2019届一轮复习人教版 实验七 验证动量守恒定律 学案
2019-2020年高考物理《实验验证动量守恒定律》精品复习导学案设计

2019-2020年高考物理《实验验证动量守恒定律》精品复习导学案设计考纲解读1.会用实验装置测速度或用其他物理量表示物体的速度大小.2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒.基本实验要求1.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.2.实验器材斜槽、小球(两个)、天平、复写纸、白纸等.3.实验步骤(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照实验原理图甲安装实验装置.调整、固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把小球所有的落点都圈在里面.圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N.如实验原理图乙所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差允许范围内,碰撞系统的动量守恒.规律方法总结1.数据处理验证表达式:m1v1+m2v2=m1v1′+m2v2′2.注意事项(1)前提条件保证碰撞是一维的,即保证两物体在碰撞之前沿同一直线运动,碰撞之后还沿这条直线运动.(2)利用斜槽进行实验,入射球质量要大于被碰球质量,即m1>m2,防止碰后m1被反弹.考点一实验原理与实验操作例1 某同学用如图1所示装置通过半径相同的A、B两球(m A>m B)的碰撞来验证动量守恒定律.图中PQ是斜槽,QR 为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图1中O点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图2所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.图1图2(1)碰撞后B球的水平射程应取______ cm.(2)在以下选项中,本次实验必须进行测量的有________(填选项号).A.水平槽上未放B球时,测量A球落点位置到O点的距离B.A球与B球碰撞后,测量A球及B球落点位置到O点的距离C.测量A球或B球的直径D.测量A球和B球的质量(或两球质量之比)E.测量水平槽面相对于O点的高度(3)实验中,关于入射球在斜槽上释放点的高低对实验影响的说法中正确的是( )A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小变式题组1.[实验操作]某同学用如图3所示的装置来验证动量守恒定律.图中PQ 为斜槽,QR 为水平槽.实验时先使a 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.关于小球落点的下列说法中正确的是( )图3A .如果小球每一次都从同一点无初速释放,重复几次的落点应当是重合的B .由于偶然因素存在,重复操作时小球的落点不重合是正常的,但落点应当比较密集C .测定B 点位置时,如果重复10次的落点分别为B 1、B 2、B 3、…B 10,则OB 应取OB 1、OB 2、OB 3…OB 10的平均值,即OB =OB 1+OB 2+…+OB 1010D .用半径尽量小的圆把B 1、B 2、B 3…B 10圈住,这个圆的圆心就是入射球落点的平均位置B2.[实验原理和操作]如图4所示为实验室中验证动量守恒的实验装置示意图.图4(1)若入射小球质量为m 1,半径为r 1;被碰小球质量为m 2,半径为r 2,则( )A .m 1>m 2,r 1>r 2B .m 1>m 2,r 1>r 2C .m 1>m 2,r 1=r 2D .m 1<m 2,r 1=r 2(2)为完成此实验,以下所提供的测量工具中必需的是______________________.(填下列对应的字母)A .直尺B .游标卡尺C .天平D .弹簧秤E .秒表(3)设入射小球的质量为m 1,被碰小球的质量为m 2,P 为碰前入射小球落点的平均位置,则关系式(用m 1、m 2及图中字母表示)________________成立.即表示碰撞中动量守恒.实验数据处理例2 某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动,然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动.他设计的装置如图5甲所示.在小车A 后连着纸带,电磁打点计时器所用电源频率为50 Hz ,长木板下垫着薄木片以平衡摩擦力.图5(1)若已测得打点纸带如图乙所示,并测得各计数点间距(已标在图上).A为运动的起点,则应选________段来计算A碰前的速度.应选________段来计算A和B碰后的共同速度(以上两空选填“AB”或“BC”或“CD”或“DE”).(2)已测得小车A的质量m1=0.4 kg,小车B的质量为m2=0.2 kg,则碰前两小车的总动量为________ kg·m/s,碰后两小车的总动量为________ kg·m/s.变式题组3.[数据处理]如图6(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的冲量时,随即启动打点计时器.甲车运动一段距离后,与静止的乙车发生正碰并粘在一起运动.图6纸带记录下碰撞前甲车和碰撞后两车运动情况如图(b)所示,电源频率为50 Hz,则碰撞前甲车运动速度大小为________m/s,甲、乙两车的质量比m甲∶m乙=________.。
2022物理第6章动量实验7验证动量守恒定律教案

实验七验证动量守恒定律1.实验目的验证碰撞中的动量守恒.2.实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否相等。
3.实验器材方案一利用气垫导轨完成一维碰撞实验气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二在光滑长木板上两车碰撞完成一维碰撞实验光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案三利用等大小球做平抛运动完成一维碰撞实验斜槽、大小相等质量不同的小球两个、重垂线、白纸、复写纸、天平、刻度尺、圆规、三角板。
4.实验步骤方案一利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量。
(2)安装:正确安装好气垫导轨,如图所示。
(3)测速度:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向)。
(4)验证:一维碰撞中的动量守恒。
方案二在光滑长木板上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量。
(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥,如图所示.(3)碰撞:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
(4)测速度:通过纸带上两计数点间的距离及时间由v=错误!算出速度.(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
方案三利用等大小球做平抛运动完成一维碰撞实验(1)测质量:先用天平测出入射小球、被碰小球质量m1、m2(m1>m2)。
(2)安装:按如图所示安装好实验装置,将斜槽固定在桌边,使槽的末端点切线水平,调节实验装置使两小球碰撞时处于同一水平高度,且碰撞瞬间入射小球与被碰小球的球心连线与轨道末端的切线平行,以确保两小球正碰后的速度方向水平。
2019创新设计高中物理第六章 实验七

实验七验证动量守恒定律方案一:利用气垫导轨完成一维碰撞实验(如图1所示)图11.测质量:用天平测出滑块质量。
2.安装:正确安装好气垫导轨。
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度(①改变滑块的质量。
②改变滑块的初速度大小和方向)。
4.验证:一维碰撞中的动量守恒。
图2方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图2所示)1.测质量:用天平测出两小球的质量m1、m2。
2.安装:把两个等大小球用等长悬线悬挂起来。
3.实验:一个小球静止,拉起另一个小球,放下后它们相碰。
4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图3所示)图31.测质量:用天平测出两小车的质量。
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
3.实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成整体运动。
4.测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
方案四:利用斜槽上滚下的小球验证动量守恒定律(如图4所示)图41.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球。
2.安装:按照图4所示安装实验装置。
调整固定斜槽使斜槽底端水平。
3.铺纸:白纸在下,复写纸在上且在适当位置铺放好。
记下重垂线所指的位置O。
4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用圆规画尽量小的圆把所有的小球落点圈在里面。
圆心P就是小球落点的平均位置。
5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次。
实验七 验证动量守恒定律

定律。
(4)两滑块作用前后总动量不完全相等的主要原因是
基础过关 栏目索引
方案二:利用等长摆球完成一维碰撞实验 [实验器材] 带细线的摆球(两套)、铁架台、天平、量角器、刻度尺、坐标纸、胶布等。 [实验步骤] 1.测质量:用天平测出两小球的质量m1、m2。 2.安装:把两个大小相同的小球用等长细线悬挂起来。 3.实验:一个小球静止,拉起另一个小球,放下时它们相碰。
考点突破 栏目索引
(1)在安装实验器材时斜槽的末端应
。
(2)小球a、b质量ma、mb的大小关系应满足ma
mb,两球的半径应满足
ra
rb。(填“>”“<”或“=”)
(3)已知B点为碰前小球a落点的平均位置,则小球a、b碰后落点的平均位置依
次是图中的
点和
点。
(4)在本实验中,验证动量守恒的表达式是下列选项中的
(1)实验中,直接测定小球碰撞前后的速度是不容易的。但是,可以通过仅测
考点突破 栏目索引
量
(填选项前的序号),间接地解决这个问题。
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的水平射程
(2)图甲中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球a多次
从斜轨上同一位置静止释放+m2·OC,只要测得小球做平抛运动的水平射程,即可替代速度。
(2)碰撞完毕后,就要测数据验证了,由(1)知道可以通过测量它们的水平射程
就可以替代不容易测量的速度。再用天平称出两小球的质量m1、m2。
考点突破 栏目索引
(3)两球相碰前后的动量守恒的表达式见(1),弹性碰撞没有机械能损失,所以 还应满足机械能守恒,则应满足m1·OB2=m1·OA2+m2·OC2。 (4)将数据代入(3),因为存在实验误差,所以最后等式两边不会严格相等,所以 在误差允许范围内,碰撞前、后的总动量不变。
推荐2019年高考物理大一轮复习实验07验证动量守恒定律学案新人教版

实验07 验证动量守恒定律(对应学生用书P117)一、实验目的验证动量守恒定律.二、实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p =m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.三、实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等.方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.方案四:斜槽、小球(两个)、天平、复写纸、白纸等.四、实验步骤方案一:利用气垫导轨完成一维碰撞实验(如图所示)1.测质量:用天平测出滑块质量.2.安装:正确安装好气垫导轨.3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).4.验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图所示)1.测质量:用天平测出两小球的质量m1、m2.2.安装:把两个等大小球用等长悬线悬挂起来.3.实验:一个小球静止,拉起另一个小球,放下时它们相碰.4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.5.改变条件:改变碰撞条件,重复实验.6.验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图所示)1.测质量:用天平测出两小车的质量.2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.4.测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt算出速度. 5.改变条件:改变碰撞条件,重复实验.6.验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(如图所示)1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.2.安装:按照图中所示安装实验装置.调整固定斜槽使斜槽底端水平.3.铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O .4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P 就是小球落点的平均位置.5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N .如图所示.6.验证:连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1·OP =m 1·OM +m 2·ON ,看在误差允许的范围内是否成立.7.结束:整理好实验器材放回原处.某同学用如图1所示装置通过半径相同的A、B两球(m A>m B)的碰撞来验证动量守恒定律.图中PQ是斜槽,QR为水平槽.实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹.重复上述操作10次,得到10个落点痕迹.再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,和B 球碰撞后, A、B球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图1中O 点是水平槽末端R在记录纸上的垂直投影点.B球落点痕迹如图2所示,其中米尺水平放置,且平行于G、R、O所在的平面,米尺的零点与O点对齐.图1图2(1)碰撞后B球的水平射程应取____________ cm.(2)在以下选项中,本次实验必须进行测量的有____________(填选项号).A.水平槽上未放B球时,测量A球落点位置到O点的距离B.A球与B球碰撞后,测量A球及B球落点位置到O点的距离C.测量A球或B球的直径D.测量A球和B球的质量 (或两球质量之比)E.测量水平槽面相对于O点的高度(3)实验中,关于入射球在斜槽上释放点的高低对实验影响的说法中正确的是( )A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小解析:(1)用一尽可能小的圆把小球落点圈在里面,可知圆心的位置是65.7 cm,这也是小球落点的平均位置.(2)本实验中要测量的数据有:两个小球的质量m 1、m 2,三个落点到O 点的距离x 1、x 2、x 3,所以应选A 、B 、D .(3)入射球的释放点越高,入射球碰前速度越大,相碰时内力越大,阻力的影响相对越小,可以较好的满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,选项C 正确.答案:(1)65.7(65.5~65.9均可) (2)ABD (3)C(对应学生用书P 118)一、数据处理1.速度的测量方案一:滑块速度的测量:v =Δx Δt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间.方案二:摆球速度的测量:v =2gh ,式中h 为小球释放时(或碰撞后摆起的)高度,h 可用刻度尺测量(也可由量角器和摆长计算出).方案三:小车速度的测量:v =Δx Δt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出.2.验证的表达式方案一、二、三:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.方案四:m 1·OP =m 1·OM +m 2·ON二、注意事项1.前提条件碰撞的两物体应保证“水平”和“正碰”.2.方案提醒(1)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平.(2)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内.(3)若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力.(4)若利用斜槽小球碰撞应注意:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.(2014·全国新课标Ⅱ)现利用如图所示的装置验证动量守恒定律.在图中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A 的质量m 1=0.310 kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图所示.若实验允许的相对误差绝对值(|碰撞前后总动量之差碰前总动量|×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.解析:按定义,物体运动的瞬时速度大小为v :v =Δs Δt ① 式中Δs 为物块在很短时间Δt 内走过的路程,设纸带上打出相邻两点的时间间隔为Δt A ,则Δt A =1f =0.02 s ②Δt A 可视为很短,设在A 碰撞前后瞬时速度大小分别为v 0、v 1,将②式和图给实验数据代入①式可得:v 0=4.00×10-20.02m/s =2.00 m/s ③ v 1=1.94×10-20.02m/s =0.970 m/s ④ 设B 在碰撞后的速度大小为v 2,由①式有v 2=d Δt B ⑤代入题所给的数据可得:v 2=2.86 m/s ⑥。
「实验七」 验证动量守恒定律

「实验七」 验证动量守恒定律一、实验目的 验证动量守恒定律.二 实验原理 m 1v 1+m 2v 2=m 1v 1′+m 2v 2′三、实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧计、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等.方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.方案四:斜槽、小球(两个)、天平、复写纸、白纸等.四、实验步骤方案一:利用气垫导轨完成一维碰撞实验(如下图所示)1.测质量:用天平测出滑块质量. 2.安装:正确安装好气垫导轨.3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).4.验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如右图)1.测质量:用天平测出两小球的质量m 1、m 2.2.安装:把两个等大小球用等长悬线悬挂起来.3.实验:一个小球静止,拉起另一个小球,放下时它们相碰.4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.5.改变条件:改变碰撞条件,重复实验. 6.验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如下图)1.测质量:用天平测出两小车的质量.2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.4.测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt算出速度.5.改变条件:改变碰撞条件,重复实验.方案四:利用斜槽上滚下的小球验证动量守恒定律(如下图所示)1.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.2.安装:按照上图所示安装实验装置.调整固定斜槽使斜槽底端水平.3.铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O .4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P 就是小球落点的平均位置.5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N .如下图所示.6.验证:连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1·OP =m 1·OM +m 2·ON ,看在误差允许的范围内是否成立. 7.结束:整理好实验器材放回原处.五、数据处理1.速度的测量方案一:滑块速度的测量:v =Δx Δt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间.方案二:摆球速度的测量:v =2gh ,式中h 为小球释放时(或碰撞后摆起的)高度,h 可用刻度尺测量(也可由量角器和摆长计算出).方案三:小车速度的测量:v =Δx Δt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出.2.验证的表达式 方案一、二、三:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 方案四:m 1·OP =m 1·OM +m 2·ON .六、注意事项1.前提条件 碰撞的两物体应保证“水平”和“正碰”.(1)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平.(2)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内.(3)若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力.(4)若利用斜槽小球碰撞应注意①斜槽末端的切线必须水平; ②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球; ④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变. 考点一 实验原理与操作例1、如图所示为“验证碰撞中的动量守恒”实验装置示意图.(1)入射小球1与被碰小球2直径相同,均为d ,它们的质量相比较,应是m 1________m 2.(2)为了保证小球做平抛运动,必须调整斜槽使____________.(3)继续实验步骤为A .在地面上依次铺白纸和复写纸.B .确定重锤对应点O .C .不放球2,让球1从斜槽滑下,确定它落地点位置P .D .把球2放在立柱上,让球1从斜槽滑下,与球2正碰后,确定球1和球2落地点位置M 和N .E .用刻度尺量OM 、OP 、ON 的长度.F .看m 1OM +m 2ON 与m 1OP 是否相等,以验证动量守恒.上述步骤有几步不完善或有错误,请指出并写出相应的正确步骤.【答案】 (1)> (2)斜槽末端切线水平 (3)D 不完善,小球1应从斜槽的同一高度由静止释放;F 错误,应验证:m 1OP =m 1OM +m 2(ON -d ).1.在做“验证碰撞中的动量守恒定律”实验中,装置如图.(1)需要的测量仪器或工具有________.A .秒表B .天平C .刻度尺D .千分尺E .游标卡尺F .圆规(2)必须要求的条件是________.A .斜槽轨道尽量光滑以减少误差B .斜槽轨道末端的切线必须水平C .入射球和被碰球的质量必须相等,且大小相同D .入射球每次必须从轨道的同一位置由静止滚下(3)某次实验中得出的落点情况如图所示,假设碰撞过程中动量守恒,则入射小球质量m 1和被碰小球质量m2之比为________. 答案:(1)BCEF (2)BD (3)4∶1考点二 数据处理与误差分析例1、现利用下图(a)所示的装置验证动量守恒定律,在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A 的质量m 1=0.310kg ,滑块B 的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰,碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图(b)所示.若实验允许的相对误差绝对值(⎪⎪⎪⎪⎪⎪碰撞前后总动量之差碰前总动量×100%)最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程.1.气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 、D 的气垫导轨和滑块A 、B 探究碰撞中的不变量,实验装置如图所示(弹簧的长度忽略不计).采用的实验步骤如下:a .用天平分别测出滑块A 、B 的质量m A 、m B ;b .调整气垫导轨,使导轨处于水平;c .在A 和B 间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上;d .用刻度尺测出A 的左端至挡板C 的距离L 1;e .按下电钮放开卡销,同时分别记录滑块A 、B 运动时间的计时器开始工作,当A 、B 滑块分别碰撞挡板C 、D 时计时结束,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量及其符号是________________________.(2)作用前A 、B 两滑块质量与速度乘积之和为________;作用后A 、B 两滑块质量与速度乘积之和为________.(3)作用前、后A 、B 两滑块质量与速度乘积之和并不完全相等,产生误差的原因有___________________________(至少答出两点).答案:(1)B 的右端至挡板D 的距离L 2 (2)0 m A L 1t 1-m B L 2t 2考点三 实验创新设计例1、如图是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O 点,O 点下方桌子的边沿有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2接触且两球等高.将球1拉到A 点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B 点,球2落到水平地面上的C 点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A 点离水平桌面的距离为a 、B 点离水平桌面的距离为b ,C 点与桌子边沿间的水平距离为c .此处,(1)还需要测量的量是________、________和________.(2)根据测量的数据,该实验中动量守恒的表达式为________.(忽略小球的大小)【答案】 (1)弹性球1、2的质量m 1、m 2 立柱高h 桌面高H (2)2m 1a -h =2m 1b -h +m 2c H +h 1、用如图所示的装置进行以下实验:A .先测出滑块A 、B 的质量M 、m 及滑块与桌面间的动摩擦因数μ,查出当地的重力加速度gB .用细线将滑块A 、B 连接,使A 、B 间的弹簧压缩,滑块B 紧靠在桌边C .剪断细线,测出滑块B 做平抛运动落地点到重垂线的水平距离x 1和滑块A 沿桌面滑行的距离x 2(1)为探究碰撞中的不变量,写出还需测量的物理量及表示它们的字母:____________________.(2)若m v 为不变量,需验证的关系式为________________.答案:(1)桌面离水平地面的高度h(2)M 2μgx 2-mx 1g 2h=0 练习1.如图为实验室常用的气垫导轨验证动量守恒的装置.两带有等宽遮光条的滑块A 和B ,质量分别为m A 、m B ,在A 、B 间用细线水平压紧一轻弹簧,将其置于气垫导轨上,调节导轨使其能实现自由静止,这是表明________________________________________________烧断细线,滑块A 、B 被弹簧弹开,光电门C 、D 记录下两遮光条通过的时间分别为t A 和t B ,若有关系式________________,则说明该实验过程动量守恒.答案:气垫导轨水平m At A=m Bt B或m At A-m Bt B=02.把两个大小相同、质量不等的金属球用细线连接起来,中间夹一被压缩了的轻弹簧,置于摩擦可以忽略不计的水平桌面上,如图所示,现烧断细线,观察两球的运动情况,进行必要的测量,探究物体间发生相互作用时的不变量.测量过程中:(1)还必须添加的器材有_____________________________________________.(2)需直接测量的数据是_____________________________________________.(3)需要验算的表达式如何表达?_____________________________________________答案:(1)刻度尺、白纸、复写纸、图钉、细线、铅锤、木板、天平(2)两物体的质量m1、m2,水平射程x1、x2(3)m1x1=m2x23.在“验证动量守恒定律”的实验中,已有的实验器材有:斜槽轨道,大小相等质量不同的小钢球两个,重锤线一条,白纸,复写纸,圆规.实验装置及实验中小球运动轨迹及落点的情况简图如图所示.(1)实验前,轨道的调节应注意_____________________________________________(2)实验中重复多次让a球从斜槽上释放,应特别注意________________________________________________________________________.(3)实验中还缺少的测量器材有_____________________________________________.(4)实验中需测量的物理量是_____________________________________________.(5)若该碰撞过程中动量守恒,则一定有关系式________成立.答案:(1)槽的末端的切线是水平的(2)让a球从同一高处静止释放滚下(3)天平、刻度尺(4)a球的质量m a和b球的质量m b,线段OP、OM和ON的长度(5)m a OP=m a OM+m b ON 4.某同学用如图所示的装置做验证动量守恒定律的实验.先将a球从斜槽轨道上某固定点处由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次;再把同样大小的b球放在斜槽轨道末端水平段的最右端上,让a球仍从固定点由静止开始滚下,和b球相碰后,两球分别落在记录纸的不同位置处,重复10次.(1)本实验必须测量的物理量有________.A.斜槽轨道末端距水平地面的高度H B.小球a、b的质量m a、m bC.小球a、b的半径rD.小球a、b离开斜槽轨道末端后平抛飞行的时间tE.记录纸上O点到A、B、C各点的距离OA、OB、OCF.a球的固定释放点到斜槽轨道末端水平部分间的高度差h(2)放上被碰小球b,两球(m a>m b)相碰后,小球a、b的落地点依次是图中水平面上的________点和________点.(3)某同学在做实验时,测量了过程中的各个物理量,利用上述数据验证碰撞中的动量守恒,那么判断的依据是看________和________在误差允许范围内是否相等.答案:(1)BE(2)A C(3)m a·OB m a·OA+m b·OC5.为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量相差比较大的小球,按下述步骤做了实验:①用天平测出两小球的质量(分别为m1和m2,且m1>m2).②按图示安装好实验器材,将斜槽AB固定在桌边,使槽的末端切线水平,将一斜面BC连接在斜槽末端.③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置.④将小球m2放在斜槽末端边缘处,让小球m1从斜槽顶端A处由静止开始滚下,使它们发生碰撞,分别记下小球m1和m2在斜面上的落点位置.⑤用毫米刻度尺量出各个落点位置到斜槽末端点B的距离.图中D、E、F点是该同学记下小球在斜面上的落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题:(1)在不放小球m2时,小球m1从斜槽顶端A处由静止开始滚下,m1的落点在图中的________点,把小球m2放在斜槽末端边缘处,小球m1从斜槽顶端A处由静止开始滚下,使它们发生碰撞,碰后小球m1的落点在图中的________点.(2)若碰撞过程中,动量和机械能均守恒,不计空气阻力,则下列表达式中正确的有________.A.m1L F=m1L D+m2L E B.m1L2E=m1L2D+m2L2F C.m1L E=m1L D+m2L F D.L E=L F-L D 答案:(1)E D(2)C。
2024年高考物理一轮复习(新人教版) 第7章 实验8 验证动量守恒定律

实验八 验证动量守恒定律目标要求 1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律.2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程案例一:研究气垫导轨上滑块碰撞时的动量守恒 1.实验器材气垫导轨、数字计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2.实验过程(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨,如图所示.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度. (4)改变条件,重复实验: ①改变滑块的质量;②改变滑块的初速度大小和方向. (5)验证:一维碰撞中的动量守恒. 3.数据处理(1)滑块速度的测量:v =ΔxΔt ,式中Δx 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. (2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图甲所示安装实验装置.调整固定斜槽使斜槽底端水平.(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下铅垂线所指的位置O.(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.案例提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一 教材原型实验考向1 研究气垫导轨上滑块碰撞时的动量守恒例1 (2022·全国甲卷·23)利用图示的实验装置对碰撞过程进行研究.让质量为m 1的滑块A 与质量为m 2的静止滑块B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A 和B 的速度大小v 1和v 2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平;(2)测得两滑块的质量分别为0.510 kg 和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg 的滑块作为A ;(3)调节B 的位置,使得A 与B 接触时,A 的左端到左边挡板的距离s 1与B 的右端到右边挡板的距离s 2相等;(4)使A 以一定的初速度沿气垫导轨运动,并与B 碰撞,分别用传感器记录A 和B 从碰撞时刻开始到各自撞到挡板所用的时间t 1和t 2;(5)将B 放回到碰撞前的位置,改变A 的初速度大小,重复步骤(4).多次测量的结果如下表所示;1 2 3 4 5 t 1/s 0.49 0.67 1.01 1.22 1.39 t 2/s 0.15 0.21 0.33 0.40 0.46 k =v 1v 20.31k 20.330.330.33(6)表中的k 2=________(保留2位有效数字); (7)v 1v 2的平均值为______(保留2位有效数字); (8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v 1v 2判断.若两滑块的碰撞为弹性碰撞,则v 1v 2的理论表达式为__________________(用m 1和m 2表示),本实验中其值为________________(保留2位有效数字),若该值与(7)中结果间的差别在允许范围内,则可认为滑块A 与滑块B 在导轨上的碰撞为弹性碰撞. 答案 (2)0.304 (6)0.31 (7)0.32(8)v 1v 2=m 2-m 12m 10.34 解析 (2)用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为0.304 kg 的滑块作为A .(6)由于两段位移大小相等,根据表中的数据可得k 2=v 1v 2=t 2t 1=0.210.67=0.31.(7)v 1v 2的平均值为k =0.31+0.31+0.33+0.33+0.335=0.32. (8)弹性碰撞时满足动量守恒和机械能守恒,可得m 1v 0=-m 1v 1+m 2v 2 12m 1v 02=12m 1v 12+12m 2v 22 联立解得v 1v 2=m 2-m 12m 1,代入数据可得v 1v 2=0.34.考向2 研究斜槽末端小球碰撞时的动量守恒例2 (2023·湖北武汉市模拟)用如图甲所示装置研究两个半径相同的小球在轨道水平部分碰撞前后的动量关系.(1)关于本实验,下列说法中正确的是________. A .同一组实验中,入射小球必须从同一位置由静止释放 B .轨道倾斜部分必须光滑 C .轨道末端必须水平(2)图甲中O 点是小球抛出点在地面上的竖直投影,实验时先让入射小球多次从斜轨上的位置S 点由静止释放,通过白纸和复写纸找到其平均落点的位置(A 、B 、C 三点中的某个点),然后把被碰小球静置于轨道的水平部分末端,仍将入射小球从斜轨上的位置S 点由静止释放,与被碰小球相碰,并多次重复该操作,用同样的方法找到两小球碰后平均落点的位置(A 、B 、C 三点中剩下的两个点).实验中需要测量的有________. A .入射小球和被碰小球的质量m 1、m 2 B .入射小球开始的释放高度hC.小球抛出点距地面的高度HD.两球相碰前后平抛的水平位移OB、OA、OC(3)某同学在做上述实验时,测得入射小球和被碰小球的质量关系为m1=2m2,两小球在记录纸上留下三处落点痕迹如图乙所示,他将米尺的零刻线与O点对齐,测量出O点到三处平均落地点的距离分别为OA、OB、OC.该同学通过测量和计算发现,在实验误差允许范围内,两小球在碰撞前后动量是守恒的.①该同学要验证的关系式为__________________________________________________;②若进一步研究该碰撞是否为弹性碰撞,需要判断关系式______________________是否成立.答案(1) AC(2)AD(3)①2(OC-OA)=OB②OC+OA=OB解析(1)本实验只要确保轨道末端水平,从而确保小球离开轨道后做的是平抛运动即可,并不需要轨道光滑;另一方面,要确保放上被碰小球后,入射小球的碰前的速度大小保持不变,故要求从同一位置由静止释放入射小球,故选A、C.(2)验证动量守恒定律,必须测量质量和速度,由于入射小球、被碰小球离开轨道后的运动都是平抛运动,且平抛的竖直位移相同,故由x=v02H可知,小球的水平位移x∝v0,故可g用水平位移的大小关系表示速度的大小关系,因此不需要测量H及入射小球开始的释放高度h,H只要保持不变就可以了,并不需要测量出来,故选A、D.(3) ①由题图乙可知,OA=17.60 cm,OB=25.00 cm,OC=30.00 cm,代入质量关系,可知m1·OB≠m1·OA+m2·OC但是m1·OC≈m1·OA+m2·OB故OC才是入射小球碰前速度对应的水平位移,由动量守恒定律得m1·OC=m1·OA+m2·OB根据m1=2m2解得2(OC-OA)=OB②验证碰撞是否为弹性碰撞,则可以验证12=12m1v1′2+12m2v2′22m1v1即m1·OC2=m1·OA2+m2·OB2变形得m1·OC2-m1·OA2=m2·OB2根据m1=2m2则有2(OC-OA)(OC+OA)=OB2解得OC+OA=OB.考点二探索创新实验考向1实验装置的创新例3如图为验证动量守恒定律的实验装置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实验:①用天平测出两个小球的质量分别为m1和m2;②安装实验装置,将斜槽AB固定在桌边,使槽的末端切线水平,再将一斜面BC连接在斜槽末端;③先不放小球m2,让小球m1从斜槽顶端A处由静止释放,标记小球在斜面上的落点位置P;④将小球m2放在斜槽末端B处,仍让小球m1从斜槽顶端A处由静止释放,两球发生碰撞,分别标记小球m1、m2在斜面上的落点位置;⑤用毫米刻度尺测出各落点位置到斜槽末端B的距离.图中M、P、N三点是实验过程中记下的小球在斜面上的三个落点位置,从M、P、N到B的距离分别为s M、s P、s N.依据上述实验步骤,请回答下面问题:(1)两小球的质量m1、m2应满足m1________m2(填“>”“=”或“<”);(2)小球m1与m2发生碰撞后,m1的落点是图中________点,m2的落点是图中________点;(3)用实验中测得的数据来表示,只要满足关系式________________,就能说明两球碰撞前后动量是守恒的;(4)若要判断两小球的碰撞是否为弹性碰撞,用实验中测得的数据来表示,只需比较________与________是否相等即可. 答案 (1)> (2)M N (3)m 1s P =m 1s M +m 2s N (4)m 1s P m 1s M +m 2s N解析 (1)为了防止入射小球碰撞后反弹,一定要保证入射小球的质量大于被碰小球的质量,故m 1>m 2;(2)碰撞前,小球m 1落在题图中的P 点,由于m 1>m 2,当小球m 1与m 2发生碰撞后,m 1的落点是题图中M 点,m 2的落点是题图中N 点;(3)设碰前小球m 1的水平初速度为v 1,当小球m 1与m 2发生碰撞后,小球m 1落到M 点,设其水平速度为v 1′,m 2落到N 点,设其水平速度为v 2′,斜面BC 与水平面的倾角为α,由平抛运动规律得s M sin α=12gt 2,s M cos α=v 1′t ,联立解得v 1′=gs M cos 2 α2sin α,同理可得v 2′=gs N cos 2α2sin α,v 1=gs P cos 2 α2sin α,因此只要满足m 1v 1=m 1v 1′+m 2v 2′,即m 1s P =m 1s M +m 2s N .(4)如果小球的碰撞为弹性碰撞, 则满足12m 1v 12=12m 1v 1′2+12m 2v 2′2代入以上速度表达式可得m 1s P =m 1s M +m 2s N 故验证m 1s P 和m 1s M +m 2s N 相等即可.考向2 实验方案的创新例4 某物理兴趣小组设计了如图甲所示的实验装置.在足够大的水平平台上的A 点放置一个光电门,其右侧摩擦很小,可忽略不计,左侧为粗糙水平面.当地重力加速度大小为g .采用的实验步骤如下:A .在小滑块a 上固定一个宽度为d 的窄挡光片;B .用天平分别测出小滑块a (含挡光片)和小球b 的质量m a 、m b ;C .a 和b 间用细线连接,中间夹一被压缩了的轻短弹簧(与a 、b 不连接),静止放置在平台上;D .细线烧断后,a 、b 瞬间被弹开,向相反方向运动;E .记录滑块a 通过光电门时挡光片的遮光时间t ;F .小球b 从平台边缘飞出后,落在水平地面的B 点,用刻度尺测出平台距水平地面的高度h 及平台边缘铅垂线与B 点之间的水平距离s ;G .改变弹簧压缩量,进行多次测量.(1)用游标卡尺测量挡光片的宽度,如图乙所示,则挡光片的宽度为________ mm. (2)针对该实验装置和实验结果,同学们做了充分的讨论.讨论结果如下:①该实验要验证“动量守恒定律”,则只需验证a 、b 弹开后的动量大小相等,即________=________(用上述实验所涉及物理量的字母表示);②若该实验的目的是求弹簧的最大弹性势能,则弹簧的弹性势能为________(用上述实验所涉及物理量的字母表示);③改变弹簧压缩量,多次测量后,该实验小组得到x a 与1t 2的关系图像如图丙所示,图线的斜率为k ,则平台上A 点左侧与滑块a 之间的动摩擦因数大小为________(用上述实验数据字母表示).答案 (1)3.80 (2)①m a dt m b sg 2h②m a d 22t 2+m b s 2g 4h ③d 22kg解析 (1)挡光片的宽度d =3 mm +16×0.05 mm =3.80 mm.(2)①要验证“动量守恒定律”,则应该验证m a v a =m b v b ,由滑块a 通过光电门可求v a =d t ,由b 球离开平台后做平抛运动,根据h =12gt 2,s =v b t ,整理可得v b =sg2h,因此需验证的表达式为m a dt=m b sg 2h ;②弹性势能大小为E p =12m a v a 2+12m b v b 2,代入数据整理得E p =m a d 22t2+m b s 2g 4h ;③根据动能定理可得μmgx a =12m v a 2,而v a =d t ,联立整理得x a =d 22μg ·1t 2,故k =d 22μg ,可得平台A 点左侧与滑块a 之间的动摩擦因数μ=d 22kg.课时精练1.(2023·云南省昆明一中高三检测)某实验小组在进行“验证动量守恒定律”的实验,入射球与被碰球半径相同、质量不等,且入射球的质量大于被碰球的质量.(1)用游标卡尺测量直径相同的入射球与被碰球的直径,测量结果如图甲所示,则直径为________cm;(2)实验中,直接测定小球碰撞前、后的速度是不容易的,但是可以通过仅测量________(填选项前的字母),间接地解决这个问题;A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移D.小球的直径(3)实验装置如图乙所示,先不放B球,使A球从斜槽上某一固定点C由静止滚下,再把B 球静置于水平槽前端边缘处,让A球仍从C处由静止滚下.记录纸上的O点是铅垂线所指的位置,M、P、N分别为落点的痕迹,未放B球时,A球落地点是记录纸上的________点;放上B球后,B球的落地点是记录纸上的________点;(4)释放多次后,取各落点位置的平均值,测得各落点痕迹到O点的距离:OM=13.10 cm,OP=21.90 cm,ON=26.04 cm.用天平称得入射小球A的质量m1=16.8 g,被碰小球B的质量m2=5.6 g.若将小球质量与水平位移的乘积作为“动量”,请将下面的表格填写完整.(结果保留三位有效数字)OP/m OM/m ON/m 碰前“总动量”p/(kg·m)碰后“总动量”p′/(kg·m)0.219 00.131 00.260 4 3.68×10-3______根据上面表格中的数据,你认为能得到的结论是____________________________;(5)实验中,关于入射小球在斜槽上释放点的高低对实验影响的说法中正确的是________.A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小答案(1)2.14(2)C(3)P N(4)3.66×10-3在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒(5)C解析(1)球的直径d=21 mm+4×0.1 mm=21.4 mm=2.14 cm.(2)小球离开轨道后做平抛运动,因为小球抛出点的高度相等,它们在空中的运动时间相等,小球的水平位移与小球抛出的初速度成正比,可以用小球的水平位移代替其初速度,所以C 正确.(3)A球和B球相撞后,B球的速度增大,A球的速度减小,所以碰撞后A球的落地点距离O 点最近,B球的落地点距离O点最远,所以P点是未放B球时A球的落地点,N点是放上B 球后B球的落地点.(4)碰后“总动量”p′=m1OM+m2ON=0.016 8×0.131 0 kg·m+0.005 6×0.260 4 kg·m ≈3.66×10-3 kg·m则可知碰撞前、后“总动量”近似相等,在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒.(5)入射小球的释放点越高,入射球碰撞前的速度越大,相撞时内力越大,阻力的影响相对越小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,C正确.2.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速运动.然后与原来静止在前方的小车B相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示.在小车A后连着纸带,电磁打点计时器所用的电源频率为50 Hz,长木板下垫着小木片用以补偿阻力.(1)若已得到打点纸带,测得各计数点间距如图乙所示,A为运动起始的第一点,则应选________段来计算A车的碰前速度,应选________段来计算A车和B车碰后的共同速度.(以上两空均选填“AB”“BC”“CD”或“DE”)(2)已测得小车A 的质量m 1=0.40 kg ,小车B 的质量m 2=0.20 kg ,由以上测量结果可得,碰前总动量为______ kg·m/s ;碰后总动量为____ kg·m/s(结果保留小数点后3位).由上述实验结果得到的结论是:________________________________________________________.答案 (1)BC DE (2)0.420 0.417 A 、B 碰撞过程中,在误差允许范围内,系统动量守恒 解析 (1)小车A 碰前运动稳定时做匀速直线运动,所以选择BC 段计算A 碰前的速度;两小车碰后粘在一起仍做匀速直线运动,所以选择DE 段计算A 和B 碰后的共同速度.(2) 碰前小车A 的速度为v 0=BC t =0.105 05×0.02m/s =1.050 m/s 则碰前两小车的总动量为p =m 1v 0+0=0.40×1.050 kg·m/s =0.420 kg·m/s碰后两小车的速度为v =DE t =0.069 55×0.02m/s =0.695 m/s 则碰后两小车的总动量为p ′=(m 1+m 2)v =(0.40+0.20)×0.695 kg·m/s =0.417 kg·m/s由上述实验结果得到的结论是:A 、B 碰撞过程中,在误差允许范围内,系统动量守恒.3.(2023·福建福州市模拟)某地中学生助手设计了一个实验演示板做“探究碰撞中的不变量”的实验,主要实验步骤如下:①选用大小为120 cm ×120 cm 的白底板竖直放置,悬挂点为O ,并标上如图所示的高度刻度;②悬挂点两根等长不可伸长的细绳分别系上两个可视为质点的A 摆和B 摆,两摆相对的侧面贴上双面胶,以使两摆撞击时能合二为一,以相同速度一起向上摆;③把A 摆拉到右侧h 1的高度,释放后与静止在平衡位置的B 摆相碰.当A 、B 摆到最高点时读出摆中心对应的高度h 2;回答以下问题:(1)若A 、B 两摆的质量分别为m A 、m B ,则验证动量守恒的表达式为________(用上述物理量字母表示).(2)把A 摆拉到右侧的高度为0.8 m ,两摆撞击后一起向左摆到的高度为0.2 m ,若满足A 摆质量是B 摆质量的________倍,即可验证系统动量守恒,从而可以得出A 摆碰前初动能为碰后两摆损失机械能的________倍.答案 (1)m A h 1=(m A +m B )h 2(2)1 2解析 (1)由机械能守恒定律可得m A gh 1=12m A v 12,得碰前速度v 1=2gh 1,由(m A +m B )gh 2=12(m A +m B )v 22,得碰后速度v 2=2gh 2,根据动量守恒可知需要验证的表达式为m A h 1=(m A +m B )h 2.(2)把数据代入上述验证表达式可得m A =m B ,即若满足A 摆的质量是B 摆的质量的1倍,即可验证系统动量守恒;根据动量守恒定律有m A v 1=(m A +m B )v 2,根据能量守恒定律有12m A v 12=12(m A +m B )v 22+ΔE ,联立解得ΔE =14m A v 12,即A 摆碰前初动能为碰后两摆损失机械能的2倍.4.(2023·云南省昆明一中模拟)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与连接打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A (包括弹簧片)的质量m 1=0.310 kg ,滑块B (包括弹簧片和遮光片)的质量m 2=0.108 kg ,遮光片的宽度d =1.00 cm ,打点计时器所用交流电的频率f =50.0 Hz.将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为Δt B =3.500 ms ,碰撞前后打出的纸带如图(b)所示.根据图(b)中所标数据,可分析推断出碰撞发生在________间, A 滑块碰撞前的速度为________ m/s ,B 滑块碰撞前的速度为________ m/s, A 滑块碰撞后的速度为________ m/s ,B 滑块碰撞后的速度为________ m/s.(结果保留三位有效数字)答案 EF 2.00 0 0.970 2.86解析 由于A 滑块与气垫导轨间的摩擦力非常小,所以除了碰撞过程,A 滑块运动过程因摩擦力产生的加速度非常小,在相同时间内相邻位移的差值也非常小,根据图(b)中所标数据,可看出只有EF间的位移相比相邻间的位移变化比较明显,故碰撞发生在EF间;A滑块碰撞前的速度为v A=x FGT =4.00×10-20.02m/s=2.00 m/s, B滑块碰撞前的速度为0,A滑块碰撞后的速度为v A′=x DET =1.94×10-20.02m/s=0.970 m/s,B滑块碰撞后的速度为v B′=dΔt B=1.00×10-23.500×10-3m/s≈2.86 m/s.5.某同学利用如图所示的装置进行“验证动量守恒定律”的实验,操作步骤如下:①在水平桌面上的适当位置固定好弹簧发射器,使其出口处切线与水平桌面相平;②在一块长平木板表面先后钉上白纸和复写纸,将该木板竖直并贴紧桌面右侧边缘.将小球a向左压缩弹簧并使其由静止释放,a球碰到木板,在白纸上留下压痕P;③将木板向右水平平移适当距离,再将小球a向左压缩弹簧到某一固定位置并由静止释放,撞到木板上,在白纸上留下压痕P2;④将半径相同的小球b放在桌面的右边缘,仍让小球a从步骤③中的释放点由静止释放,与b球相碰后,两球均撞在木板上,在白纸上留下压痕P1、P3.(1)下列说法正确的是________.A.小球a的质量一定要大于小球b的质量B.弹簧发射器的内接触面及桌面一定要光滑C.步骤②③中入射小球a的释放点位置一定相同D.把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平(2)本实验必须测量的物理量有________.A.小球的半径rB.小球a、b的质量m1、m2C.弹簧的压缩量x1,木板距离桌子边缘的距离x2D.小球在木板上的压痕P1、P2、P3分别与P之间的竖直距离h1、h2、h3(3)用(2)中所测的物理量来验证两球碰撞过程中动量是否守恒,当满足关系式________时,则证明a、b两球碰撞过程中动量守恒.答案 (1)AD (2)BD (3)m 1h 2=m 1h 3+m 2h 1解析 (1)小球a 的质量一定要大于小球b 的质量,以防止入射球碰后反弹,选项A 正确;弹簧发射器的内接触面及桌面不一定要光滑,只要a 球到达桌边时速度相同即可,选项B 错误;步骤②③中入射小球a 的释放点位置不一定相同,但是步骤③④中入射小球a 的释放点位置一定要相同,选项C 错误;把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平,选项D 正确.(2)小球离开桌面右边缘后做平抛运动,设其水平位移为L ,则小球做平抛运动的时间t =L v 0小球的竖直位移h =12gt 2 联立解得v 0=L g 2h碰撞前入射球a 的水平速度v 1=L g 2h 2碰撞后入射球a 的水平速度v 2=L g 2h 3碰撞后被碰球b 的水平速度v 3=Lg 2h 1 如果碰撞过程系统动量守恒,则m 1v 1=m 1v 2+m 2v 3即m 1·Lg 2h 2=m 1·L g 2h 3+m 2·L g 2h 1, 整理得m 1h 2=m 1h 3+m 2h 1 则要测量的物理量是:小球a 、b 的质量m 1、m 2和小球在木板上的压痕P 1、P 2、P 3分别与P 之间的竖直距离h 1、h 2、h 3,故选B 、D. (3)由以上分析可知当满足关系式m 1h 2=m 1h 3+m 2h 1时,则证明a 、b 两球碰撞过程中动量守恒.。
第六章 实验七验证动量守恒定律

14
实验基础梳理
实验热点突破
高考模拟演练
@《创新设计》
解析 (1)小球离开轨道后应做平抛运动,所以在安装实验器材时斜槽的末端必须保 持水平,才能使小球做平抛运动。 (2)为防止在碰撞过程中入射小球被反弹,入射小球a的质量ma应该大于被碰小球b的 质量mb。为保证两个小球的碰撞是对心碰撞,两个小球的半径应相等。 (3)由题图甲所示装置可知,小球a和小球b相碰后,根据动量守恒和能量守恒可知小 球b的速度大于小球a的速度。由此可判断碰后小球a、b的落点位置分别为A、C点。 (4)小球下落高度一样,所以在空中的运动时间 t 相等,若碰撞过程满足动量守恒, 则应有 mav0=mava+mbvb,两边同乘以时间 t 可得 mav0t=mavat+mbvbt,即有 maO——B— =maO——A—+mbO——C—,故选项 B 正确。 答案 (1)保持水平 (2)> = (3)A C (4)B
11
实验基础梳理
实验热点突破
高考模拟演练
@《创新设计》
注意事项 (1)碰撞的两物体应保证“水平”和“正碰”。 (2)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平。 (3)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆 线竖直,将小球拉起后,两条摆线应在同一竖直平面内。 (4)若利用长木板进行实验,可在长木板下垫一个小木片以平衡摩擦力。 (5)若利用斜槽进行实验,入射球质量m1要大于被碰球质量m2,即m1>m2,防止碰 后m1被反弹,且两球半径r1=r2=r。
15
实验基础梳理
实验热点突破
高考模拟演练
@《创新设计》
【变式训练1】 某同学设计了一个用打点计时器“探究碰撞中的不变量”的实验,在 小车A的前端粘有橡皮泥,设法使小车A做匀速直线运动,然后与原来静止的小车B 相碰并黏在一起继续做匀速运动,如图7所示。在小车A的后面连着纸带,电磁打点 计时器的频率为50 Hz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验七验证动量守恒定律板块一主干梳理·夯实基础实验原理与操作◆实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒。
◆实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二:带细绳的摆球(相同的两套)、铁架台、天平、量角器、坐标纸、胶布等。
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案四:斜槽、大小相等质量不同的小球两个、重垂线一条、白纸、复写纸、天平、刻度尺、圆规、三角板。
◆实验步骤1.方案一:利用气垫导轨验证一维碰撞中的动量守恒(1)测质量:用天平测出滑块的质量。
(2)安装:正确安装好气垫导轨。
(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小)。
(4)验证:一维碰撞中的动量守恒。
2.方案二:利用摆球验证一维碰撞中的动量守恒(1)测质量:用天平测出两小球的质量m1、m2。
(2)安装:把两个等大的摆球用等长悬线悬挂起来。
(3)实验:一个摆球静止,拉起另一个摆球,放下时它们相碰。
(4)测速度:测量摆球被拉起的角度,从而算出碰撞前对应摆球的速度;测量碰撞后摆球摆起的角度,从而算出碰撞后对应摆球的速度。
(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
3.方案三:利用光滑桌面上两小车相碰验证一维碰撞中的动量守恒(1)测质量:用天平测出两小车的质量m1、m2。
(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器的限位孔连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥,把两小车连接在一起共同运动。
(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度。
(5)改变条件:改变碰撞条件,重复实验。
(6)验证:一维碰撞中的动量守恒。
4.方案四:利用平抛运动规律验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球。
(2)按要求安装好实验装置,并调整斜槽使斜槽末端切线水平。
(3)白纸在下,复写纸在上,在适当位置铺放好。
记下重垂线所指的位置O。
(4)不放被碰小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置。
(5)把被碰小球放在斜槽末端,让入射小球从斜槽上同一高度自由滚下,使它们发生碰撞,重复实验10次。
用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N。
(6)测量OP、OM、ON的长度,在误差允许的范围内,看m1·OP=m1·OM+m2·ON是否成立。
(7)整理好实验器材并放回原处。
(8)实验结论:在误差允许的范围内,讨论碰撞系统的动量是否守恒。
数据处理与分析◆注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”。
2.方案提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应注意利用水平仪确保导轨水平。
(2)若利用摆球进行验证,两摆球静止时球心应在同一水平线上,且刚好接触,摆线竖直,将摆球拉起后,两摆线应在同一竖直面内。
(3)利用两小车相碰进行验证时,要注意平衡摩擦力。
(4)利用平抛运动规律进行验证,安装实验装置时,应注意调整斜槽,使斜槽末端水平,且选质量较大的小球为入射小球。
3.探究结论:寻找的不变量必须在各种碰撞情况下都不变。
◆误差分析1.系统误差:主要来源于装置本身是否符合要求。
(1)碰撞是否为一维。
(2)实验是否满足动量守恒的条件,如气垫导轨是否水平,两球是否等大,长木板实验时是否平衡掉摩擦力。
2.偶然误差:主要来源于质量m和速度v的测量。
3.改进措施(1)设计方案时应保证碰撞为一维碰撞,且尽量满足动量守恒的条件。
(2)采取多次测量求平均值的方法来减小偶然误差。
板块二考点细研·悟法培优考点实验方案及数据处理1.实验方案方案一:利用气垫导轨和光电门完成一维碰撞。
方案二:利用等长悬线挂等大小球完成一维碰撞。
方案三:在光滑水平面上,利用两小车和打点计时器完成一维碰撞。
方案四:利用斜槽上滚下的小球与被撞小球完成一维碰撞。
2.数据处理(1)速度的测量方案一:滑块速度的测量:v =Δx Δt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间。
方案二:摆球速度的测量:v =2gh ,式中h 为小球释放时(或碰撞后摆起的)高度,h 可用刻度尺测量(也可由量角器和摆长计算出)。
方案三:小车速度的测量:v =Δx Δt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出。
方案四:测入射小球速度v 1=OP t ,碰后入射小球速度v 1′=OM t ,被碰小球碰后速度v 2=ON t 。
(2)验证的表达式方案一、二、三:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′。
方案四:m 1·OP =m 1·OM +m 2·ON 。
例 [2016·长沙模拟]某同学用如图甲所示的装置做“验证动量守恒定律”的实验。
先将a 球从斜槽轨道上某固定点处由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次;再把同样大小的b 球放在斜槽轨道末端水平段的最右端静止放置,让a 球仍从原固定点由静止开始滚下,和b 球相碰后,两球分别落在记录纸的不同位置处,重复10次。
(1)本实验必须测量的物理量有________。
A .斜槽轨道末端到水平地面的高度HB .小球a 、b 的质量m a 、m bC .小球a 、b 的半径rD .小球a 、b 离开斜槽轨道末端后平抛飞行的时间tE .记录纸上O 点到A 、B 、C 各点的距离OA 、OB 、OCF .a 球的固定释放点到斜槽轨道末端水平部分间的高度差h(2)根据实验要求,m a ________(填“大于”“小于”或“等于”)m b 。
(3)放上被碰小球后,两小球碰后是否同时落地?如果不是同时落地,对实验结果有没有影响?(不必做分析) ________________________________________________________。
(4)为测定未放小球b 时,小球a 落点的平均位置,把刻度尺的零刻度线跟记录纸上的O 点对齐,如图乙给出了小球a 落点附近的情况,由图可得OB 距离应为________cm 。
(5)按照本实验方法,验证动量守恒的验证式是________________________。
尝试解答 (1)BE (2)大于 (3)b 球先落地,对实验结果无影响 (4)45.95(45.93~45.97均正确)(5)m a ·OB =m a ·OA +m b ·OC 。
(1)由动量守恒定律的表达式可得:m a v 1=m a v 1′+m b v 2,必须测量小球a 和b 的质量m a 、m b ,B 选项正确; 小球重心离开水平轨道开始做平抛运动,高度一定,平抛时间一定,所以可以用射程表示速度,不需要测斜槽末端到地面的高度和平抛时间,而落点也是小球重心的位置,没必要测小球的半径,所以E 选项正确,A 、C 、D 选项都不正确;只要保证a 球每次下落的高度不变就可以,不需要测出高度差h ,F 选项也错误。
(2)为了防止出现A 小球反弹的现象,必须保证m a 大于m b 。
(3)b 球先落地,对实验结果无影响。
(4)用尽量小的圆,把a 球的落点都圈起来,圆心就是a 球落点的平均位置为45.95 cm 。
(5)设平抛时间为t ,则v 1=OB t ,v 1′=OA t ,v 2=OC t ,代入动量守恒的表达式,得m a ·OB =m a ·OA +m b ·OC 。
[跟踪训练] 用如图所示装置探究碰撞中的不变量,质量为m A 的钢球A 用细线悬挂于O 点,质量为m B 的钢球B 放在离地面高度为H 的小支柱N 上,O 点到A 球球心距离为L ,使悬线在A 球释放前伸直,且线与竖直方向的夹角为α,A 球释放后摆到最低点时恰好与B 球正碰,碰撞后,A 球把轻质指示针OC 推移到与竖直方向夹角为β处,B 球落到地面上,地面上铺一张盖有复写纸的白纸D ,保持α角度不变,多次重复上述实验,白纸上记录到多个B 球的落点。
(1)图中s 应是B 球初始位置到________的水平距离。
(2)实验中需要测量的物理量有哪些?(3)实验中需要验证的关系式是怎样的?答案 (1)落地点 (2)L 、α、β、H 、s 、m A 、m B(3)m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B s g 2H解析 由机械能守恒定律可知A 球下摆的过程有:m A gL (1-cos α)=12m A v 2A ,则A 球向下摆到与B 球相碰前的速度为v A =2gL (1-cos α)。
碰后A 球的速度v A ′=2gL (1-cos β),碰后B 球做平抛运动v B ′=s t =s 2H g=s g 2H。
在碰撞中物体质量与速度的乘积之和不变,则m A v A =m A v A ′+m B v B ′。
故有m A 2gL (1-cos α)=m A 2gL (1-cos β)+m B s g 2H 。