带电粒子在匀强磁场中的圆周运动

合集下载

带电粒子在匀强磁场中的匀速圆周运动

带电粒子在匀强磁场中的匀速圆周运动

洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述

初中物理:带电粒子在匀强磁场中的运动

初中物理:带电粒子在匀强磁场中的运动

第6节 带电粒子在匀强磁场中的运动1.洛伦兹力方向总是垂直于速度方向,所以洛伦兹力不对带电粒子做功,它只改变带电粒子速度的方向,不改变带电粒子速度的大小.2.垂直射入匀强磁场的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力充当向心力.即Bq v =m v 2r ,所以r =m v Bq ,由v =2πr T ,得知T =2πmBq3.质谱仪的原理和应用 (1)原理图:如图1所示.图1(2)加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v 2①(3)偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B =m v 2r②(4)由①②两式可以求出粒子的质量、比荷、半径等,其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化.(5)质谱仪的应用:可以测定带电粒子的质量和分析同位素 4.回旋加速器的原理及应用 (1)构造图:如图2所示.回旋加速器的核心部件是两个D 形盒.图2(2)原理回旋加速器有两个铜质的D 形盒D 1、D 2,其间留有一空隙,加以加速电压,离子源处在中心O 附近,匀强磁场垂直于D 形盒表面.粒子在两盒空间的匀强磁场中,做匀速圆周运动,在两盒间的空隙中,被电场加速.如果交变电场的周期与粒子在磁场中的运动周期相同,粒子在空隙中总被加速,半径r 逐渐增大,达到预定速率后,用静电偏转极将高能粒子引出D 形盒用于科学研究.(3)用途加速器是使带电粒子获得高能量的装置,是科学家探究原子核的有力工具,而且在工、农、医药等行业得到广泛应用.5.一个质量为m 、电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,则下列说法中正确的是( )A .它所受的洛伦兹力是恒定不变的B .它的速度是恒定不变的C .它的速度与磁感应强度B 成正比D .它的运动周期与速度的大小无关 答案 D解析 粒子在匀强磁场中做匀速圆周运动时洛伦兹力提供向心力,沦伦兹力的大小不变,方向始终指向圆心,不断改变,所以A 错.速度的大小不变,方向不断改变,所以B 错.由于粒子进入磁场后洛伦兹力不做功,因此粒子的速度大小不改变,粒子速度大小始终等于其进入磁场时的值,与磁感应强度B 无关,所以C 错.由运动周期公式T =2πmBq ,可知T 与速度v 的大小无关.即D 正确.6.两个粒子,带电量相等,在同一匀强磁场中只受洛伦兹力而做匀速圆周运动( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则周期必相等 D .若质量相等,则半径必相等 答案 B解析 根据粒子在磁场中的运动轨道半径r =m v qB 和周期T =2πmBq 公式可知,在q 、B 一定的情况下,轨道半径r 与v 和m 的大小有关,而周期T 只与m 有关.【概念规律练】知识点一 带电粒子在匀强磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径为原来的四分之一D .粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =m v qB ,T =2πmqB 知:磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1 答案 A解析 质子(11H)和α粒子(42He)带电荷量之比q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动规律,R =m v qB ,T =2πmqB,粒子速率相同,代入q 、m 可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确.知识点二 带电粒子在有界磁场中的圆周运动3. 如图3所示,一束电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子的入射方向的夹角是30°,则电子的质量是多少?电子穿过磁场的时间又是多少?图3答案2deB v πd3v解析 电子在磁场中运动时,只受洛伦兹力作用,故其轨道是圆弧的一部分.又因洛伦兹力与速度v 垂直,故圆心应在电子穿入和穿出时洛伦兹力延长线的交点上.从图中可以看出,AB 弧所对的圆心角θ=30°=π6,OB 即为半径r ,由几何关系可得:r =d sin θ=2d.由半径公式 r =m v Bq 得:m =qBr v =2deB v. 带电粒子通过AB 弧所用的时间,即穿过磁场的时间为: t =θ2πT =112×T =112×2πm Be =πm 6Be =πd 3v. 点评 作出辅助线,构成直角三角形,利用几何知识求解半径.求时间有两种方法:一种是利用公式t =θ2πT ,另一种是利用公式t =Rθv求解.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).知识点三 质谱仪5. 质谱仪原理如图5所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:图5(1)粒子的速度v 为多少?(2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?答案 (1) 2eU 1m (2)B 1d 2eU 1m (3)1B 2 2U 1me解析 根据动能定理可求出速度v ,据电场力和洛伦兹力相等可得到v 2,再据粒子在磁场中做匀速圆周运动的知识可求得半径.(1)在a 中,e 被加速电场U 1加速,由动能定理有eU 1=12m v 2得v = 2eU 1m.(2)在b 中,e 受的电场力和洛伦兹力大小相等,即e U 2d=e v B 1,代入v 值得U 2=B 1d2eU 1m. (3)在c 中,e 受洛伦兹力作用而做圆周运动,回转半径R =m v B 2e ,代入v 值解得R =1B 2 2U 1m e.点评 分析带电粒子在场中的受力,依据其运动特点,选择物理规律进行求解分析. 知识点四 回旋加速器 6.在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .在交流电压一定的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关. 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确;粒子获得的动能E k =(qBR )22m ,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,故C选项正确.7.有一回旋加速器,它的高频电源的频率为1.2×107 Hz ,D 形盒的半径为0.532 m ,求加速氘核时所需的磁感应强度为多大?氘核所能达到的最大动能为多少?(氘核的质量为3.3×10-27 kg ,氘核的电荷量为1.6×10-19C)答案 1.55 T 2.64×10-12 J解析 氘核在磁场中做圆周运动,由洛伦兹力提供向心力,据牛顿第二定律q v B =m v 2R,周期T =2πR v,解得圆周运动的周期T =2πmqB .要使氘核每次经过电场均被加速,则其在磁场中做圆周运动的周期等于交变电压的周期,即T =1f.所以B =2πfm q =2×3.14×1.2×107×3.3×10-271.6×10-19T=1.55 T.设氘核的最大速度为v ,对应的圆周运动的半径恰好等于D 形盒的半径,所以v =qBRm .故氘核所能达到的最大动能E max =12m v 2=12m·(qBR m )2=q 2B 2R 22m=(1.6×10-19)2×1.552×0.53222×3.3×10-27J =2.64×10-12 J.【方法技巧练】一、带电粒子在磁场中运动时间的确定方法8. 如图6所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )图6A .1∶2B .2∶1C .1∶ 3D .1∶1 答案 B9. 如图7所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )图7A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D 解析由图中的几何关系可知,圆弧AB 所对的轨迹圆心角为60°,O 、O ′的连线为该圆心角的角平分线,由此可得带电粒子圆轨迹半径为R =rcot 30°=3r.故带电粒子在磁场中运动的周期为 T =2πR v 0=23πr v 0.带电粒子在磁场区域中运动的时间t =60°360°T =16T =3πr 3v 0.方法总结 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α360°T 或t =α2πT.1.运动电荷进入磁场后(无其他力作用)可能做( ) A .匀速圆周运动 B .匀速直线运动 C .匀加速直线运动 D .平抛运动 答案 AB解析 若运动电荷垂直于磁场方向进入匀强磁场,则做匀速圆周运动;若运动方向和匀强磁场方向平行,则做匀速直线运动,故A 、B 正确,由于洛伦兹力不做功,故电荷的动能和速度不变,C 错误.由于洛伦兹力是变力,故D 错误.2.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )答案 C3.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.如图8所示是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图8A .粒子先经过a 点,再经过b 点B .粒子先经过b 点,再经过a 点C .粒子带负电D .粒子带正电答案 AC解析 由于粒子的速度减小,所以轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.4.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E 1和α粒子的动能E 2之比E 1∶E 2等于( )A .4∶1B .1∶1C .1∶2D .2∶1 答案 B解析 由r =m v qB ,E =12m v 2得E =r 2B 2q 22m,所以E 1∶E 2=q 21m 1∶q 22m 2=1∶1. 5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.6.如图9所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )图9A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O点处的距离相等答案 A7. 如图10所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子()图10A.只有速度v大小一定的粒子可以沿中心线通过弯管B.只有质量m大小一定的粒子可以沿中心线通过弯管C.只有m、v的乘积大小一定的粒子可以沿中心线通过弯管D.只有动能E k大小一定的粒子可以沿中心线通过弯管答案 C解析因为粒子能通过弯管要有一定的半径,其半径r=R.所以r=R=m vqB,由q和B相同,则只有当m v一定时,粒子才能通过弯管.8. 如图11所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()图11A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0答案AD解析不加磁场时:F E=mR(2πT0)2,若磁场方向向里,则有F E-F B=mR(2πT1)2,若磁场方向向外,则有F E+F B=mR(2πT2)2,比较知:T1>T0,T2<T0,选项A、D正确.9.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是()图12A.增大匀强电场间的加速电压B.增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径 答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r,得v =qBr m.若D 形盒的半径为R ,则r =R 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m ,所以要提高加速粒子射出时的动能,应尽可能增大磁感应强度B 和加速器的半径R.10. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图13所示,离子源S 产生一个质量为m ,电荷量为q 的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U 加速,进入磁感应强度为B 的匀强磁场,沿着半圆运动而达到记录它的照相底片P 上,测得它在P 上的位置到入口处S 1的距离为x ,则下列说法正确的是( )图13A .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子的质量一定变大B .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明加速电压U 一定变大C .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明磁感应强度B 一定变大D .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子所带电荷量q 可能变小答案 D解析 由qU =12m v 2,得v =2qU m ,x =2R ,所以R =x 2=m vqB ,x =2m v qB =2m qB 2qU m=8mUqB 2,可以看出,x 变大,可能是因为m 变大,U 变大,q 变小,B 变小,故只有D 对.11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m.求:(1)质子最初进入D 形盒的动能多大;(2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.答案 (1)eU (2)e 2B 2R 22m (3)eB2πm解析 (1)粒子在电场中加速,由动能定理得: eU =E k -0,解得E k =eU.(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R①质子的最大动能:E km =12m v 2②解①②式得:E km =e 2B 2R 22m(3)f =1T =eB 2πm12. 如图14所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图14(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.答案 (1)3πmqB (2)6m v 0qB解析 粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入x 轴下方磁场,又运动半个圆周后第二次到达x 轴.如下图所示.(1)由牛顿第二定律q v 0B =m v 20r①T =2πr v 0②得T 1=2πm qB ,T 2=4πmqB ,粒子第二次到达x 轴需时间 t =12T 1+12T 2=3πm qB. (2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB ,粒子第二次到达x 轴时离O 点的距离 x =2r 1+2r 2=6m v 0qB.。

带电粒子在匀强磁场中的运动(解析版)-【寒假自学课】2022年高二物理寒假精品课

带电粒子在匀强磁场中的运动(解析版)-【寒假自学课】2022年高二物理寒假精品课

第03讲带电粒子在匀强磁场中的运动【学习目标】(1)知道带电粒子沿着与磁场垂直的方向射入匀强磁场会在磁场中做匀速圆周运动,能推导出匀速圆周运动的半径公式和周期公式,能解释有关的现象,解决有关实际问题。

(2)经历实验验证带电粒子在洛伦兹力作用下做匀速圆周运动以及其运动半径与磁感应强度的大小和入射速度的大小有关的过程,体会物理理论必须经过实验检验。

(3)知道洛伦兹力作用下带电粒子做匀速圆周运动的周期与速度无关,能够联想其可能的应用。

能用洛伦兹力分析带电粒子在匀强磁场中的圆周运动。

了解带电粒子在匀强磁场中的偏转及其应用。

【基础知识】【考点剖析】一.带电粒子在匀强磁场中的运动已知带电粒子质量为m,电荷量为q,速度大小为v,磁感应强度为B,以下列不同方式进入磁场将做什么运动?(不计重力)1.不加磁场时,观察带电粒子的运动轨迹为电子束沿直线运动。

2.施加垂直于纸面的磁场后,观察电子束的径迹为电子束沿圆轨迹运动。

3.保持入射电子的速度不变,增加磁感应强度,电子束圆周运动的半径减小。

4.保持磁感应强度不变,增加出射电子的速度,电子束圆周运动的半径变大总结:带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,粒子做匀速直线运动;带电粒子垂直进入磁场时,粒子所受洛伦兹力总与速度方向垂直,所以洛伦兹力不改变带电粒子速度的大小,粒子做匀速圆周运动。

二.半径和周期的理论推导带电粒子以垂直磁感应强度方向的速度进入磁场时,带电粒子做匀速圆周运动.向心力由洛伦兹力提供,,根据向心力公式,,可得轨迹半径。

轨迹半径与带电粒子的质量和速度成正比,与带电粒子的电荷量和磁感应强度成反比。

由可知,磁感应强度增大,半径减小;速度增大,半径增大。

圆周运动的周期,把代入,可得:。

带电粒子的周期跟轨迹半径和运动速度无关。

总结:带电粒子的周期跟轨迹半径和运动速度无关,即同一带电粒子以不同的速度进入同一磁场,半径不同,但周期相同。

典题分析例1.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间解析:根据左手定则可知N 带正电,M 带负电,选项A 正确;由qvB =m v 2r 得r =mv Bq,由题知m 、q 、B 相同,且r N <r M ,所以v M >v N ,选项B 错误;由于洛伦兹力的方向始终与带电粒子的运动方向垂直,故洛伦兹力不会对M 、N 做功,选项C 错误;又周期T =2πr v =2πmBq,两个带电粒子在磁场中运动的周期相等,由图可知两个粒子在磁场中均偏转了半个周期,故在磁场中运动的时间相等,选项D 错误. 答案:A三.带电粒子在匀强磁场中的匀速圆周运动分析 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,如何确定圆心的位置?(提示:圆心一定在垂直于速度的直线上)作这两速度方向的垂线,交点即为圆心,如图所示。

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B

3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

(完整版)高中物理确定带电粒子在磁场中运动轨迹的四种方法

确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。

但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。

只要确定了带电粒子的运动轨迹,问题便迎刃而解。

现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。

利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。

例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。

正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。

只是偏转方向相反。

先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

图6 所示。

O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。

一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。

当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。

解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。

2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。

洛伦兹力总与速度方向垂直,正好起到了向心力的作用。

公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。

(2)平行边界:存在临界条件。

(3)圆形边界:沿径向射入必沿径向射出。

【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。

带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的圆周运动

1 2 eU mv 2
v evB m R
2
r tan 2 R
q
1 B r
2mU q tg e 2
【习题】如图所示,一个质量为m、电量为q的正离 子,从A点正对着圆心O以速度v射入半径为R的绝缘 圆筒中。圆筒内存在垂直纸面向里的匀强磁场,磁感 应强度的大小为B。要使带电粒子与圆筒内壁碰撞多 次后仍从A点射出,问发生碰撞的最少次数? 并计算此过程中正离子在磁场中运动的时间t ? 设粒子与圆筒内壁碰撞时无能量和电量损失,不计粒 子的重力。
磁场专题复习
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中做圆周运动的 分析方法:
求解带电粒子在匀强磁场中的匀速圆周 运动时,根据题意对带电粒子进行受力分析 和运动分析,画出粒子运动的轨迹,确定出 圆心,从而求出半径或圆心角,然后利用牛 二定律圆周运动公式进行解答。其中求出半 径或圆心角,往往是解题关键。解题的一般 步骤为:看求解,明对象;查电性,析受力; 画轨迹,定圆心;找关系,求半径;套公式, 做解答。{也可逆向分析}
带电粒子在半无界磁场中的运动
例题(2001年全国卷)如图所示,在y<0的区域内存 在匀强磁场,磁场方向垂直于xy平面并指向纸面外, 磁感强度为B。一带正电的粒子以速度v0从O点射入 磁场,入射方向在xy平面内,与x轴正向的夹角为θ。 若粒子射出磁场的位置与O点的距离为l,求该粒子的 电量和质量之比。
(2005年广东卷)如图12所示,在一个圆形区域内,两 个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界 的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º 。一质量为 m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成 30º 角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心 O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁 场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子 重力)。

专题6带电粒子在无界磁场中的运动(解析版)

专题6带电粒子在无界磁场中的运动(解析版)

专题六带电粒子在无界磁场中的运动基本知识点带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场时:1.当v∥B时,带电粒子将做匀速直线运动;2.当v⊥B时,带电粒子将做匀速圆周运动3.轨道半径和周期:带电粒子在磁场中做匀速圆周运动的周期与粒子运动速率无关.⑴由2mvqvBr=得mvrqB=⑵22r mTv qBππ==由式可知:带电粒子在磁场中做匀速圆周运动的周期与粒子运动速率无关.例题分析一、带电粒子在匀强磁场中的圆周运动例1在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则()A.粒子的速率加倍,周期减半B.粒子的速率不变,轨道半径减半C.粒子的速率减半,轨道半径为原来的四分之一D.粒子的速率不变,周期减半(对应训练)质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p和Rα,周期分别为T p和Tα,则下列选项正确的是()A.R p∶Rα=1∶2T p∶Tα=1∶2 B.R p∶Rα=1∶1T p∶Tα=1∶1C.R p∶Rα=1∶1T p∶Tα=1∶2 D.R p∶Rα=1∶2T p∶Tα=1∶1一、带电粒子在磁场中的运动轨迹的判定【例1】有三束粒子,分别是质子(p)、氚核(31H)和α粒子束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下图的四个图中,能正确表示出这三粒子的运动轨迹的是()(对应训练一)下列各图反映的是带电粒子在匀强磁场中沿垂直于磁场方向做匀速圆周运动的情况,其中正确的是()A B C D专题训练1.如图所示,美国物理学家安德森在研究宇宙射线时,在云雾室里观察到有一个粒子的径迹和电子的径迹弯曲程度相同,但弯曲方向相反,从而发现了正电子,获得了1936年的诺贝尔物理学奖,已知云雾室中磁场方向与纸面垂直,下列说法正确的是()A.云雾室中磁场方向垂直纸面向外B.云雾室中磁场方向垂直纸面向里C.若增大磁感应强度,正电子运动半径增大负电子运动半径减小D.若增大磁感应强度,正电子运动半径减小负电子运动半径增大2.如图所示,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将()A.沿路径a运动,轨迹是圆B .沿路径a 运动,轨迹半径越来越大C .沿路径a 运动,轨迹半径越来越小D .沿路径b 运动,轨迹半径越来越小3.如图所示,a 和b 是从A 点以相同的速度垂直磁场方向射入匀强磁场的两个粒子运动的半圆形径迹,已知两个粒子所带电荷量相同,且r a =2r b ,不计重力的影响,则由此可知( )A .两粒子均带正电,质量比m a m b =41B .两粒子均带负电,质量比m a m b =21C .两粒子均带正电,质量比m a m b =14D .两粒子均带负电,质量比m a m b =124.一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于使沿途空气电离而使粒子的动能逐渐减小,轨迹如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由圆周运动规律得 T 2R 4L
v0
v0
综上解得 t L
3v0
知识归纳 方法提炼
考点一:求解与半径相关的物理量(如:m、q、B、v0等)
1、应用牛顿第二定律列式
qv0 B

mv
2 0
R
2、应用几何关系求轨道半径 画轨迹
定圆心
考点二:求解带电粒子在磁场中的运动时间
1、求解运动时间的公式
t T
3600
2、应用几何关系求带电粒子做圆周运动扫过的圆心角
3、应用圆周运动规律求周期
T 2R
v
解三角形求半径
带电粒子在匀强磁场中 的圆周运动
高州三中物理科组 欧云
如图所示,矩形区域宽度为L,其内有磁感应强度
为B、垂直字面向外的匀强磁场,一带负电的
粒子以初速度v0垂直MN边界射入磁场,由PQ 边界飞出磁场时偏离原方向300。求:
(1)该带电粒子的荷质比;
L
(2)该带电粒子在磁场中 M
P
L
300 R
O
N
Q
分析解答: (1)带电粒子在磁场中做匀速圆周运动,
有牛顿第二定律得
qv0 B

mv
2 0
R
解得
q v0 m BR
如图,由几何关系得 sin 300 L ,故R 2L R
综上解得
q v0 m 2BL
(2)带电粒子在磁场中的运动时间
t


3600
T
如图,由几何关系得 30 0
相关文档
最新文档