天津市蓟县2015-2016学年八年级上学期期中数学试卷【解析版】

合集下载

2015-2016年天津市蓟县八年级上学期期中数学试卷及参考答案

2015-2016年天津市蓟县八年级上学期期中数学试卷及参考答案

2015-2016学年天津市蓟县八年级(上)期中数学试卷一、单选题(每小题3分,共36分)1.(3.00分)已知等边△ABC,分别以AB、BC、CA为边向外作等边三角形ABD,等边三角形BCE,等边三角形ACF,则下列结论中不正确的是()A.BC2=AC2+BC2﹣AC•BC B.△ABC与△DEF的重心不重合C.B,D,F三点不共线D.S△DEF≠S△ABC2.(3.00分)如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD3.(3.00分)下列各组的两个图形属于全等图形的是()A.B.C.D.4.(3.00分)等边三角形的对称轴有()A.1条 B.1条或3条C.3条 D.4条5.(3.00分)三角形的内角和是()A.360°B.180°C.90°D.60°6.(3.00分)如图所示,点P为△ABC三边垂直平分线的交点,PA=6,则点P 到点C的距离为PC满足()A.PC<6 B.PC=6 C.PC>6 D.以上都不对7.(3.00分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°8.(3.00分)两个三角形具备下列()条件,则它们一定全等.A.两边和其中一边的对角对应相等B.三个角对应相等C.两角和一组对应边相等D.两边及第三边上的高对应相等9.(3.00分)如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在()的垂直平分线上.A.AB B.AC C.BC D.不能确定10.(3.00分)利用尺规作图不能唯一作出三角形的是()A.已知三边B.已知两边及夹角C.已知两角及夹边 D.已知两边及其中一边的对角11.(3.00分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.1612.(3.00分)某人到瓷砖商店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不能是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题(每小题3分,共18分)13.(3.00分)如图.点D、E在△ABC的边BC上,AB=AC,AD=AE.请写出图中的全等三角形(写出一对即可).14.(3.00分)若等腰三角形的腰长为4,底边长为2,则其周长为.15.(3.00分)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是.16.(3.00分)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM=度.17.(3.00分)在△ABC和△A′B′C′中,已知∠C=∠C′,AC=A′C′,请你添加一个条件,使△ABC≌△A′B′C′,你添加的条件是.18.(3.00分)如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为.三、解答题19.(6.00分)图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.20.(6.00分)如图,已知△ABC和直线l,试画出△ABC关于直线l的对称图形.21.(6.00分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.22.(7.00分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数?23.(7.00分)如图,△ABC中,边AB、BC的垂直平分线交于点P,探究:点P 是否也在边AC的垂直平分线上.24.(7.00分)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.25.(7.00分)如图,已知∠XOY=90°,点A,B分别在射线OX,OY上移动,BE 是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB 的大小是否变化?若不变,请给出证明,若随点A,B的移动发生变化,请求出变化范围.2015-2016学年天津市蓟县八年级(上)期中数学试卷参考答案与试题解析一、单选题(每小题3分,共36分)1.(3.00分)已知等边△ABC,分别以AB、BC、CA为边向外作等边三角形ABD,等边三角形BCE,等边三角形ACF,则下列结论中不正确的是()A.BC2=AC2+BC2﹣AC•BC B.△ABC与△DEF的重心不重合C.B,D,F三点不共线D.S△DEF≠S△ABC【解答】解:A、化简化得AC=BC,正确;B、DEF是等边三角形,且等边△ABC的各顶点是△DEF各边的中点,等边△ABC 可看作是△DEF的内接正三角形,所以△ABC与△DEF的重心重合,错误;C、根据题意,可得出点D、B、E在同一直线上,点D、A、F在同一直线上,点E、C、F在同一直线上,正确;D、S△DEF=4S△ABC,正确.故选:B.2.(3.00分)如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选:A.3.(3.00分)下列各组的两个图形属于全等图形的是()A.B.C.D.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.4.(3.00分)等边三角形的对称轴有()A.1条 B.1条或3条C.3条 D.4条【解答】解:等边三角形的对称轴有3条.故选:C.5.(3.00分)三角形的内角和是()A.360°B.180°C.90°D.60°【解答】解:作AB∥CD,则∠D=∠1,∠2=∠C,则∠C+∠D+∠3=∠2+∠3+∠1=180°.故选:B.6.(3.00分)如图所示,点P为△ABC三边垂直平分线的交点,PA=6,则点P 到点C的距离为PC满足()A.PC<6 B.PC=6 C.PC>6 D.以上都不对【解答】解:∵点P为△ABC三边垂直平分线的交点,∴PC=PA=6,故选:B.7.(3.00分)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.8.(3.00分)两个三角形具备下列()条件,则它们一定全等.A.两边和其中一边的对角对应相等B.三个角对应相等C.两角和一组对应边相等D.两边及第三边上的高对应相等【解答】解:A、两边和其中一边的对角对应相等,不能判定两个三角形全等,故此选项错误;B、三个角对应相等,不能判定两个三角形全等,故此选项错误;C、两角和一组对应边相等,可以利用AAS判定两个三角形全等,故此选项正确;D、两边及第三边上的高对应相等,这两边的夹角有可能一个是锐角一个是钝角,所以这两个三角形不一定全等,故此选项错误;故选:C.9.(3.00分)如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在()的垂直平分线上.A.AB B.AC C.BC D.不能确定【解答】解:∵BC=BD+AD=BD+CD∴AD=CD∴点D在AC的垂直平分线上.故选:B.10.(3.00分)利用尺规作图不能唯一作出三角形的是()A.已知三边B.已知两边及夹角C.已知两角及夹边 D.已知两边及其中一边的对角【解答】解:A、边边边(SSS);B、两边夹一角(SAS);C、两角夹一边(ASA)都是成立的.只有D是错误的,故选D.11.(3.00分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.12.(3.00分)某人到瓷砖商店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不能是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:A、正三角形的每个内角是60°,能整除360°,能用来铺设无缝地板,不符合题意;B、正方形的每个内角是90°,能整除360°,能用来铺设无缝地板,不符合题意;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能用来铺设无缝地板,符合题意;D、正六边形的每个内角是120°,能整除360°,能用来铺设无缝地板,不符合题意;故选:C.二、填空题(每小题3分,共18分)13.(3.00分)如图.点D、E在△ABC的边BC上,AB=AC,AD=AE.请写出图中的全等三角形△ABD≌△ACE(答案不唯一)(写出一对即可).【解答】解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,即∠ADB=∠AEC,在△ABD和△ACE中,∵,∴△ABD≌△ACE(AAS),在△ABE和△ACD中,∵,∴△ABE≌△ACD(AAS).故答案为:△ABD≌△ACE(答案不唯一).14.(3.00分)若等腰三角形的腰长为4,底边长为2,则其周长为10.【解答】解:因为腰长为4,底边长为2,所以其周长=4+4+2=10.故填10.15.(3.00分)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是4.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.16.(3.00分)如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM=60度.【解答】解:在△ABC中,∵∠A+∠B=120°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣120°=60°,∵△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,∴MN∥BC,∠ANM=∠ACB=60°.故答案为60.17.(3.00分)在△ABC和△A′B′C′中,已知∠C=∠C′,AC=A′C′,请你添加一个条件,使△ABC≌△A′B′C′,你添加的条件是∠B=∠B′.【解答】解:添加∠B=∠B′,∵在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).故答案为:∠B=∠B′.18.(3.00分)如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为8.【解答】解:∵AD平分∠BAC交BC于点D,又∵DC⊥AC,DE⊥AB,∴DC=DE,∵AD=AD,∴Rt△ADC≌Rt△ADE,∴AC=AE,∵AC=BC,∴AC=AE=BC,∵△BDE的周长为8,即BD+DE+BE=8,∴DC+BD+BE=BC+BE=AE+BE=18=8.故答案是:8.三、解答题19.(6.00分)图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.【解答】解:如图,共有6个三角形.其中锐角三角形有2个:△ABE,△ABC;直角三角形有3个:△ABD,△ADE,△ADC;钝角三角形有1个:△AEC.20.(6.00分)如图,已知△ABC和直线l,试画出△ABC关于直线l的对称图形.【解答】解:所画图形如下所示:△A′B′C′即为所求.21.(6.00分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.22.(7.00分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.23.(7.00分)如图,△ABC中,边AB、BC的垂直平分线交于点P,探究:点P 是否也在边AC的垂直平分线上.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.24.(7.00分)如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.【解答】证明:∵CD⊥AB于D点,BE⊥AC于点E∴∠BDO=∠CEO=90°在△BDO和△CEO中,,∴△BDO≌△CEO(AAS),∴OD=OE,∵OD⊥AB,OE⊥AC,∴∠1=∠2.25.(7.00分)如图,已知∠XOY=90°,点A,B分别在射线OX,OY上移动,BE 是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB 的大小是否变化?若不变,请给出证明,若随点A,B的移动发生变化,请求出变化范围.【解答】解:∠ACB的大小不变.证明:∵∠ABY 为△AOB 的一个外角,∴∠ABY=90°+∠OAB.又∵BE 为∠ABY 的平分线,∴∴∵AC 是∠OAB 的平分线,∴.∵∠ABE=∠C+∠CAB,∴=45°.即∠ACB的大小不变.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

2015-2016学年八年级上学期期中考试数学试卷

2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………

天津市蓟县八级上期中数学试卷含答案解析

天津市蓟县八级上期中数学试卷含答案解析

2016-2017学年天津市蓟县八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四根木棒中,能与5cm,8cm长的两根木棒钉成一个三角形的是()A.3cm B.8cm C.13cm D.15cm2.在△ABC中,∠B=2∠A﹣10°,∠C=∠B+50°.则∠A的度数为()A.10°B.20°C.30°D.40°3.从n边形的一个顶点出发共有对角线的条数是()A.(n﹣1)B.n﹣2 C.(n﹣3)D.(n﹣4)4.如图,已知AB∥CD,∠B=60°,∠E=25°,则∠D的度数为()A.25°B.35°C.45°D.55°5.如图,已知AB=DE,BC=EF,若利用“SSS”证明△ABC≌△DEF,还需要添加的一个条件是()A.AF=DC B.AF=FD C.DC=CF D.AC=DF6.下列条件中,能作出唯一三角形的是()A.已知两边和一角 B.已知两边和其中一边的对角C.已知两角和一边 D.已知三个角7.在△ABC和△A′B′C′中,已知条件:①AB=A′B′;②BC=B′C′;③AC=A′C′④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′.下列各组条件中不能保证△ABC≌△A′B′C′的是()A.①②③B.②③④C.③④⑤D.③⑤⑥8.如图,已知AB=CD,AD∥BC,∠ABC=∠DCB,则图中共有全等三角形()A.2对 B.3对 C.4对 D.5对9.如图,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论中,正确的个数是()(1)AD上任意一点到C、B的距离相等;(2)AD上任意一点到AB、AC的距离相等;(3)BD=CD,AD⊥BC;(4)∠BDE=∠CDF.A.1个 B.2个 C.3个 D.4个10.下列图案中,是轴对称图形的有()A.B.C.D.11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB 的角平分线且相交于点F,则图中的等腰三角形有()A.6个 B.7个 C.8个 D.9个12.如图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF,②△BDF≌△CDE,③D在∠BAC的平分线上,以上结论中,正确的是()A.只有①B.只有②C.只有①和②D.①,②与③二、填空题(本大题共6小题,每小题3分,共18分)13.从多边形的一个顶点引出的所有对角线,把多边形分割成5个三角形,则此多边形是边形.14.若一个八边形的七个内角的和为1000°,则第八个内角的度数为.15.等腰三角形的一个内角为70°,另外两个内角的度数为.16.若点P(2a+b,﹣3a)与点Q(8,b+2)关于x轴对称,则a=,b=.17.如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC=.18.如图,已知AB∥CD,AD∥BC,BF=DE,则图中的全等三角形有对.三、解答题(本大题共6小题,共46分.)19.(6分)如图,直线l是一条河,A、B是两个村庄,欲在l上的某处修建一个水泵站M,向A、B两地供水,要使所需管道MA+MB的长度最短,在图中标出M点(不写作法,不要求证明,保留作图痕迹)20.(6分)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=70°,∠C=50°.求∠DAC和∠BOA的度数.21.(8分)如图,已知AB=AE,∠BAE=∠CAD,AC=AD,求证:BC=ED.22.(8分)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC ≌△ADC,并说明理由.23.(8分)如图,点P为锐角∠ABC内一点,点M在边BA上,点N在边BC 上且PM=PN,∠BMP+∠BNP=180°.求证:BP平分∠ABC.24.(10分)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,过点D 分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?并证明;(2)过点C作AB边上的高CG,试猜想DE,DF,CG的长之间存在怎样的等量关系?(直接写出你的结论)2016-2017学年天津市蓟县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四根木棒中,能与5cm,8cm长的两根木棒钉成一个三角形的是()A.3cm B.8cm C.13cm D.15cm【考点】三角形三边关系.【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:设三角形的第三边为x,则8﹣5<x<5+8,即3<x<13,∴当x=8时,能与5cm、8cm长的两根木棒钉成一个三角形,故选:B.【点评】本题主要考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.2.在△ABC中,∠B=2∠A﹣10°,∠C=∠B+50°.则∠A的度数为()A.10°B.20°C.30°D.40°【考点】三角形内角和定理.【分析】根据已知条件用∠A表示出∠C,然后根据三角形的内角和等于180°列式计算求出∠A,然后求解即可.【解答】解:因为在△ABC中,∠B=2∠A﹣10°,∠C=∠B+50°.可得:∠C=2∠A﹣10°+50°=2∠A+40°,可得:2∠A﹣10°+2∠A+40°+∠A=180°,解得:∠A=30°,故选C【点评】本题考查了三角形的内角和等于180°,熟记定理,用∠C表示出∠A是解题的关键.3.从n边形的一个顶点出发共有对角线的条数是()A.(n﹣1)B.n﹣2 C.(n﹣3)D.(n﹣4)【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引(n﹣3)条对角线.【解答】解:过n边形的一个顶点可引出(n﹣3)条对角线.故选:C.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.4.如图,已知AB∥CD,∠B=60°,∠E=25°,则∠D的度数为()A.25°B.35°C.45°D.55°【考点】平行线的性质.【分析】首先根据平行线的性质求出∠CFE的度数,然后根据三角形的外角性质求出∠D的度数.【解答】解:∵AB∥CD,∴∠B=∠CFE,∵∠B=60°,∴∠CFE=60°,∵∠D=∠CFE﹣∠E,∠E=25°,∴∠D=60°﹣25°=35°,故选B.【点评】本题主要考查了平行线的性质以及三角形外角的知识,解题的关键是求出∠CFE的度数,此题难度不大.5.如图,已知AB=DE,BC=EF,若利用“SSS”证明△ABC≌△DEF,还需要添加的一个条件是()A.AF=DC B.AF=FD C.DC=CF D.AC=DF【考点】全等三角形的判定.【分析】利用“SSS”证明△ABC≌△DEF,还需要添加的一个条件是AC=DF.【解答】解:利用“SSS”证明△ABC≌△DEF,还需要添加的一个条件是AC=DF,理由如下:在△ABC和△DEF中,∴△ABC≌△DEF(SSS).故选D.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.6.下列条件中,能作出唯一三角形的是()A.已知两边和一角 B.已知两边和其中一边的对角C.已知两角和一边 D.已知三个角【考点】全等三角形的判定.【分析】把尺规作图的唯一性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.【解答】解:A、若是两边和夹角,符合全等三角形的判断SAS,能作出唯一三角形,若是两边和其中一边的对角,则不能作出唯一三角形,故错误;B、已知两边和其中一边的对角,不能作出唯一三角形,故错误;C、已知两角及一边作三角形,无论是角角边(AAS)还是角边角(SAS)都可以作出唯一三角形,故正确;D、已知三个角只能确定相似三角形,两三角形大小不一定相等,故错误;故选C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL,注意AAA和SSA不能证明三角形全等.7.在△ABC和△A′B′C′中,已知条件:①AB=A′B′;②BC=B′C′;③AC=A′C′④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′.下列各组条件中不能保证△ABC≌△A′B′C′的是()A.①②③B.②③④C.③④⑤D.③⑤⑥【考点】全等三角形的判定.【分析】根据四个选项所给条件结合判定两个三角形全等的方法SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:A、①②③可利用SSS判定△ABC≌△A′B′C′,故此选项不合题意;B、②③④不能判定△ABC≌△A′B′C′,故此选项符合题意;C、③④⑤可利用AAS判定△ABC≌△A′B′C′,故此选项不合题意;D、③⑤⑥可利用AAS判定△ABC≌△A′B′C′,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,已知AB=CD,AD∥BC,∠ABC=∠DCB,则图中共有全等三角形()A.2对 B.3对 C.4对 D.5对【考点】全等三角形的判定.【分析】首先证明△ABC≌△DCB,可得∠DAC=∠ADB,再证明△ADC≌△DAB,可得∠ABD=∠DCA,然后证明△AOB≌△DOC.【解答】解:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴∠ACB=∠DBC,AC=BD,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴∠DAC=∠ADB,在△ADC和△DAB中,,∴△ADC≌△DAB(SAS),∴∠ABD=∠DCA,在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,△ABC中,AB=AC,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论中,正确的个数是()(1)AD上任意一点到C、B的距离相等;(2)AD上任意一点到AB、AC的距离相等;(3)BD=CD,AD⊥BC;(4)∠BDE=∠CDF.A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的性质;角平分线的性质;直角三角形的性质.【分析】根据等腰三角形三线合一的特点即可判断出(1)(2)(3)的结论是正确的.判断(4)是否正确时,可根据△BDE和△DCF均是直角三角形,而根据等腰三角形的性质可得出∠B=∠C,由此可判断出∠BDE和∠CDF的大小关系.【解答】解:∵AD平分∠BAC,AB=AC,AD三线合一,∴AD上任意一点到C、B的距离相等;(垂直平分线的上任意一点到线段两端的距离相等)因此(1)正确.∵AB=AC,且AD平分顶角∠BAC,∴AD是BC的垂直平分线;(等腰三角形三线合一)因此(2)(3)正确.∵AB=AC,∴∠B=∠C;∵∠BED=∠DFC=90°,∴∠BDE=∠CDF;因此(4)正确.故选D.【点评】此题主要考查学生对等腰三角形的性质、直角三角形的性质及角平分线的性质等知识点的综合运用能力.10.下列图案中,是轴对称图形的有()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.如图所示,在△ABC中,AB=AC,∠A=36°,BD、CE分别为∠ABC与∠ACB 的角平分线且相交于点F,则图中的等腰三角形有()A.6个 B.7个 C.8个 D.9个【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BF=CF,∴△ABC,△ABD,△ACE,△BFC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,∴BE=BF,CF=CD,BC=BD=CF,∴△BEF,△CDF,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选C.【点评】此题考查了等腰三角形的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.12.如图,已知AB=AC,AE=AF,BE与CF交于点D,则①△ABE≌△ACF,②△BDF≌△CDE,③D在∠BAC的平分线上,以上结论中,正确的是()A.只有①B.只有②C.只有①和②D.①,②与③【考点】全等三角形的判定与性质.【分析】根据三角形全等的判定方法,①由SAS判定△ABE≌△ACF;②由AAS 判定BDF≌△CDE;③SAS判定△ACD≌△ABD,所以D在∠BAC的平分线上.【解答】解:①∵AB=AC,AE=AF,∠A=∠A,∴△ABE≌△ACF;②∵△ABE≌△ACF,∴∠C=∠B,∵AB=AC,AE=AF,∴CE=FB,∵∠CDE=∠BDF,∴△BDF≌△CDE;③连接AD,∵△BDF≌△CDE,∴CD=BD,∵AB=AC,AD=AD,∴△ACD≌△ABD,∴∠CAD=∠BAD,即D在∠BAC的平分线上.故选D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(本大题共6小题,每小题3分,共18分)13.从多边形的一个顶点引出的所有对角线,把多边形分割成5个三角形,则此多边形是7边形.【考点】多边形的对角线.【分析】根据过某个多边形一个顶点画对角线,把多边形分成n﹣2个三角形,再结合题意可得n﹣2=5,再解即可.【解答】解:设多边形边数为n,∵从多边形的一个顶点引出的所有对角线,把多边形分割成5个三角形,∴n﹣2=5,解得:n=7.故答案为:7.【点评】此题主要考查了多边形的对角线,关键是掌握过某个多边形一个顶点画对角线,把多边形分成n﹣2个三角形.14.若一个八边形的七个内角的和为1000°,则第八个内角的度数为80°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算第八个内角的度数.【解答】解:八边形的内角和为:(8﹣2)×180°=1080°,第八个内角的度数为1080﹣1000=80°,故答案为80°.【点评】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180 (n≥3)且n为整数).15.等腰三角形的一个内角为70°,另外两个内角的度数为55°,55°或70°,40°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是70°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为70°时,另外两个内角=(180°﹣70°)÷2=55°;(2)若等腰三角形的底角为70°时,它的另外一个底角为70°,顶角为180°﹣70°﹣70°=40°.故填55°,55°或70°,40°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.若点P(2a+b,﹣3a)与点Q(8,b+2)关于x轴对称,则a=2,b=4.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得2a+b=8,﹣3a+b+2=0,再组成方程组解出a、b的值即可.【解答】解:∵点P(2a+b,﹣3a)与点Q(8,b+2)关于x轴对称,∴2a+b=8,﹣3a+b+2=0,解得:a=2,b=4.故答案为:2、4.【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化特点.17.如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC=117°.【考点】三角形内角和定理;三角形的外角性质.【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和,列式进行计算即可得解.【解答】解:在△ABD中,∠A=70°,∠ABD=22°,∴∠CDE=∠A+∠ABD=70°+22°=92°,∴∠BEC=∠DCE+∠CDE=25°+92°=117°.故答案为:117°.【点评】本题主要考查了三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和,两次利用性质是解题的关键.18.如图,已知AB∥CD,AD∥BC,BF=DE,则图中的全等三角形有6对.【考点】全等三角形的判定.【分析】首先根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形,再根据平行四边形的性质及已知条件得到图中全等的三角形:△ADC≌△CBA,△ABD≌△CDB,△OAD≌△OCB,△OAB≌△OCD,△OEA≌△OFC,△OED≌△OFB共6对.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,∠CBA=∠ADC,AD=BC,∠BAD=∠BCD,在△ADC和△CBA中,,∴△ADC≌△CBA(SAS);同理:△ABD≌△CDB;∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,在△OAD和△OCB中,,∴△OAD≌△OCB(SAS);同理:△OAB≌△OCD;∵AD∥BC,∴∠OAE=∠OCF,在△OEA和△OFC中,,∴△OEA≌△OFC(ASA);同理:△OED≌△OFB.图中的全等三角形最多有6对;故答案为:6.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本大题共6小题,共46分.)19.如图,直线l是一条河,A、B是两个村庄,欲在l上的某处修建一个水泵站M,向A、B两地供水,要使所需管道MA+MB的长度最短,在图中标出M点(不写作法,不要求证明,保留作图痕迹)【考点】轴对称-最短路线问题.【分析】作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点.【解答】解:作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M 即为所求点.【点评】本题考查的是轴对称﹣最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.20.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=70°,∠C=50°.求∠DAC和∠BOA的度数.【考点】三角形内角和定理.【分析】在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,继而根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.【解答】解:∵AD是BC上的高,∴∠ADC=90°,又∵∠C=50°,∴∠DAC=90°﹣∠C=40°,∵∠BAC=70°,AE平分∠BAC,∴∠ABC=180°﹣∠BAC﹣∠C=60°,∠BAO=∠BAC=35°,∵BF平分∠ABC,∴∠ABO=∠ABC=30°,∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣30°﹣35°=115°.【点评】本题主要考查三角形内角和定理,熟练掌握三角形内角和是180°和三角形高线、角平分线的定义是解题的关键.21.如图,已知AB=AE,∠BAE=∠CAD,AC=AD,求证:BC=ED.【考点】全等三角形的判定与性质.【分析】根据已知得出∠BAC=∠EAD,进而利用SAS得出△ABC≌△AED,即可得出答案.【解答】证明:∵∠BAE=∠CAD,∴∠BAC=∠EAD,在△ABC和△AED中,∴△ABC≌△AED (SAS),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定是解题关键.22.如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【考点】全等三角形的判定.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.如图,点P为锐角∠ABC内一点,点M在边BA上,点N在边BC上且PM=PN,∠BMP+∠BNP=180°.求证:BP平分∠ABC.【考点】全等三角形的判定与性质.【分析】在AB上截取ME=BN,证得△BNP≌△EMP,进而证得∠PBN=∠MEP,BP=PE,从而证得BP平分∠ABC.【解答】证明:在AB上截取ME=BN,如图所示:∵∠BMP+∠PME=180°,∠BMP+∠BNP=180°,∴∠PME=∠BNP,在△BNP与△EMP中,,∴△BNP≌△EMP(SAS),∴∠PBN=∠MEP,BP=PE,∴∠MBP=∠MEP,∴∠MBP=∠PBN,∴BP平分∠ABC.【点评】本题主要考查了三角形全等的判定和性质、等腰三角形的判定和性质;证明三角形全等得出对应角相等是解决问题的关键.24.(10分)(2016秋•蓟县期中)如图,已知在△ABC中,AB=AC,D是BC 边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?并证明;(2)过点C作AB边上的高CG,试猜想DE,DF,CG的长之间存在怎样的等量关系?(直接写出你的结论)【考点】等腰三角形的性质.【分析】(1)根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形的面积公式求出即可.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C ,∵DE ⊥AB ,DF ⊥AC ,∴∠DEB=∠DFC=90°,∵在△BED 和△CFD 中,∴△BED ≌△CFD (AAS ),∴DE=DF .(2)CG=DE +DF证明:连接AD ,∵S 三角形ABC =S 三角形ADB +S 三角形ADC ,∴AB ×CG=AB ×DE +AC ×DF ,∵AB=AC ,∴CG=DE +DF .【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力。

2015-2016学年八年级数学上册期中考试试卷6

2015-2016学年八年级数学上册期中考试试卷6

知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
知识改变命运
河北省2015—2016学年八年级期中考试数学试卷(冀教版)答案 说明:本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分。

一、
1.D
2.C
3.B
4.C
5.A
6.A
7.D
8.C
9.D 10.D
11.D 12.A
13.C 14.C 15.B 16.C
二、
17.4 18.8cm
19.∠A=∠DCE (答案不唯一,正确即可) 20.3-2
2 三、
21.(1)x=0. 经检验,x=0是原分式方程的解;
(2)原式=
1-x 3x =6.(3) 4232
22.如图;
23.(1)a 的值为6;b 的值为37;
(2)2b-a-4的平方根为±8.
24.(1)证明略;【提示:易得△ABC ≌△BDE 】 (2)∠BFE 的度数为124°.【提示:由(1)易得∠DBE=62°】
25.(1)该商家第一次购进了120个鼠标;
(2)每个鼠标的售价为150元.【提示:易得两次总共购进
360
个鼠标. 设每个鼠标的
售价为x元,根据题意可得,(360-50)x+50×0.8x=(13200+28800)(1+25%)】
26.(1)BF=BG;理由略;【提示:易得∠BAD=∠BCF. 易得△ABG ≌△CFB】
(2)∠FBG的度数为90°.【提示:易得∠G=∠FBD,∠G+∠DBG=90°】
知识改变命运。

天津市八年级上期中数学试卷(含答案解析)

天津市八年级上期中数学试卷(含答案解析)

天津市蓟州区八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2018-2019学年天津市蓟州区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE 即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE ≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。

2015-2016学年新课标人教版八年级(上)期中数学试卷及答案

2015-2016学年新课标人教版八年级(上)期中数学试卷及答案

2015-2016学年八年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.93.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 15.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A. 1 B.﹣1 C. 5 D.﹣57.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 28.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是三角形.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.15.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个考点:轴对称图形.分析:根据轴对称图形的概念结合图形求解.解答:解:轴对称图形有:第一个、第二个、第三个、第五个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.9考点:多边形内角与外角.专题:计算题.分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.解答:解:∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==12.故选A.点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°考点:全等三角形的应用.分析:先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.解答:解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.故选B.点评:本题考查的是全等三角形的判定及性质,直角三角形的性质,属较简单题目.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 1考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强.5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C考点:全等三角形的性质.分析:根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.解答:解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.点评:本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C. 5 D.﹣5考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,根据这一关系,就可以求出a=﹣(﹣2)=2,b=3.解答:解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得a=﹣(﹣2)=2,b=3.∴a+b=5故选C.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 2考点:三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.专题:规律型.分析:利用已知得出图形的变换规律,进而得出经过第2014次变换后所得A点坐标与第2次变换后的坐标相同求出即可.解答:解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2014÷4=503…2,∴经过第2014次变换后所得A点坐标与第2次变换后的坐标相同,故其坐标为:(a,﹣b).故选:A.点评:此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是钝角三角形.考点:三角形的外角性质.分析:根据三角形的外角与相邻的内角互为邻补角求出内角,再根据三角形的形状定义判断即可.解答:解:∵△ABC的一个外角为50°,∴与它相邻的内角为180°﹣50°=130°,∴△ABC一定是钝角三角形.故答案为:钝角.点评:本题考查了三角形的外角性质,求出与它相邻的内角是钝角是解题的关键.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为7.考点:全等三角形的性质.分析:根据△ABE的周长求出AE,再根据全等三角形对应边相等解答即可.解答:解:∵△ABE的周长为32,AB=14,BE=11,∴AE=32﹣14﹣11=32﹣25=7,∵△ABE≌△ACD,∴AD=AE=7.故答案为:7.点评:本题考查了全等三角形对应边相等的性质,三角形的周长,熟记性质并准确找出对应边是解题的关键.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为2.考点:角平分线的性质;垂线段最短.专题:动点型.分析:过P作PE⊥OM于E,根据垂线段最短,得出当Q与E重合时,PQ最小,根据角平分线性质求出PE=PA,即可求出答案.解答:解:过P作PE⊥OM于E,当Q与E重合时,PQ最小,∵PE⊥OM,PA⊥ON,OP平分∠MON,∴PE=PA=2,即PQ的最小值是2,故答案为:2.点评:本题考查了垂线段最短和角平分线的性质的应用,能根据题意得出PQ最小时Q的位置是解此题的关键,此题主要培养学生的理解能力.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.15.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.考点:关于x轴、y轴对称的点的坐标.分析:熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.解答:解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.考点:轴对称的性质.分析:根据轴对称的性质可得∠ABD=∠EBD,∠C=∠DBC,进而可得∠ABC=2∠ABD=2∠DBE,∠ABC=2∠C,再根据∠A=90°,可得∠ABC+∠BCD=90°,进而可得答案.解答:解:∵A点和E点关于BD的对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠DBE,∵B点、C点关于DE对称,∴∠C=∠DBC,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠BCD=90°,∴∠ABC=60°,∠C=30°.点评:此题主要考查了轴对称的性质,以及直角三角形的性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.考点:全等三角形的性质;全等三角形的判定;旋转的性质.分析:根据条件易证△ABC≌△DEC,即可判断.解答:解:AB∥DE;理由:∵AD垂直平分BE,且AB=DE,又∵BC=EC,BE⊥AD∴Rt△ABC≌Rt△DEC∴∠A=∠D,∴AB∥DE.点评:掌握三角形全等的判定定理,通过已知条件能够正确证明△ABC≌△DEC是解决本题的关键.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.解答:解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,∴∠CEA=100°﹣35°=65°.点评:此题考查全等三角形的性质,关键是根据全等三角形的对应角相等分析.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.考点:角平分线的性质.分析:把S△ABC=36cm2分成两部分即△ABD和△BCD,利用三角形的面积公式可得等量关系式,求这个等量关系即可.解答:解:∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=36cm2,S△BCD=BC•DF,又∵S△ABC=S△ABD+S△BCD,AB=18cm,BC=12cm,∴×18•DE+×12•DF=36,∴9DE+6DF=36.又∵DE=DF,∴9DE+6DE=36,∴DE=cm.点评:本题主要考查了三角形的面积公式和角的平分线上的点到角的两边的距离相等的性质.解题的关键是得到DE=DF.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.考点:等边三角形的性质.专题:证明题.分析:要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.解答:证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.点评:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.考点:全等三角形的判定与性质;平行线的判定;等边三角形的性质.专题:证明题.分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.解答:证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.点评:本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:(1)已知AB=AC,要求∠EBC就先求出∠ABE的度数,利用线段垂直平分线的性质易求解.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,求△BCE周长只需证明BE+CE=AC即可.解答:解:(1)已知AB=AC,DE是AB的垂直平分线∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.点评:本题考查了线段的垂直平分线的性质以及等腰三角形的性质;进行线段以及角的有效转移是正确解答本题的关键.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?考点:三角形三边关系.分析:首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b可得4<b<8,进而可确定b的值,然后再确定c的值即可.解答:解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).点评:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。

2015—2016学年度第一学期期中质量测试八年级数学试题附答案

2015—2016学年度第一学期期中质量测试八年级数学试题附答案

2015—2016学年度第一学期期中质量测试八年级数学试题(总分:120分时间:100分钟)一、选择题1、若分式112--xx的值为0,则应满足的条件是()A. x≠1B. x=-1C. x=1D. x=±12、下列计算正确的是()A.a·a2=a2 B.(a2)2=a4 C.3a+2a=5a2 D.(a2b)3=a2·b3 3、下列四个图案中,是轴对称图形的是()4、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)5、下列运算正确的是()A.yxyyxy--=--B.3232=++yxyx C.yxyxyx+=++22D.yxyxxy-=-+1226、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在().A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7、如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误..的是()A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8、如果2592++kxx是一个完全平方式,那么k的值是()A、30B、±30C、15D、±15BC(第7题)FEADB9、若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍二、填空题10、一种细菌半径是0.000 012 1米, 将0.000 012 1用科学记数法表示为 . 11.计算: ()a a a 2262÷-= .12、如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,则AC = .三、解答题13、分解因式:(4分) x 3﹣4x 2+4x14、先化简再求值:(6分))52)(52()1(42-+-+m m m ,其中3-=m15、解方程:(6分) .16、(6分)如图,点B ,E ,F ,C 在一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:∠A =∠D .DECB12题(第16题)F E DCBA图8ABCDE17(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.18、如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D . (1)求证:△ADC ≌△CEB .(5分)(2),5cm AD =cm DE 3=,求BE 的长度.(4分)第17题答案一、B B C A D C C BC二、1.21×10-5 , 3a-1 ,6 三、13、解:原式=x(x-2)214、解:原式=4m 2+8m+4-4m 2+25=8m+29当m=-3时,原式= -24+29=5 15、解:去分母得:x(x+2)-(x 2-4)=8整理 得:2x=4 解得:x=2经检验得x=2是原方程的增根 ∴原分式方程无解16、证明:∵BE =CF∴BF=CE在△ABE和△DCF中∵AB =DC ,∠B =∠C ,BF=CE∴△ABE≌△DCF∴∠A =∠D17、证明:∵BD平分∠ABC ∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD ∴BE=DE 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市蓟县八年级(上)期中数学试卷一、单选题(每小题3分,共36分)1.已知等边△ABC,分别以AB、BC、CA为边向外作等边三角形ABD,等边三角形BCE,等边三角形ACF,则下列结论中不正确的是( )A.BC2=AC2+BC2﹣AC•BC B.△ABC与△DEF的重心不重合C.B,D,F三点不共线D.S△DEF≠S△ABC2.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是( )A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD3.下列各组的两个图形属于全等图形的是( )A.B.C.D.4.等边三角形的对称轴有( )A.1条B.1条或3条C.3条D.4条5.三角形的内角和是( )A.360°B.180°C.90°D.60°6.如图所示,点P为△ABC三边垂直平分线的交点,PA=6,则点P到点C的距离为PC满足( )A.PC<6 B.PC=6 C.PC>6 D.以上都不对7.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°8.两个三角形具备下列( )条件,则它们一定全等.A.两边和其中一边的对角对应相等B.三个角对应相等C.两角和一组对应边相等D.两边及第三边上的高对应相等9.如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在( )的垂直平分线上.A.AB B.AC C.BC D.不能确定10.利用尺规作图不能唯一作出三角形的是( )A.已知三边 B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角11.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5 B.6 C.11 D.1612.某人到瓷砖商店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不能是( )A.正三角形 B.正方形C.正五边形 D.正六边形二、填空题(每小题3分,共18分)13.如图.点D、E在△ABC的边BC上,AB=AC,AD=AE.请写出图中的全等三角形__________(写出一对即可).14.若等腰三角形的腰长为4,底边长为2,则其周长为__________.15.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB 的距离是__________.16.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM=__________度.17.在△ABC和△A′B′C′中,已知∠C=∠C′,AC=A′C′,请你添加一个条件,使△ABC≌△A′B′C′,你添加的条件是__________.18.如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为__________.三、解答题19.图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.20.如图,已知△ABC和直线l,试画出△ABC关于直线l的对称图形.21.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.22.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?23.如图,△ABC中,边AB、BC的垂直平分线交于点P,探究:点P是否也在边AC的垂直平分线上.24.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.25.如图,已知∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?若不变,请给出证明,若随点A,B的移动发生变化,请求出变化范围.2015-2016学年天津市蓟县八年级(上)期中数学试卷一、单选题(每小题3分,共36分)1.已知等边△ABC,分别以AB、BC、CA为边向外作等边三角形ABD,等边三角形BCE,等边三角形ACF,则下列结论中不正确的是( )A.BC2=AC2+BC2﹣AC•BC B.△ABC与△DEF的重心不重合C.B,D,F三点不共线D.S△DEF≠S△ABC【考点】等边三角形的性质.【分析】根据等边三角形的性质,对四选项逐个进行判断即可求解.【解答】解:A、化简化得AC=BC,正确;B、DEF是等边三角形,且等边△ABC的各顶点是△DEF各边的中点,等边△ABC可看作是△DEF的内接正三角形,所以△ABC与△DEF的重心重合,错误;C、根据题意,可得出点D、B、E在同一直线上,点D、A、F在同一直线上,点E、C、F 在同一直线上,正确;D、S△DEF=4S△ABC,正确.故选B【点评】主要考查等边三角形的性质,三心合一.2.如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是( )A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PD=PE.【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.3.下列各组的两个图形属于全等图形的是( )A.B.C.D.【考点】全等图形.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.4.等边三角形的对称轴有( )A.1条B.1条或3条C.3条D.4条【考点】轴对称图形.【分析】根据等边三角形的轴对称性解答即可.【解答】解:等边三角形的对称轴有3条.故选C.【点评】本题考查了轴对称图形,熟记等边三角形的轴对称性是解题的关键.5.三角形的内角和是( )A.360°B.180°C.90°D.60°【考点】三角形内角和定理.【分析】根据三角形内角和定理可知.【解答】解:作AB∥CD,则∠D=∠1,∠2=∠C,则∠C+∠D+∠3=∠2+∠3+∠1=180°.故选B.【点评】三角形的内角和是180度,可以根据平行线的性质,转化为平角的度数解答.6.如图所示,点P为△ABC三边垂直平分线的交点,PA=6,则点P到点C的距离为PC 满足( )A.PC<6 B.PC=6 C.PC>6 D.以上都不对【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到PC=PA,得到答案.【解答】解:∵点P为△ABC三边垂直平分线的交点,∴PC=PA=6,故选:B.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°【考点】等腰三角形的性质.【专题】计算题.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点评】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.8.两个三角形具备下列( )条件,则它们一定全等.A.两边和其中一边的对角对应相等B.三个角对应相等C.两角和一组对应边相等D.两边及第三边上的高对应相等【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SSS、SAS、ASA、AAS、HL进行分析,AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【解答】解:A、两边和其中一边的对角对应相等,不能判定两个三角形全等,故此选项错误;B、三个角对应相等,不能判定两个三角形全等,故此选项错误;C、两角和一组对应边相等,可以利用AAS判定两个三角形全等,故此选项正确;D、两边及第三边上的高对应相等,这两边的夹角有可能一个是锐角一个是钝角,所以这两个三角形不一定全等,故此选项错误;故选:C.【点评】此题主要考查了全等三角形的判定,关键是掌握判定定理.9.如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在( )的垂直平分线上.A.AB B.AC C.BC D.不能确定【考点】线段垂直平分线的性质.【分析】由已知条件BC=BD+AD及图形知BC=BD+CD知AD=CD,根据线段垂直平分线的性质可判断出答案.【解答】解:∵BC=BD+AD=BD+CD∴AD=CD∴点D在AC的垂直平分线上.故选B.【点评】此题主要考查线段垂直平分线的性质的逆定理:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.得到AD=CD是正确解答本题的关键.10.利用尺规作图不能唯一作出三角形的是( )A.已知三边 B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角【考点】作图—复杂作图.【分析】依据了全等三角形的判定判断.【解答】解:A、边边边(SSS);B、两边夹一角(SAS);C、两角夹一边(ASA)都是成立的.只有D是错误的,故选D.【点评】本题主要考查了作图的理论依据.11.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5 B.6 C.11 D.16【考点】三角形三边关系.【专题】探究型.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.【点评】本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.12.某人到瓷砖商店去买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不能是( )A.正三角形 B.正方形C.正五边形 D.正六边形【考点】平面镶嵌(密铺).【分析】找到一个内角能整除360°的正多边形即可.【解答】解:A、正三角形的每个内角是60°,能整除360°,能用来铺设无缝地板,不符合题意;B、正方形的每个内角是90°,能整除360°,能用来铺设无缝地板,不符合题意;C、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能用来铺设无缝地板,符合题意;D、正六边形的每个内角是120°,能整除360°,能用来铺设无缝地板,不符合题意;故选C.【点评】本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.二、填空题(每小题3分,共18分)13.如图.点D、E在△ABC的边BC上,AB=AC,AD=AE.请写出图中的全等三角形△ABD≌△ACE(答案不唯一)(写出一对即可).【考点】全等三角形的判定;等腰三角形的性质.【专题】开放型.【分析】根据等边对等角的性质可得∠B=∠C,∠ADE=∠AED,再根据等角的补角相等可得∠ADB=∠AEC,然后根据“角角边”即可得到全等三角形.【解答】解:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,即∠ADB=∠AEC,在△ABD和△ACE中,∵,∴△ABD≌△ACE(AAS),在△ABE和△ACD中,∵,∴△ABE≌△ACD(AAS).故答案为:△ABD≌△ACE(答案不唯一).【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,根据等边对等角的性质得到相等的角是解题的关键.14.若等腰三角形的腰长为4,底边长为2,则其周长为10.【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形的性质及周长公式即可求得其周长.【解答】解:因为腰长为4,底边长为2,所以其周长=4+4+2=10.故填10.【点评】本题考查了等腰三角形的性质;本题已知比较明确,思路比较直接,属于基础题.15.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB 的距离是4.【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.16.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,则∠ANM=60度.【考点】勾股定理的应用;三角形内角和定理;三角形中位线定理.【专题】压轴题.【分析】易得∠C度数,MN是△ABC的中位线,那么所求角的度数等于∠C度数.【解答】解:在△ABC中,∵∠A+∠B=120°,∴∠ACB=180°﹣(∠A+∠B)=180°﹣120°=60°,∵△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=120°,∴MN∥BC,∠ANM=∠ACB=60°.故答案为60.【点评】本题考查了三角形中位线的性质及三角形内角和定理,中位线定理为证明两条直线平行提供了依据,进而为证明角的相等奠定了基础.17.在△ABC和△A′B′C′中,已知∠C=∠C′,AC=A′C′,请你添加一个条件,使△ABC≌△A′B′C′,你添加的条件是∠B=∠B′.【考点】全等三角形的判定.【分析】添加∠B=∠B′,再加上条件∠C=∠C′,AC=A′C′可利用AAS定理证明△ABC≌△A′B′C′.【解答】解:添加∠B=∠B′,∵在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS).故答案为:∠B=∠B′.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,在Rt△ABC中,已知∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若△BDE的周长为8,则AB的长为8.【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线的性质可以证明DC=DE,然后证明AE=AE=BC,再根据三角形的周长求解.【解答】解:∵AD平分∠BAC交BC于点D,∴DC=DE,AC=BC=AE,∵△BDE的周长为8,即BD+DE+BE=8,∴DC+BD+BE=BC+BE=AE+BE=18=8.故答案是:8.【点评】本题考查了角平分线的性质,理解性质证明AE=AE=BC是本题的关键.三、解答题19.图中一共有多少个三角形?锐角三角形、直角三角形、钝角三角形各有多少个?用符号表示这些三角形.【考点】三角形.【分析】根据三角形的定义和三角形的分类:三个角都是锐角的三角形是锐角三角形;有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形,据此即可解答问题.【解答】解:如图,共有6个三角形.其中锐角三角形有2个:△ABE,△ABC;直角三角形有3个:△ABD,△ADE,△ADC;钝角三角形有1个:△AEC.【点评】本题考查了三角形的定义,三角形的分类,是基础题,查找三角形时要按照一定的顺序才能做到不重不漏.20.如图,已知△ABC和直线l,试画出△ABC关于直线l的对称图形.【考点】作图-轴对称变换.【分析】分别作出A、B、C三点关于直线l的对称点A′、B′、C′,后顺次连接即可.【解答】解:所画图形如下所示:△A′B′C′即为所求.【点评】本题考查图形的轴对称变换,得到关键点的位置是解决本题的关键,用到的知识点为:轴对称变换图形中,对应点的连线被对称轴垂直平分.21.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.【考点】等边三角形的性质;三角形内角和定理;等腰三角形的判定与性质.【专题】证明题.【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.【点评】本题考查等腰三角形与等边三角形的性质及三角形内角和为180°等知识.此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.22.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.【点评】本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.23.如图,△ABC中,边AB、BC的垂直平分线交于点P,探究:点P是否也在边AC的垂直平分线上.【考点】线段垂直平分线的性质.【分析】因为到线段两端距离相等的点在线段的垂直平分线上,所以点P是否在AC的垂直平分线上,只需判断PA是否等于PC即可.【解答】证明:∵边AB,BC的垂直平分线交于点P,∴PA=PB,PB=PC.∴PA=PB=PC.∴点P必在AC的垂直平分线上.【点评】此题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点的距离相等的点在线段垂直平分线上.24.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】因为CD⊥AB于D点,BE⊥AC于点E,所以∠BDO=∠CEO=90°,因此可根据AAS判定△BDO≌△CEO,则有OD=OE,又因为OD⊥AB,OE⊥AC,所以∠1=∠2.【解答】证明:∵CD⊥AB于D点,BE⊥AC于点E∴∠BDO=∠CEO=90°在△BDO和△CEO中,,∴△BDO≌△CEO(AAS),∴OD=OE,∵OD⊥AB,OE⊥AC,∴∠1=∠2.【点评】本题考查了全等三角形的判定与性质、角平分线的性质,解决本题的关键是证明△BDO≌△CEO.25.如图,已知∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?若不变,请给出证明,若随点A,B的移动发生变化,请求出变化范围.【考点】三角形的外角性质;三角形内角和定理.【分析】首先判断出∠ACB不变,然后给出证明,根据题目中的信息不难发现,∠ABY与∠BOA和∠BAO的关系,又由BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,可知∠ABY与∠BAC∠BCA的关系,从而得到∠ACB的大小是否变化.【解答】解:∠ACB的大小不变.证明:∵∠ABY 为△AOB 的一个外角,∴∠ABY=90°+∠OAB.又∵BE 为∠ABY 的平分线,∴∴∵AC 是∠OAB 的平分线,∴.∵∠ABE=∠C+∠CAB,∴=45°.即∠ACB的大小不变.【点评】本题考查三角形的外角,角平分线的相关知识,关键是弄清外角和内角的关系,进行灵活变化,从而解答本题.。

相关文档
最新文档