2018年广西北海市中考数学试卷(解析版)

合集下载

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】一.选择题(共8小题)1.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.2.(2018•桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C.D.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.3.(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.4.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,=x,设S△AEF∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.5.(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:5解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴==.故选:D.6.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2D.4.5解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.7.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.8.(2018•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵sin∠CDB=,BD=5,∴BH=4,∴DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴AH=OA+OH=,故选:B.二.填空题(共9小题)9.(2018•柳州)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为 2 .解:过A作AE⊥CD,交CD的延长线于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE﹣DE=﹣=,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD=,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BC=2,故答案为:2.10.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′M D=50°,则∠BEF的度数为70°.解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.11.(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE ,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴==,==1,∴EH=CF,BP=CF,∴=,∴=,故答案为:.12.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10 cm.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.13.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.14.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8 .解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B ′B=20°,则∠A的度数是65°.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.16.(2018•玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= 12+4.解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,∵S△AFB=S+S+S,∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=3,即O1M=r=3,∴O1O2=2×3+6+4=12+4,故答案为:12+4.17.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为2.解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.三.解答题(共11小题)18.(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.19.(2018•柳州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.20.(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4..(2018•桂林)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C ,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH ∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.22.(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.23.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=24.(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在A O的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=325.(2018•玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=428.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交C E的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.。

2018-2019年初中数学广西中考真题试卷【61】含答案考点及解析

2018-2019年初中数学广西中考真题试卷【61】含答案考点及解析

∵∠ B1FE=60°, ∴∠ BFE=∠ BEF=60°,
∴△ BEF为等边三角形 ,即 BE=EF.
∵四边形 BEFG是平行四边形 ,BE=EF.
∴四边形 BEFG是菱形(一组邻边相等的平行四边形是菱形).
考点: 1.翻折变换(折叠问题) ,2.平行四边形的判定 ,3.菱形的判定 ,4.矩形的性质.
21.( 1)、动手操作:
如图 ① :将矩形纸片 ABCD折叠,使点 D 与点 B 重合,点 C 落在点 处,折痕为 EF,若
∠ ABE= 20°,那么
的度数为
.
( 2)、观察发现:
小明将三角形纸片 ABC( AB> AC)沿过点 A 的直线折叠,使得 AC 落在 AB 边上,折痕为 AD, 展开纸片(如图 ② );再次折叠该三角形纸片,使点 A 和点 D 重合,折痕为 EF,展平纸片 后得到 △ AEF(如图 ③ ).小明认为 △ AEF是等腰三角形,你同意吗?请说明理由.

A.
B.
C.
D.
【答案】 A.
【解析】
试题分析:根据勾股定理可得: c=



故选 A. 考点 : 锐角三角函数的定义. 2.在 Rt△ ABC中,若∠ C=90°,cosA= ,则 sinA 的值为()
A.
B.
【答案】 A.
【解析】 试题分析:先根据特殊角的三角函数值求出∠
∵ Rt△ ABC中,∠ C=90°,
【答案】 B
【解析】 根据科学记数法的定义,科学记数法的表示形式为
n
a×10,其中 1≤|a|< 10, n 为整
数,表示时关键要正确确定 a 的值以及 n 的值。在确定 n 的值时,看该数是大于或等于 1 还

中考数学真题试卷及答案(广西北部湾)2018年

中考数学真题试卷及答案(广西北部湾)2018年

中考数学真题试卷及答案(广西北部湾)2018年一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。

)1. −3的倒数是()A.−3B.3C.−13D.132. 下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×1054. 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5. 下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36. 如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60∘,∠B=40∘,则∠ECD等于()A.40∘B.45∘C.50∘D.55∘7. 若m>n,则下列不等式正确的是()A.m−2<n−2B.m4>n4C.6m<6nD.−8m>−8n8. 从−2,−1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.2 3B.12C.13D.149. 将抛物线y=12x2−6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=12(x−8)2+5B.y=12(x−4)2+5C.y=12(x−8)2+3D.y=12(x−4)2+310. 如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.π+√3B.π−√3C.2π−√3D.2π−2√311. 某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1−x)2=80C.80(1+2x)=100D.80(1+x2)=10012. 如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.11 13B.1315C.1517D.1719二、填空题(本大题共6小题,每小题3分,共18分)13. 要使二次根式√x−5在实数范围内有意义,则实数x的取值范围是________.14. 因式分解:2________2−2= tag_underline2(________tag_underline+1)(________-tag_underline1).15. 已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是________.16. 如图,从甲楼底部A处测得乙楼顶部C处的仰角是30∘,从甲楼顶部B处测得乙楼底部D处的俯角是45∘,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)17. 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+...+32018的结果的个位数字是________.18. 如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=k1x(x>0)的图象经过点C,反比例函数y=k2x(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于________.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19. 计算:|−4|+3tan60∘−√12−(12)−120. 解分式方程:xx−1−1=2x3x−3.21. 如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1, 1),B(4, 1),C(3, 3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90∘后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22. 某市将开展以“走进中国数学史”为主题的知识竞赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=________,n=________;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23. 如图,在ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:ABCD是菱形;(2)若AB=5,AC=6,求ABCD的面积.24. 某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25. 如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若EFAC =58,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26. 如图,抛物线y=ax2−5ax+c与坐标轴分别交于点A,C,E三点,其中A(−3, 0),C(0, 4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.参考答案一、选择题(本大题共12小题,每小题3分,共36分。

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)

2018年广西省中考数学真题试卷4套(含答案及详细解析)2018年广西贵港市中考数学真题一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)﹣8的倒数是()A.8B.﹣8C.D.2.(3分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)下列运算正确的是()A.2a﹣a=1B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5B.﹣3C.3D.16.(3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣37.(3分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥38.(3分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.2411.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式的值不存在,则x的值为.14.(3分)因式分解:ax2﹣a=.15.(3分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n 的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM 是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【参考答案】一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.D【解析】﹣8的倒数是﹣.故选:D.2.A【解析】将数据2180000用科学记数法表示为2.18×106.故选:A.3.D【解析】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.C【解析】∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.D【解析】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.D【解析】∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,7.A【解析】∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.C【解析】A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.A【解析】∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.B【解析】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,故选:B.11.C【解析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.B【解析】∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣1【解析】若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.a(x+1)(x﹣1)【解析】原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.5.5【解析】∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.70°【解析】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.4π【解析】∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.2n﹣1,0【解析】∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.解:如图所示,△ABC为所求作21.解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM最大=;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,B D=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=32018年广西桂林市中考数学真题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.(3分)2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形是轴对称图形的是()A.B.C.D.3.(3分)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)6.(3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×10117.(3分)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.(3分)一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.(3分)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.10.(3分)若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.(3分)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.(3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)比较大小:﹣30.(填“<”,“=”,“>”)14.(3分)因式分解:x2﹣4=.15.(3分)某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.(3分)如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的.值是第1列第2列第3列第4列列行第1行1234第2行8765第3行9101112第4行16151413……………第n行…………三、解答题:本大题共8小题,共66分.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别月生活支出x(单位:元)频数(人数)频率第一组x<30040.10第二组300≤x<35020.05第三组350≤x<40016n第四组400≤x<450m0.30第五组450≤x<50040.10第六组x≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【参考答案】一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.B【解析】2018的相反数是:﹣2018.故选:B.2.A【解析】A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.3.B【解析】∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.4.C【解析】从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.5.B【解析】a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.6.A【解析】将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.7.C【解析】A,2x﹣x=x,错误;B,x(﹣x)=﹣x2,错误;C,(x2)3=x6,正确;D,x2+x=x2+x,错误;故选:C.8.D【解析】将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.9.A【解析】∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.10.D【解析】由题意可知:解得:故选:D.11.C【解析】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.12.B【解析】如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△P AB与△NCA中,,∴△P AB∽△NCA,∴=,设P A=x,则NA=PN﹣P A=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.<【解析】﹣3<0,故答案为:<.14.(x+2)(x﹣2)【解析】x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.84【解析】(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.16.3【解析】∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:317.3【解析】如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.18.(505,2)【解析】由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).三、解答题:本大题共8小题,共66分.19.解:原式=3+1﹣6×+2=3+1﹣3+2=3.20.解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:21.(1)证明:∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)解:由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°22.解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;23.解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时24.解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.25.(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)解:连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠F AC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)解:过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.26.解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).2018年广西柳州市中考数学真题一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3分)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣202.(3分)如图,这是一个机械模具,则它的主视图是()A.B.C.D.3.(3分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1B.C.D.5.(3分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3分)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个7.(3分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sin B==()A.B.C.D.8.(3分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(3分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7%B.13.3%C.26.7%D.53.3%11.(3分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3分)如图,a∥b,若∠1=46°,则∠2=°.14.(3分)如图,在平面直角坐标系中,点A的坐标是.15.(3分)不等式x+1≥0的解集是.16.(3分)一元二次方程x2﹣9=0的解是.17.(3分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6分)计算:2+3.20.(6分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8分)解方程=.23.(8分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG 的长.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x 轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【参考答案】一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.A【解析】0+(﹣2)=﹣2.故选:A.2.C【解析】主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.3.B【解析】A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.4.B【解析】∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.5.C【解析】7000000000=7×109.故选:C.6.C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.7.A【解析】∵∠C=90°,BC=4,AC=3,∴AB=5,∴sin B==,故选:A.8.D【分析】直接利用圆周角定理即可得出答案.【解析】∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.9.A【解析】根据题意知,买一斤需要付费0.8a元,故选:A.10.D【解析】由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.11.B【解析】(2a)•(ab)=2a2b.故选:B.12.C【解析】由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共18分)13.46°【解析】∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.14.(﹣2,3)【解析】由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).15.x≥﹣1【解析】移项得:x≥﹣1.故答案为:x≥﹣1.16.x1=3,x2=﹣3【解析】∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.17.【解析】设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.18.5【解析】过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,。

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析2018年广西的中考试卷大家都做了吗?数学试卷难吗?想不想要校对数学试卷的答案呢?下面由店铺为大家提供关于2018广西中考数学试卷及答案解析,希望对大家有帮助!2018广西中考数学试卷一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是( )A.7B.﹣7C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是( )A.2,3B.4,2C.3,2D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是( )A. B. C. D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是( )A. B. C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是( )A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B .2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是( )A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )A. B. C. D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)= = ,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M 是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=2(x﹣1)2+1D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′ B′=AB=4,∴A′P=PB′,∴PC= A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M 是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2= MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )A.2B.3C.4D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积= x(2﹣x)=﹣ x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣ = ,故⑤正确;综上所述,正确结论的个数是5个,故选:D.2018广西中考数学试卷二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a |<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE= ∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′= = = .故答案为 .17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2 .(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD= = π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)= ﹣﹣( π﹣×2×2 )= π﹣π﹣π+2= π+2 .故答案为π+2 .18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y= (x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9.【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y= 得:﹣x+6= ,x2﹣6x +k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y= 的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.2018广西中考数学试卷三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+( +π)0﹣(﹣ )﹣2﹣2cos60°;(2)先化简,在求值:( ﹣ )+ ,其中a=﹣2+ .【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2× =4﹣4﹣1=﹣1(2)当a=﹣2+原式= +===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作 OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y= 的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y= 得k=6,则反比例函数的解析式是y= ;(2)根据题意得2x﹣4= ,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时) 频数(人) 频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC= ,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,t an∠DAC= ,得到DF=2 ,根据勾股定理得到AD= =2 ,求得AE= ,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC= ,∴AF=4,tan∠DAC= = ,∴DF=2 ,∴AD= =2 ,∴AE= ,在Rt△PAE中,tan∠1= = ,∴PE= ,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣ )2+( )2,∴R= ,即⊙O的半径为 .25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a 的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD= ×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x= ,∴E( ,0),∴BE=3﹣ =∴S△BCD=S△BEC+S△BED= × ×(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣ (舍去)或a= ,此时抛物线解析式为y= x2﹣2 x+ ;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y= x2﹣2 x+ .26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC 边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x= ,推出DN= = ,由△BDN∽△BAM,可得 = ,由此求出AM,由△ADM∽△APE,可得= ,由此求出AE= ,可得EC=AC﹣AE=4﹣= 由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB= =2 ,∵AD=CD=2,∴BD= =2 ,由翻折可知,BP=BA=2 .②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x= ,∵DB=DA,DN⊥AB,∴BN=AN= ,在Rt△BDN中,DN= = ,由△BDN∽△BAM,可得 = ,∴ = ,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得 = ,∴ = ,∴AE= ,∴EC=AC﹣AE=4﹣ = ,易证四边形PECH是矩形,∴PH=EC= .。

2018-2019年初中数学广西中考真题试卷【86】含答案考点及解析

2018-2019年初中数学广西中考真题试卷【86】含答案考点及解析

8.某地现有绿地 9 万公顷,由于植被遭到严重破坏,土地沙化速度竟达每年
0.3 万公顷 . 照此
速度发展下去 , 设 年后该地剩余绿地面积为 万公顷 . 在下列图象中 , 能正确反映 与 的函数
关系的是
【答案】 C
【解析】 考点:一次函数的应用;一次函数的图象.
专题:函数思想.
分析:由已知首先我们确定 S 与 t 的函数关系图象应是直线且 S 随 t 的增大而减少,所以 A、 B 都不正确,根据实际问题共有 9 万公顷,剩余到最小为 0,所以 D 也不正确.
解: A、旋转 72°可以与原图形重合,则图形可以平分成 图形,不可能是中心对称图形.
5 个相等的部分,因而可能是轴对称
B、旋转 72°可以与原图形重合,则图形可以平分成 不可能是中心对称图形.
5 个相等的部分,因而可能是轴对称图形,
C、由于 72° +216 °≠,36这0个°图形旋转 216 °后不能与它本身重合,故本选项错误. 故选 D.
=- 3, tan60 °= ,任何非零实数的零次幂为 1, =2 .
试题解析:原式 =- 3- 3 +1+2 =- 2- 考点:实数的计算 .
评卷人
得分
四、解答题
20.先化简,再求值:
,其中

【答案】
【解析】
试题分析:先对小括号部分通分,再把除化为乘,然后根据分式的基本性质约分,最后代入 求值 .
(说明 :不填写理由扣 1 分. ) 【解析】 略
23.如图,阅读对话,解答问题.
盒子中有三个除数字外完全相同的小球 —1, 1, 2.
小兵:我蒙上眼睛,先从盒子中摸出一个小球(摸出后不放回),用 有的数字.

2018-2019年初中数学广西中考真题试卷【48】含答案考点及解析

2018-2019年初中数学广西中考真题试卷【48】含答案考点及解析
21.某地下车库出口处 “两段式栏杆 ”如图 1 所示,点 A 是栏杆转动的支点,点 E 是栏杆两段的 连接点.当车辆经过时,栏杆 AEF升起后的位置如图 2 所示,其示意图如图 3 所示,其中
0
AB⊥ BC, EF∥ BC,∠ EAB=143 , AB=AE=1.2米,求当车辆经过时,栏杆 EF 段距离地面的高度 (即直线 EF上任意一点到直线 BC 的距离).(结果精确到 0.1 米,栏杆宽度忽略不计参考 数据: sin 37 ° ≈ ,0.6c0os 37 ° ≈ 0,.8t0an 37 ° ≈ 0..7)5
【答案】 ( 1)

( 2)
,
【解析】
试题分析:( 1)由条件得: B( -2,0)
抛物线:
经过 A(4,3)、 B( -2,0) 直线:
( 3) 经过 A( 4,3)、 B(-2,0)
∴ ( 2)过 P 作 设 ∴
∴ 轴,交 AB 于 . ,则
∵ ∴当 时,
( 1)若 CD=6,求四边形 ABCD的面积;
( 2)设 CD=x, BC=y,求 y 与 x 的关系式及 x 的取值范围;
( 3)设 BC 的中点为 M, AD 的中点为 N, MN ∥ CD,线段 MN 交⊙ A 于点 E,联结 CE,当 CD 取何值时, CE∥ AD.
【答案】 ( 1)28 ;( 2) y=
8.如图,是张老师出门散步时离家的距离 y 与时间 x 之间的函数关系的图象,若用黑点表示 张老师家的位置,则张老师散步行走的路线可能是
【答案】 D
【解析】 解:根据函数图象可知,张老师距离家先逐渐远去,有一段时间离家距离不变说明
他走的是一段弧线,之后逐渐离家越来越近直至回家,分析四个选项只有

最新-2018年广西省中考数学试卷及答案 精品

最新-2018年广西省中考数学试卷及答案 精品

2018年广西普通高中毕业会考试卷数学(全卷满分100分,考试时间120分钟)一、选择题(每小题3分,共36分)1、方程24x =的解的集合是(A )2 (B )2,2- (C ){}2 (D ){}2,2- 2、函数2y x =的单调递增区间是(A )R (B )(,0)-∞ (C )(0,)+∞ (D )(1,1)- 3、计算:324(A )16 (B )8 (C (D )2 4、直线2y x =+的斜率是(A )1 (B )2 (C )30 (D )45 5、若三点(1,1),(2,4),(,9)P A B x --共线,则x = (A )2 (B )2- (C )3- (D )36、3cos()5πα+=-,则cos α=(A )35- (B )35 (C )45- (D )457、函数sin cos y x x =•是(A )奇函数 (B )偶函数(C )非奇非偶函数 (D )既是奇函数又是偶函数8、从5台“长虹”和4台“创维”彩电中,任选2台,其中两种品牌彩电都齐全的不同选法共有(A )9种 (B )10种 (C )20种 (D )36种 9、下列命题中一定正确的是(A )三个点确定一个平面 (B )三条平行直线必共面 (C )三条相交直线必共面 (D )梯形一定是平面图形10、已知2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩目标函数的取值范围是(A )[]2,6 (B )[]2,5 (C )[]3,6 (D )[]3,511、已知实数,,a b c 满足c b a <<,且0ac <,下列不等式中不一定成立.....的是 (A )ab ac > (B )()0c b a -> (C )22cb ab > (D )()0ac a c -<12、已知2:12,:56p x q x x +><-,则p ⌝是q ⌝的(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件二、填空题(每小题4分,共16分)13、5(1)x +的展开式中,含3x 项的系数是 ▲ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 33 2018年广西市中考数学试卷(解析版)(考试时间:120 分钟 满分:120 分)一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000 用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B. (a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

6.如图,∠ACD 是∆ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于()A.40°B.45°C.50°D.55°【答案】C【考点】三角形外角的性质,角平分线的定义【解析】∆ABC 的外角∠ACD =∠A +∠B = 60︒+ 40︒=100︒,又因为CE 平分∠ACD ,所以∠ACE =∠ECD =1 ∠ACD =1 ⨯100︒= 50︒.2 2【点评】三角形的一个外角等于与它不相邻的两个角和7.若m>n ,则下列不等式正确的是【答案】B【考点】不等式的性质【解析】A:不等式两边同时减去一个相等的数,不等式的符号不改变错误B:不等式两边同时除以一个相等的正数,不等式的符号不改变正确C:不等式两边同时乘以一个相等的正数,不等式的符号不改变错误D:不等式两边同时乘以一个相等的负数,不等式的符号改变错误【点评】本题目考察了对于不等式性质的理解与判断,属于基础题目8.从- 2,-1,2 这三个数中任取两个不同的数相乘,积为正数的概率是A.2B.13 2C.13D.14【答案】C【考点】概率统计、有理数乘法【解析】总共有三个数字,两两相乘有三种情况;根据同号得正,异号得负,而只有- 2 与2x 2x 2(x 2(x1相乘时才得正数,所以是 13【点评】此题目考察了对于概率统计基本概念的理解以及有理数乘法的判断9. 将抛物线 y =12-6x +21 向左平移 2 个单位后,得到新抛物线的解析式为A. y =1-8)2+5B. y =1-4)2+52(x 2(x C. y =1-8)2+3D. y =1-4)2+32(x【答案】D2(x【考点】配方法;函数图像的平移规律;点的平移规律;【解析】方法 1:先把解析式配方为顶点式,再把顶点平移。

抛物线 y =12-6x +21 可配方12(x -6)2+3,顶点坐标为(6,3).因为图形向左平移 2 个单位,所以顶点向左平移 2 个 单位,即新的顶点坐标变为(4,3),而开口大小不变,于是新抛物线解析式为 y =1-4)2+3.方法2:直接运用函数图像左右平移的“左加右减”法则。

向左平移2个单位,即原来解析 式中所有的“x ”均要变为“x +2”,于是新抛物线解析式为 y =1+2)2-6(x +2)+21,整理 得 y =1 2-4x +11,配方后得 y =1-4)2+3.2x 2(x【点评】本题可运用点的平移规律,也可运用函数图像平移规律,但要注意的是二者的区别: 其中点的平移规律是上加下减,左减右加;而函数图像的平移规律是上加下减,左加右减。

10. 如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 AB =2,则莱洛三角形的面积(即阴影部分面积)为A. π+B. π-C. 2π-D. 2π-2【答案】 D成 y =【考点】等边三角形的性质与面积计算、扇形的面积计算公式.【解析】莱洛三角形的面积实际上是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加减去两个等边三角形的面积,即S 阴影=3×S 扇形-2×S ∆ABC . 602由题意可得,S 扇形=π×22×= π.360 3要求等边三角形 ABC 的面积需要先求高. 如下图,过 AD 垂直 BC 于 D ,可知, 在 Rt ∆ABD 中 ,sin60°= AD =AD,AB2所以 AD=2×sin60°=,所以 S ∆ABC = 1 ×BC×AD= 1×2×= .2 2所以 S 阴影=3×S 扇形-2×S ∆ABC =3× 2π-2×=2π-2.3故选 D.【点评】求不规则图形面积关键是转化到规则图形中应用公式求解。

11. 某种植基地 2016 年蔬菜产量为 80 吨,预计 2018 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x ,则可列方程为 A. 80(1 + x ): = 100 B. 100(1 − x ): = 80 C. 80(1 + 2x ) = 100 D. 80(1 + x :) = 100【答案】 A【考点】由实际问题抽象出一元二次方程B.C.D.【解析】由题意知,蔬菜产量的年平均增长率为x ,根据 2016 年蔬菜产量为 80 吨,则 2017 年蔬菜产量为80(1 + x )吨,2018 年蔬菜产量为80(1 + x ) (1 + x )吨. 预计 2018 年蔬菜产量达到 100 吨,即80(1 + x )(1 + x ) = 100,即80(1 + x ): = 100. 故选 A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键是在于理清题目的意思, 找到 2017 年和 2018 年的产量的代数式,根据条件找出等量关系式,列出方程.12. 如图,矩形纸片 ABCD ,AB =4,BC =3,点 P 在 BC 边上,将△CDP 沿 DP 折叠,点 C落在点 E 处,PE 、DE 分别交 AB 于点 O 、F ,且 OP =OF ,则 cos ∠ADF 的值为11 13 15 17 13151719【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值 【解析】由题意得:Rt △DCP ≌Rt △DEP ,所以 DC =DE =4,CP =EP 在 Rt △OEF 和 Rt △OBP 中,∠EOF =∠BOP ,∠B =∠E ,OP =OF Rt △OEF ≌Rt △OBP (AAS ),所以 OE =OB ,EF =BP 设 EF 为 x ,则 BP =x ,DF =DE -EF =4-x ,又因为 BF =OF +OB =OP +OE =PE =PC ,PC =BC -BP =3-xA.所以,AF =AB -BF =4-(3-x )=1+x在 Rt △DAF 中,AF 2+AD 2=DF 2,也就是(1+x )2+32=(4-x )2 3 3 3 17解之得,x =5,所以 EF =5,DF =4-5= 5 AD 15最终,在 Rt △DAF 中,cos ∠ADF =DF =17【点评】本题由题意可知,Rt △DCP ≌Rt △DEP 并推理出 Rt △OEF ≌Rt △OBP ,寻找出合适的线段设未知数,运用勾股定理列方程求解,并代入求解出所求cos 值即可得。

二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13. 要使二次根式 【答案】 x ≥ 5x - 5 在实数围有意义,则实数 x 的取值围是【考点】二次根式有意义的条件.【解析】根据被开方数是非负数,则有 x - 5 ≥ 0 ,∴ x ≥ 5 .【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.14.因式分解: 2a 2 - 2= .【答案】2(a +1)(a -1)【考点】因式分解【解析】2a 2 - 2 = 2(a 2 -1)= 2(a +1)(a -1)步骤一:先提公因式 2 得到: 2(a 2-1),步骤二:再利用平方差公式因式分解得到结果: 2(a +1)(a -1)【点评】此题目考察了对于因式分解的基本判断与认识,属于基础题目15. 已知一组数据6 ,x ,3,3,5,1的众数是 3和 5,则这组数据的中位数是。

【答案】4【考点】中位数【解析】解:因为众数为 3 和 5,所以x = 5 ,所以中位数为:(3+ 5)÷ 2 = 4【点评】主要考察了众数的知识点,通过众数求中位数16.如图,从甲楼底部A 处测得乙楼顶部 C 处的仰角是 30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°.已知甲楼的高 AB 是 120m,则乙楼的高 CD 是m(结果保留根号)。

【答案】40【考点】三角函数【解析】∵俯角是45! ,∴∠BDA = 45!,∴AB = AD=120m,又∵ ∠CAD = 30!,∴在Rt△ADC 中t an∠CDA=tan30°= CD = 3 ,AD 3∴CD = 40 3 (m)【点评】学会应用三角函数解决实际问题。

相关文档
最新文档