奥数题型与解题思路11~20讲-优选

合集下载

(新编)奥数题型与解题思路11~20讲

(新编)奥数题型与解题思路11~20讲

11、有关数的法则或方法【数的读写方法】(整数中多位数的读写方法,以及小数、分数、百分数的读、写方法,见小学数学课本,此处略。

)“成数”、“折数”即“十分数”,它们常用中国数字和文字“七成”、“二成五”、“八折”、“九五折”等表示,并根据其文字去读。

它们也常用分母为十的分数,或者用百分数去表示,这时便可按分数、百分数的方法去读。

“千分数”是表示一个数是另一个数的千分之几的分数,它常用“千分号”--“‰”来写千分数,如某地人口出生率为千分之七,写作“7‰”,读作“千分之七”。

【科学记数法】用带一位整数的小数,去乘以10的整数次幂来表示一个数的方法,叫做“科学记数法”。

利用小数点移动的规律,很容易把一个数用“科学记数法”表达为“a×10n (1≤a≤10,n是整数)”的形式。

例如:25700,把小数点向左移动四位,得1<2.57<10,但2.57比25700小了10000倍,所以25700=2.57×104。

0.00867,把小数点向右移动三位,得1<8.67<10,但8.67比0.00867大了1000倍,所以【近似数截取方法】截取近似数的方法,一般有四舍五入法、去尾法和进一法三种。

四舍五入法──省略一个数的一部分尾数,取它的近似数的时候,如果要舍去的尾数的最高位上的数是4,或者是比4小的数,就把尾数舍去;如果要舍去的尾数的最高位上的数是5,或者是比5大的数,把尾数舍去以后,要向它的前一位进一。

这种求近似数的方法叫做“四舍五入法”。

例如,把8,654,000四舍五入到万位,约等于865万;把7.6239四舍五入保留两位小数约等于7.62;把2,873,000,000四舍五入到亿位,约等于29亿;把32.99506四舍五入精确到百分位约等于33.00。

去尾法──要省略的尾数不论是多少,一律舍去不要,这种求近似数的方法叫做“去尾法”。

进一法──省略某一个数某一位后面的尾数时,不管这些尾数的大小,都向它的前一位进一。

初中奥数题目解题思路

初中奥数题目解题思路

初中奥数题目解题思路初中阶段是学生接触奥林匹克数学竞赛的重要时期,在数学竞赛中,解题思路是至关重要的。

本文将介绍一些常见的初中奥数题目解题思路,以帮助学生更好地应对奥数竞赛。

一、整数方程问题的解题思路整数方程问题是奥数竞赛中常见的题型之一。

解决这类问题的思路可以分为以下几个步骤:1. 分析问题:仔细阅读题目,理清题目的要求,明确求解的是什么。

2. 假设和列方程:假设未知数的值,并建立相应的方程。

需要根据题目给出的条件,运用逻辑思维能力进行推导。

3. 求解方程:根据列出的方程,进行计算和求解,得到未知数的解。

4. 检验答案:将求解得到的未知数代入原方程,检验该解是否满足题目的要求。

二、几何图形问题的解题思路几何图形问题是奥数竞赛中常见的另一类题型。

解决这类问题的思路可以分为以下几个步骤:1. 画图:根据题目给出的条件,画出相应的几何图形。

可以利用纸和铅笔进行绘制,也可以在脑海中形成清晰的图像。

2. 观察:仔细观察图形,理解题目所要求的内容。

可以寻找各种几何属性和关系,加深对题目的认识。

3. 运用几何知识:根据所学的几何知识,找出相关规律和定理,尝试寻找解决问题的关键点。

4. 推理和证明:根据所学的推理和证明方法,进行推理和证明。

需要进行逻辑推导和演绎推理,从而得出准确的结论。

三、概率问题的解题思路概率问题在奥数竞赛中也占据一定的比重。

解决这类问题的思路可以分为以下几个步骤:1. 理清问题:仔细阅读题目,理解题目的要求,明确所求的概率是什么。

2. 查找条件:寻找题目中给出的条件,明确已知条件和未知条件。

3. 列出可能性:分析问题,列出所有可能发生的情况。

需要运用逻辑推理和思维扩展能力。

4. 计算概率:根据已知条件和列出的可能性,进行计算概率。

可以利用排列组合、加法原理等数学方法进行计算。

总结:初中奥数竞赛题目的解题思路可以根据不同的题型进行分类,分别采取相应的解题方法。

对于整数方程问题,需要明确问题的要求,并进行假设和列方程。

小学奥数题目解题思路

小学奥数题目解题思路

小学奥数题目解题思路小学奥数是培养学生数学思维和解题能力的一项重要活动。

在解题的过程中,学生需要运用灵活的思维,掌握基本的数学概念和解题方法。

本文将为大家介绍几个常见的小学奥数题目解题思路。

一、奇偶性问题在小学奥数中,奇偶性问题是一个常见的难题。

这类题目常常涉及到数字的性质和规律。

解决奇偶性问题的关键是观察数字的规律,并找出其中的奇偶性质。

例如,我们来解决以下题目:题目:把50个自选奇数排序,排成升序的方式。

可以最快速度将它解决,所需的步骤最少的算法方式是什么?解题思路:首先,我们观察到所有奇数都可以用2n-1的形式表示,其中n为正整数。

所以题目中的50个奇数可以用2n-1的形式表示为:1,3,5,...,99。

我们将这些数字按升序排列即可得到答案:1,3,5, (99)二、数列问题数列问题是小学奥数中常见的一类问题。

解决数列问题的关键是观察数列中数字之间的规律,并找出这种规律的通项公式。

例如,我们来解决以下题目:题目:已知数列1,2,4,7,11...,求第10个数是多少?解题思路:观察数列,我们可以发现每个数都比前一个数增加了一个固定的数目。

第一个数为1,第二个数比第一个数增加了1,第三个数比第二个数增加了2,第四个数比第三个数增加了3,以此类推。

所以第n个数可以表示为:1+1+2+3+...+(n-2)+(n-1)。

我们可以通过公式求和的方法来计算这个数。

根据求和公式,我们得到第10个数为1+1+2+3+...+8+9=46。

三、逻辑推理问题逻辑推理问题是小学奥数中常见的一类问题。

解决逻辑推理问题的关键是运用逻辑思维和分析能力,找出问题中的关键线索并进行推理。

例如,我们来解决以下题目:题目:有三个人,甲说他比乙大两岁,乙说他比丙大两岁,问他们三个人的年龄分别是多少?解题思路:根据甲乙丙三个人的描述,我们可以通过逻辑推理来求解。

假设甲的年龄为x岁,那么乙的年龄为x-2岁,丙的年龄为x-4岁。

六年级数学奥数题及解题思路

六年级数学奥数题及解题思路

六年级数学奥数题及解题思路摘要:一、引言二、六年级数学奥数题类型及解题思路1.代数题2.几何题3.逻辑题4.应用题三、解题技巧与策略1.分析题目2.运用数学知识3.创新思维4.耐心与毅力四、常见错误分析1.概念理解不清2.计算错误3.逻辑不清4.审题不慎五、实战演练与解析1.题目一:代数题2.题目二:几何题3.题目三:逻辑题4.题目四:应用题六、总结与展望正文:一、引言随着教育的不断发展,数学奥数题已经成为了许多六年级学生和家长关注的焦点。

数学奥数不仅能够提高学生的数学素养,还能培养他们的逻辑思维能力。

本文将为大家介绍六年级数学奥数题的类型及解题思路,帮助同学们更好地应对这类题目。

二、六年级数学奥数题类型及解题思路1.代数题代数题是数学奥数中的一个重要类型,主要包括方程、不等式、代数式等。

解题思路如下:(1)认真阅读题目,提取关键信息。

(2)设立未知数,并根据题意建立方程或不等式。

(3)解方程或不等式,求得未知数的值。

2.几何题几何题主要涉及平面几何和立体几何的知识,解题思路如下:(1)熟悉基本几何图形的性质和公式。

(2)根据题目所给条件,判断所求问题属于哪种几何问题。

(3)运用几何知识,解决问题。

3.逻辑题逻辑题旨在考查学生的逻辑思维能力,解题思路如下:(1)分析题目的逻辑关系。

(2)运用逻辑推理方法,解决问题。

(3)注意细节,避免逻辑错误。

4.应用题应用题是将数学知识与生活实际相结合的一种题目,解题思路如下:(1)审清题意,提炼关键信息。

(2)将实际问题转化为数学问题。

(3)运用数学知识解决实际问题。

三、解题技巧与策略1.分析题目:认真阅读题目,了解题目背景和所求问题,明确解题目标。

2.运用数学知识:根据题目类型,运用相应的数学知识解决问题。

3.创新思维:在解题过程中,学会从不同角度思考问题,寻求创新解法。

4.耐心与毅力:面对难题,要有足够的耐心和毅力,不断尝试,逐步解决问题。

四、常见错误分析1.概念理解不清:在解题过程中,要对基本概念有清晰的认识,避免因概念理解不清导致的错误。

(完整版)小学数学奥数35个专题题型分类及解题技巧

(完整版)小学数学奥数35个专题题型分类及解题技巧

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

奥数考试题型及解题思路

奥数考试题型及解题思路

奥数考试题型及解题思路奥数考试是指数学竞赛中的奥林匹克数学竞赛,也被称为国际数学奥林匹克竞赛。

它是全球范围内最具影响力和难度最大的数学竞赛之一。

在这个竞赛中,学生需要通过解决一系列复杂的数学问题来展示他们的才华和解题能力。

本文将介绍一些常见的奥数考试题型以及解题思路。

一、选择题选择题是奥数考试中常见的题型之一,学生需要从给定的选项中选择正确的答案。

这种题型可以有多个选择项或是判断对错。

解题思路:1. 仔细阅读题目,理解问题的要求。

2. 排除明显错误的选项。

3. 如果有困惑的选项,可以通过代入法或逻辑推理来确定正确答案。

4. 在选择题中,注意此类题目往往有陷阱选项,需要谨慎对待。

二、填空题填空题是指在给定的空白处填写适当的数字或表达式,以完成题目中的数学运算或等式。

解题思路:1. 仔细阅读题目,理解问题的要求。

2. 利用已知条件和题目中的信息,运用相关的数学公式和知识进行变量的求解。

3. 填空时要注意运算的顺序和细节,避免计算错误。

三、证明题证明题是奥数考试中最具挑战性的题型之一,学生需要用严谨的数学推理和证明方法来解答。

解题思路:1. 首先,仔细阅读题目,理解要证明的结论。

2. 分析已知条件,运用相关的数学定理和推理方法进行证明。

3. 步骤要清晰明了,中间过程要详细写出,推理严密。

四、解答题解答题是奥数考试中要求学生详细解答问题的题型,通常需要进行较长的计算和推理。

解题思路:1. 仔细阅读题目,提炼出要解决的问题。

2. 运用已知条件和相关的数学知识,进行逻辑推理和计算。

3. 注意解答的过程和结果要清晰明了,步骤要详细写出。

五、综合题综合题是将多个不同类型题目进行综合的题型,考察学生将多个概念进行综合运用和解决实际问题的能力。

解题思路:1. 阅读题目,将各个部分的要求逐一理解。

2. 根据所给信息,结合相关知识进行综合分析和解决。

3. 注意细节和计算过程的准确性,避免出现错误。

总结:奥数考试题型多样,每一种题型都需要学生具备扎实的数学基础和灵活应用的能力。

小学奥数知识点总结(优选12篇)

小学奥数知识点总结(优选12篇)

小学奥数知识点总结(优选12篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、演讲致辞、规章制度、岗位职责、操作规程、计划书、祝福语、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, contract agreements, insights, speeches, rules and regulations, job responsibilities, operating procedures, plans, blessings, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!小学奥数知识点总结(优选12篇)【第1篇】小学奥数知识点总结:逻辑推理逻辑推理基本方法简介:①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。

小学奥数解题方法完整版

小学奥数解题方法完整版

解题方法5--移多补少 解题方法 移多补少
在“平均”二字中,“平”就是 平均”二字中, 拉平” 也就是移多补少, “拉平”,也就是移多补少,“均”就 是相等。 平均”二字的意思, 是相等。“平均”二字的意思,通俗地 就是用“移多补少”的办法, 说,就是用“移多补少”的办法,使每 份数量都相等。因此, 份数量都相等。因此,移多补少是我们 解答求平均数应用题的重要思考方法。 解答求平均数应用题的重要思考方法。
解题方法2--化大为小找规律 解题方法 化大为小找规律
对于一些较复杂或数目较大的问题, 对于一些较复杂或数目较大的问题,如果一时 感到无从下手,我们不妨把问题尽量简单化, 感到无从下手,我们不妨把问题尽量简单化,在不 改变问题性质的前提下, 改变问题性质的前提下,考虑问题最简单的情况 化大为小),从中分析探寻出问题的规律, ),从中分析探寻出问题的规律 (化大为小),从中分析探寻出问题的规律,以获 得问题的答案。这就是解数学题常用的一种方法, 得问题的答案。这就是解数学题常用的一种方法, 叫做归纳,我们也可以叫做“化大为小找规律” 叫做归纳,我们也可以叫做“化大为小找规律”。
用两台水泵抽水,小水泵抽 小时 小时, 用两台水泵抽水,小水泵抽6小时,大水泵抽 8小时,一共抽水 小时, 立方米。 小时 一共抽水312立方米。小水泵 小时 立方米 小水泵5小时 的抽水量等于大水泵2小时的抽水量 小时的抽水量, 的抽水量等于大水泵 小时的抽水量,两种水 泵每小时各抽水多少立方米? 泵每小时各抽水多少立方米? 5小=2大 小 大 大换小: 大换小:8 ÷ 2 × 5=20(时) 小:312 ÷(20+6)=12(立方米) ) (立方米) 大:12 × 5 ÷ 2=30(立方米)
小学奥数解题方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11、有关数的法则或方法【数的读写方法】(整数中多位数的读写方法,以及小数、分数、百分数的读、写方法,见小学数学课本,此处略。

)“成数”、“折数”即“十分数”,它们常用中国数字和文字“七成”、“二成五”、“八折”、“九五折”等表示,并根据其文字去读。

它们也常用分母为十的分数,或者用百分数去表示,这时便可按分数、百分数的方法去读。

“千分数”是表示一个数是另一个数的千分之几的分数,它常用“千分号”--“‰”来写千分数,如某地人口出生率为千分之七,写作“7‰”,读作“千分之七”。

【科学记数法】用带一位整数的小数,去乘以10的整数次幂来表示一个数的方法,叫做“科学记数法”。

利用小数点移动的规律,很容易把一个数用“科学记数法”表达为“a×10n (1≤a≤10,n是整数)”的形式。

例如:25700,把小数点向左移动四位,得1<2.57<10,但2.57比25700小了10000倍,所以25700=2.57×104。

0.00867,把小数点向右移动三位,得1<8.67<10,但8.67比0.00867大了1000倍,所以【近似数截取方法】截取近似数的方法,一般有四舍五入法、去尾法和进一法三种。

四舍五入法──省略一个数的一部分尾数,取它的近似数的时候,如果要舍去的尾数的最高位上的数是4,或者是比4小的数,就把尾数舍去;如果要舍去的尾数的最高位上的数是5,或者是比5大的数,把尾数舍去以后,要向它的前一位进一。

这种求近似数的方法叫做“四舍五入法”。

例如,把8,654,000四舍五入到万位,约等于865万;把7.6239四舍五入保留两位小数约等于7.62;把2,873,000,000四舍五入到亿位,约等于29亿;把32.99506四舍五入精确到百分位约等于33.00。

去尾法──要省略的尾数不论是多少,一律舍去不要,这种求近似数的方法叫做“去尾法”。

进一法──省略某一个数某一位后面的尾数时,不管这些尾数的大小,都向它的前一位进一。

这种求近似数的方法,叫做“进一法”。

显然,用“进一法”和“五入”方法截取的近似值,叫做“过剩近似值”,而用“去尾法”和“四舍”方法截取的近似值,叫做“不足近似值”。

值得注意的是:在近似数的取舍结果中,小数点后最右一位上的零必须写上。

例如,把1.5972四舍五入,保留两位小数得1.60,即1.5972≈1.60,最后的“0”不可去掉,否则,它只精确到十分位了。

【质数判定方法】判定一个较大的数是不是质数,一般有两种方法。

(1)查表法。

用查质数表的方法,可以较快地判断一个数是否为质数:质数表上有的是质数,同一范围内的质数表上没有这个数,那它便是个合数。

(2)试除法。

如果没有质数表,也来不及制作一个质数表,可以用试除来判断。

例如,要判定161和197是不是质数,可以把这两个数依次用2、3、5、7、11、13、17、19……等质数去试除。

这是因为一个合数总能表示成几个质因数的乘积,若161或197不能被这个合数的质因数整除,那么也一定不能被这个合数整除。

所以,我们只要用质数去试除就可以了。

由161÷7=23,可知161的约数除了1和它本身外,至少还有7和23。

所以,161是合数,而不是质数。

由197依次不能被2、3、5、7、11、13整除,而197÷17=11……10,这时的除数17已大于不完全商11,于是可以肯定:197是质数,而不是合数。

因为197除了它本身以外,不可能有比17大的约数。

假定有,商也一定比11小。

这就是说,197同时还要有比11小的约数。

但经过试除,比11小的质数都不能整除197,这说明比11小的约数是不存在的,所以197是质数,不是合数。

【最大公约数求法】最大公约数的求法,一般可用下面四种方法。

(1)分解质因数法。

先把各数分解质因数,再把各数公有的一切质因数连乘起来,就是所求的最大公约数。

例如,求2940、756和168的最大公约数:∵2940=22×3×5×72,756=22×33×7,168=23×3×7;∴(2940,756,168)=22×3×7=84。

注:“(2940,756,168)=84”的意思,就是“2940、756和168的最大公约数是84”。

(2)检验公约数法。

“检验公约数法”即“试除法”,也是小学数学课本介绍的那一种一般的求法,此处略。

(3)辗转相减法。

较大的两个数求最大公约数,可以用“辗转相减法”:用大数减小数,如果减得的差与较小的数不相等,便再以大减小求差,直到出现两数相等为止。

这时,相等的数就是这两个数的最大公约数。

例如,求792和594的最大公约数。

∵(792,594)=(792-594,594)=(198,594)=(594-198,198)=(198,396)=(198,396-198)=(198,198)=198,∴(792,594)=198。

用辗转相减法求两个数的最大公约数,可以推广到求n个数的最大公约数,具体做法是:可以不拘次序地挑选最方便的,从较大的数里减去较小的数。

这样逐次做下去,直到所得的差全部相等为止。

这个相等的差,就是这些数的最大公约数。

例如,求1260、1134、882和1008的最大公约数。

∵(1260,1134,882,1008)=(1260-1134,882,1008-882,1134-882)=(126,126,882,252)=(126,126,882-126×6,252-126)=(126,126,126,126)=126,∴(1260,1134,882,1008)=126。

(4)辗转相除法(欧几里得算法)。

用辗转相除法求两个数的最大公约数,步骤如下:光用较小数去除较大的数,得到第一个余数;再用第一个余数去除较小的数,得到第二个余数;又用第二个余数去除第一个余数,得到第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止。

这时,余数“0”前面的那个余数,便是这两个数的最大公约数。

求两个较大的数的最大公约数,用上面的第一、二种方法计算,是相当麻烦的,而采用“辗转相除法”去求,就简便、快速得多了。

例如,求437和551的最大公约数。

具体做法是:先将437和551并排写好,再用三条竖线把它们分开。

然后依下述步骤去做:(1)用较小数去除较大数把商数“1”写在较大数的线外,并求得余数为114。

(2)用余数114去除437,把商数“3”写在比114大的数(437)的线外,并求得余数为95。

(3)用余数95去除114,把商数“1”写在114右边的直线外,并求得余数为19。

(4)用余数19去除95,把商数“5”写在95左边的直线外面,并求得余数为0。

(5)当余数为0时,就可断定余数0前面的那一个余数19,就是437和551的最大公约数。

又如,求67和54的最大公约数,求法可以是由余数可知,67和54的最大公约数是1。

也就是说,67和54是互质数。

辗转相除法,虽又称作“欧几里得算法”,实际上它是我国最先创造出来的。

早在我国古代的《九章算术》上,就有“以少减多,更相减损”的方法求最大公约数的记载。

一般认为,“辗转相除法”即源于此。

这比西方人欧几里得等人的发现要早600年以上。

辗转相除法是求两个数的最大公约数的方法。

如果要求三个或三个以上数的最大公约数,可以用它先求出其中两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数。

这样依次下去,直到最后一个数为止。

最后的一个最大公约数,就是这几个数所要求的最大公约数。

【分数最大公约数求法】自然数的最大公约数的定义,可以扩展到分数。

一组分数的最大公约数一定是分数,而这组分数分别除以它们的最大公约数,应得整数。

求一组分数的最大公约数的方法是:(1)先将各个分数中的带分数化成假分数;(2)再求出各个分数分母的最小公倍数a;(3)然后求出各个分数分子的最大公约数b;再求出三个分母的最小公倍数,得72;然后求出三个分子35、21和56的最大公约数,得7;【最小公倍数求法】求最小公倍数可采用下面三种方法。

(1)分解质因数法。

先把各数分解质因数,在所有相同的质因数中,每一个取出指数最大的,跟所有不同的质因数连乘起来,就是所求的最小公倍数。

例如,求120、330和525的最小公倍数。

∵120=23×3×5,330=2×3×5×11,525=3×52×7;∴[120,330,525]=23×3×52×7×11=46200注:“[120,330,525]=46200”表示“120、330和525三个数的最小公倍数是46200”。

(2)检验公约数法。

“检验公约数法”即“试除法”或“用短除法的求法”,也就是小学数学课本上介绍的一般方法,此处略。

(3)先求最大公约数法。

由于“两个数的乘积等于这两个数的最大公约数与最小公倍数的乘积”,即a·b=(a,b)·[a,b]所以,两个数的最小公倍数,可由这两个数的乘积除以这两个数的最大公约数来求得。

即例如,求[42,105]。

若要求三个或三个以上的数的最小公倍数,可以先求其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,再求这个最小公倍数与第四个数的最小公倍数,……,如此依次做下去,直到最后一个数为止。

最后求得的那个最小公倍数,就是所要求的这几个数的最小公倍数。

例如,求[300,540,160,720]∴[300,540,160,720]=21600【分数最小公倍数求法】自然数的最小公倍数的定义,可以推广到分数。

一组分数的最小公倍数,可能是分数,也可能是整数,但它一定是这组分数中各个分数的整数倍数。

求一组分数的最小公倍数,方法是:(1)先将各个分数中的带分数化成假分数;(2)再求出各个分数分子的最小公倍数a;(3)然后求出各个分数分母的最大公约数b;再求各分数分子的最小公倍数,得[35,21,56]=840;然后求各分数分母的最大公约数,得(6,8,9)=1【数的互化方法】整数、小数和分数,整数、假分数和带分数,整数、小数、分数和百分数,成数(或折数)、分数和百分数,它们之间可以互化,互化的方法见小学数学课本,此处略。

化循环小数为分数,还可以用移动循环节的方法。

例如由这些实例,可以得循环小数化分数的法则如下:(1)纯循环小数化分数的法则。

纯循环小数可以化成这样的分数:分子是一个循环节的数字所组成的数;分母的各位数字都是9,“9”的个数同循环节的位数相同。

(2)混循环小数化分数的法则。

混循环小数可以化成这样的分数:分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环数字所组成的数所得的差;分母的头几个数字是9,末几位数字是0,“9”字的个数同循环节的位数相同,“0”字的个数和不循环部分的位数相同。

相关文档
最新文档