应用统计学多元方差分析与重复测量方差分析共27页
重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析[转]1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。
通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。
本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。
2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。
在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。
为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。
通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。
3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。
•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。
•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。
如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。
4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。
具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。
步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。
步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。
重复测量的多因素方差分析

1概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P> 0.05,贝U说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P<0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1采用MANOVA多变量方差分析方法);(2)对重复测量ANOV检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor ,VEGF是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
重复测量的多因素方差分析

SPSS学习笔记之——重复测量的多因素方差分析[转]1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征[11]。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
北京大学多元方差分析与重复测量的方差分析

• 多元方差分析的好处
检验效率高; 犯一类错误的概率低; 考虑了效应指标之间的相互影响; 可以帮助作出综合结论。
• SPSS中多元方差分析的实现
重复测量的方差分析
Repeated Measures ANOVA
• 重复测量设计
重复测量是指对同一观察对象的同一个观察指标在 观察条件大致相同的条件下进行的反复多次测量, 既可能是在不同观察时间的测量,也可能是在不同 条件下的测量。 只有一个测量指标的称为单变量重复测量,有两个 或多个测量指标的称为多变量重复测量。 由此可见,重复测量设计的观察结果相互之间存在 一定程度的内在相关性,各观测之间通方差分析的基本思想 重复测量方差分析将效应变量的变异分解成: 研究对象内的变异(即测量时间点或测量条件下 的效应); 研究对象间的变异(即处理因素的效应); 上述两种效应间的交互作用; 随机误差。 无论是考察测量时间点或测量条件下的效应,还 是考察处理因素的效应,重复测量方差分析都采 用多元方差分析的思想。
• 问题的提出 研究中,效应指标不只有一个,而且这些 指标之间相互联系,相互影响; 需要给出一个综合评价/结论
• 基本思想
与单变量的方差分析一样 在多元方差分析中,由于引入了多个效应观察指标,所以 用离均差平方和与离均差积和阵来表示变异。 总变异阵SS总可以分解为SS设计效应阵与SS随机效应阵,即: SS总= SS设计效应阵+ SS随机效应阵 常计算多元统计量Wilks’ λ来进行假设检验:
spss中多元方差分析的实现重复测量的方差分析repeatedmeasuresanova重复测量设计重复测量是指对同一观察对象的同一个观察指标在观察条件大致相同的条件下进行的反复多次测量既可能是在不同观察时间的测量也可能是在不同条件下的测量
多元方差分析及重复测量方差分析

§8.5重复测量的方差分析重复测量的方差分析指的是一个应变量被重复测量好几次,从而同一个个体的几次观察结果间存在相关,这样就不满足普通分析的要求,需要用重复测量的方差分析模型来解决。
8.5.1Repeated measures对话框界面说明实际上,如果对普通方差分析模型作出正确的设置,两者的分析结果是完全相同的,即都正确,那么,重复测量的方差分析过程有何优势呢?我们通过下面的例子来看看:例8.3 在数据集anxity2.sav中判断:anxiety和tension对实验结果(即trial1~trial4)有无影响;四次试验间有无差异;试验次数和两个变量有无交互作用。
anxity2.sav和anxity.sav实际上是同一个数据,但根据不同的分析目的采用了不同的数据排列方式。
如果采用anxity.sav进行分析,我们可以分析四次试验间有无差异的问题,但对另两个问题就无能为力了,因为用普通的方差分析模型,anxity和tension的影响被合并到了subject中,根本就无法分解出来进行分析,这时,我们就只能求助于重复测量的方差分析模型。
在菜单中选择Analyze==>General Lineal model==>Repeated measures,系统首先会弹出一个重复测量因子定义对话框如下:因为是重复测量的模型,应变量被重复测量了几次,分别存放在几个变量中,所以我们这里要自行定义应变量。
默认的名称为factor1,我们将其改为trail,下面的因素等级数填入4(因一共测量了四次)。
单击Add钮,则该变量被加入,我们就完成了模型设置的第一步:应变量名称和测量次数定义。
单击define,我们开始进行下一个步骤:具体重复测量变量定义及模型设置,对话框如下:这个对话框和我们以前看到的方差分析对话框不太一样:它没有应变量框,而是改为了组内效应框,实际上是一回事,上面我们定义了trial有四次测量,此处就给出了四个空让你填入相应代表四次测量的变量,选中trial1~trial4,将其选入;然后要选择自变量了(这里又将其称为了between subjects factor),将剩下的三个都选入即可。
重复测量方差分析PPT课件

表12-8 考虑干预和时间因素的SS分解
变异来源 处理组间
干预(A) 时间(B) AB交互作用
自由度 离均差平方和(SS)
3
SS处理
1 n
(T12
T22
T32
T42 )-C
1
SSA 21n(A12 A22 )-C
1
SSB 21n(B12 B22 )-C
1
SSAB SS处理 SS A SSB
2
实例举例1
每一根线代表1位病人
血药浓度(μmol/L)
180 150 120
90 60 30
0
旧剂型 新剂型
4
8
12
时间(小时)
图2 某药新旧剂型血药浓度随时间的变化
3
实例举例2
每一根线代表1只兔子
胆固醇(mg%)的对数
6.5
处理组
6.0
对照组
5.5
5.0
4.5
4.0
3.5 实验前
5周后
10周后
14
表12-5 20例患者手术前后症状评分
处理 手术
手术后
分组 前 10天 2月 4月 6月 9月
A 0.60 0.67 2.84 2.10 2.00 1.60
A 1.42 3.40 4.10 2.92 2.65 3.40
…… …… …… …… …… …… ……
B 2.71 2.04 2.61 2.17 2.15 1.81
2.62
8
3.21
1.85
8
前后测量设计和配对设计的区别
配对设计可随机分配同一对子的试验单位, 同期观察试验结果,而前后测量设计则不能 同期观察试验结果;
配对设计比较两种处理的差别,前后测量设 计比较某种处理前后的差别;
多元方差分析与重复测量方差分析

多元方差分析与重复测量方差分析多元方差分析(MANOVA)是一种多变量分析方法,它将多个因变量同时考虑在内,通过比较组别之间的多个平均值来进行分析。
多元方差分析的核心思想是基于协方差矩阵的比较,通过检验各个组别的协方差矩阵是否相等来判断组别之间的差异是否显著。
多元方差分析可以同时比较多个因变量之间的差异,从而避免了多次进行单变量方差分析可能带来的问题。
重复测量方差分析(Repeated Measures ANOVA)也是一种常用的分析方法,主要用于分析同一组个体在不同时间点或不同实验条件下的多次测量结果之间的差异。
重复测量方差分析通常包括对同一组个体在不同时间点或实验条件下的多次测量结果进行统计分析,以比较各个时间点或实验条件之间的平均差异是否显著。
它通过考虑同一组个体之间的相关性,来提高统计分析的效果。
与多元方差分析不同,重复测量方差分析主要关注不同时间点或不同实验条件下的变化趋势和差异,而不是直接比较组别之间的差异。
重复测量方差分析可以用于研究个体在一段时间内的发展趋势,或在不同实验条件下的变化情况,从而揭示出时间和实验因素对变量的影响。
数据结构方面,多元方差分析通常要求每个组别有多个观测值,每个观测值都对应于多个因变量的取值。
而重复测量方差分析要求在相同的个体或实验单位上进行多次测量,并将多次测量结果作为相同个体或实验单位的多个观测值。
分析方法方面,多元方差分析主要依赖协方差矩阵的比较来进行统计推断。
而重复测量方差分析通常使用协方差矩阵的分解来提取主要成分,并通过分析主要成分之间的差异来进行统计推断。
综上所述,多元方差分析和重复测量方差分析是两种常用的统计分析方法,它们在数据结构和分析方法上存在一些差异。
多元方差分析主要用于比较不同组别之间的平均差异,而重复测量方差分析主要用于分析同一组个体在不同时间点或实验条件下的多次测量结果之间的差异。
选择合适的方法需要根据具体问题和数据特点来决定。
以上就是对多元方差分析与重复测量方差分析的详细介绍。