有基础上得到提高。
4.突破重难点,注重方法指导:
(1)通过动态演示、实物操作等方式,帮助学生理解三角形性质的形成过程,突破性质判定难点。
2.学生在规定时间内完成练习,教师对学生的解答进行点评,指出错误和不足之处,引导学生进行改正。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 12
11.1.1三角形的边
教学目标
1、了解三角形的意义
,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题
. 重点难点
1、三角形的有关概念和符号表示,三角形三边间的不等关系是重点;
2、用三角形三边不等关系判定三条线段可否组成三角形是难点。

[教学过程]
一、情景导入
三角形是一种最常见的几何图形,
[投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?
二、三角形及有关概念
不在一条直线上的三条线段首尾顺次相接组成的图形叫做
三角形。

注意:三条线段必须①不在一条直线上,
②首尾顺次相接。

组成三角形的线段叫做三角形的
边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形ABC 用符号表示为△ABC 。

三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.
三、三角形三边的不等关系
探究:[投影7]任意画一个△ABC,假设有一只小虫要从
B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?
有两条路线:(1)从B →C,(2)从B →A →C;不一样,
AB+A C >BC ①;因为两点之间线段最短。

同样地有 AC+BC >AB ②AB+BC >AC ③
由式子①②③我们可以知道什么?
三角形的任意两边之和大于第三边
.
四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:
三角形直角三角形
斜三角形锐角三角形
钝角三角形
那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做
等边三角形;有两条边相等的三角形叫做
等腰三角形;三边都不相等的三角形叫做不等边三角形。

a b c (1)C B
A 腰
腰底边顶角底角底角。

相关文档
最新文档