1998年全国硕士研究生入学考试数学三试题

合集下载

1998考研数学真题

1998考研数学真题

1998考研数学真题考研数学是研究生入学考试中重要的一部分,对于数学专业的考生来说尤为重要。

为了帮助考生更好地备考,下面将介绍1998年考研数学真题,并进行详细的解析与讲解。

一、多选题1.设集合A={1,2,3,4},B={2,3,4,5,6},C={1,3,5},则(A∪B)*C的结果是:A. {1,3,5,6}B. {1,2,3,4,5,6}C. {1,2,3,4,5}D. {2,3,4,5}答案:C解析:首先计算A∪B,得到{1,2,3,4,5,6},然后将结果与C计算得到的{1,3,5}进行运算,得到{1,2,3,4,5},故选项C为正确答案。

2.设集合A={x|x=a^2, a∈N},B={y|y=b^2, b∈N},若A∩B={9},则a,b分别为:A. a=√3, b=√3B. a=√3, b=3C. a=3, b=√3D. a=3, b=3答案:C解析:由题意可知,A是平方数集合,B也是平方数集合,且A∩B={9},则可推断9=a^2=b^2,因此a=3,b=3,故选项C为正确答案。

二、填空题1.若1+2+3+...+1998= ?,则填写中间那个数答案:1999003解析:该题是求1到1998的等差数列的和,使用等差数列求和公式Sn=(a1+an)n/2,其中a1为首项,an为末项,n为项数,代入a1=1,an=1998,n=1998,得到Sn=(1+1998)1998/2,计算结果为1999003。

2.设正整数n满足n^2-10n+9=0,那么n= ?答案:9解析:根据题意可得到n^2-10n+9=0,进行因式分解得到(n-9)(n-1)=0,因此n=9或n=1,但由题意要求正整数n,所以n=9为解。

三、计算题计算2sin45°+sin60°+cos30°的值。

答案:1.866解析:根据三角函数的定义和数值,sin45°=√2/2,sin60°=√3/2,cos30°=√3/2,带入计算得到2sin45°+sin60°+cos30°=2*√2/2+√3/2+√3/2=√2+√3=1.866。

考研数学三(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(97年)设两个随机变量X与Y相互独立且同分布,P(X=-1)=P(Y=-1)=,P(X=1)=P(Y=1)=,则下列各式成立的是【】A.P(X-Y)=B.P(X=Y)=1C.P(X+Y=0)=D.P(XY=1)=正确答案:A解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计2.(98年)设F1(χ)与F2(χ)分别为随机变量X1与X2的分布函数.为使F(χ)=a1F1(χ)-bF2(χ)是某一随机变量的分布函数,在下列给定的各组数值中应取【】A.B.C.D.正确答案:A解析:∵F1(χ)和F2(χ)均为分布函数,∴F1(+∞)=F2(+∞)=1 要使F(χ)为分布函数,也有F(+∞)=1.对该式令χ→+∞,即得a-b=1,只有A符合.知识模块:概率论与数理统计3.(99年)设随机变量Xi~(i=1,2),且满足P{X1X2=0},则P{X1=X2}等于【】A.0B.C.D.1正确答案:A 涉及知识点:概率论与数理统计4.(04年)设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|X|<χ}=a则χ等于【】A.B.C.D.正确答案:C 涉及知识点:概率论与数理统计5.(06年)设随机变量X服从正态分布N(μ1,σ12),随机变量Y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1} 则必有【】A.σ1<σ2.B.σ1<σ2.C.μ1<μ2.D.μ1<μ2.正确答案:A 涉及知识点:概率论与数理统计6.(08年)设随机变量X,Y独立同分布,且X的分布函数为F(χ),则Z =max{X,Y}的分布函数为【】A.F2(χ)B.F(χ)F(y)C.1-[1-F(χ)]2D.[1-F(χ)][1-F(y)]正确答案:A解析:Z的分布函数FZ(χ)=P{Z≤χ)=P{max(X,Y)≤χ}=P{X≤χ,Y ≤χ}=P{X≤χ}.P{Y≤χ}=F2(χ),故选A.知识模块:概率论与数理统计7.(09年)设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=Xy的分布函数,则函数FZ(z)的间断点个数为【】A.0.B.1.C.2.D.3.正确答案:B解析:FZ(z)=P(Z≤z)=P(XY≤z) =P{XY≤z|Y=0}P{Y=0}+P{XY ≤z|Y=1}P{Y=1} ={0≤z}Y=0}+P{X≤z|Y=1} 而P{0≤z|Y=0}=P{0≤z}=P{X≤z|Y=1}=P{X≤z}=故Fz(z)=在z<0和z >0上,Fz(z)显然连续;在z=0上,可见Fz(z)只有1个间断点(z=0处,∵),故选B.知识模块:概率论与数理统计8.(10年)设随机变量X的分布函数F(χ)=,则P{X=1)=【】A.0.B..C.-e-1.D.1-e-1.正确答案:C解析:P(X=1)=F(1)-F(1-0)=(1-e-1)--e-1.故选C.知识模块:概率论与数理统计9.(10年) 设f1(χ)为标准正态分布的概率密度,f2(χ)为[-1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足【】A.2a+3b=4.B.3a+2b=4.C.a+b=1.D.a+b=2.正确答案:A解析:由题意知:所以2a+3b=4,故选A.知识模块:概率论与数理统计填空题10.(00年)设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差DY=_______.正确答案:涉及知识点:概率论与数理统计11.(02年)设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=_______.正确答案:-0.02解析:E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28 而关于X的边缘分布律为:关于Y的边缘分布律为:∴EX2=02×0.4+12×0.6=0.6,Ey2=(-1)2×0.15+02×0.5+12×0.35=0.5 故cov(X2,Y2)=E(X2Y2)-EX2.EY2=0.28-0.6×0.5=-0.02 知识模块:概率论与数理统计12.(03年)设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y 与Z的相关系数为_______.正确答案:0.9 涉及知识点:概率论与数理统计13.(04年)设随机变量X服从参数为λ的指数分布,则P{X>}=_______.正确答案:涉及知识点:概率论与数理统计14.(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.正确答案:涉及知识点:概率论与数理统计15.(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=_______.正确答案:μ+μσ2 涉及知识点:概率论与数理统计16.(13年)设随机变量X服从标准正态分布N(0,1),则E(Xe2X)=_______.正确答案:2e2 涉及知识点:概率论与数理统计17.(15年)设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY -Y<0}=_______.正确答案:涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三历年真题:1987年至2018年

考研数学三历年真题:1987年至2018年
(2) 幂级数
n 0
_
.
xn n 1
的收敛域是__
_
.
(3) 齐次线性方程组
x1 x2 x3 0, x1 x2 x3 0, x x x 0 2 3 1
只有零解,则 应满足的条件是__
_
.
(4) 设随机变量 X 的分布函数为
0 , F x A sinx, 1, x 0, 0 x x
HY-2018
(含 31 年共 31 套考研《数学三》历年真题)1987 年—2018 年全国硕士研究生入学统一考试《数学 三》真题试卷及答案
全国硕士研究生入学统一考试《数学三》真题目录(31 套)
1987 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1989 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1990 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1991 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1992 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1993 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1994 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1995 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1996 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1997 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1998 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1999 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2000 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2001 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2002 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2003 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2004 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2005 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2006 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2007 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2008 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2009 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2010 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2011 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2012 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2013 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2014 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2015 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2016 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2017 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2018 年全国硕士研究生入学统一考试《数学三》真题试卷及答案

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x→= . (2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2zx y ∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设A 为n 阶矩阵,0A ≠,*A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值λ,则*2()A E +必有特征值 . (5) 设平面区域D 由曲线1y x=及直线20,1,y x x e ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为 _ .二、选择题(本题共5小题,每小题3分,共15分.) (1) 设()f x 连续,则220()x d tf x t dt dx-=⎰ ( ) (A) 2()xf x (B) 2()xf x - (C) 22()xf x (D) 22()xf x - (2) 函数23()(2)f x x x x x =---不可导点的个数是 ( )(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于 ( ) (A) 2π (B) π (C) 4e π (D) 4e ππ(4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线 111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合(C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y j λλ=+-+为某二元函数(,)u x y 的梯度,并求(,)u x y .五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分7分)计算212222(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半球面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分5分)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=,可以经过正交变换x y P z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦化为椭圆柱面方程2244ηζ+=,求,a b 的值和正交矩阵P .十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0kA x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分5分)已知线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n a x a x a x a x a x a x I a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,)TTTn n n n n n b b b b b b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,试写出线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n b y b y b y b y b y b y II b y b y b y ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表22()t zz dt -Φ=⎰z1.28 1.645 1.962.33 ()z Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x→-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds xy ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11A ααλ-=.按特征值定义知1λ是1A -的特征值. 若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11A A A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-,222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===,()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-, 所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B).评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x y x x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x =+. 分离变量,得2,1dy dx y x =+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e =代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan x y e π=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立.【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.x y y z θθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x y λ=+242(,)(),Q x y x x y λ=-+则(,)((,),(,))A x y P x y Q x y =在单联通区域右半平面0x >上为某二元函数(,)u x y 的梯度Pdx Qdy ⇔+在0x >上∃原函数(,)u x y ⇔,0.Q Px x y∂∂=>∂∂ 其中,42242132()()4Qx x y x x y x xλλλ-∂=-+-+⋅∂, 424212()2()2Px x y xy x y y yλλλ-∂=+++⋅∂. 由Q Px y∂∂=∂∂,即满足 4224213424212()()42()2()2x x y x x y x x x y xy x y y λλλλλλ---+-+⋅=+++⋅,424()(1)01x x y λλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y ,采用折线法,在0x >半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x y xydx x dyu x y C x y -=++⎰244210200xy x x dx dy C x x y⋅-=++++⎰⎰(折线法) 242yx dy C x y-=++⎰ 2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x =-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k k ρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A-,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A-,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,TB 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰222222z z z ed e +∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,3⎛⎫Φ≥⎪ ⎪⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.1998 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 0x →= .(2) 曲线322y x x x =-++与x 轴所围成的图形的面积A = .(3)2ln sin sin xdx x =⎰ .(4) 设()f x 连续,则220()x d tf x t dt dx-=⎰ . (5) 曲线1ln()(0)y x e x x=+>的渐近线方程为 .二、选择题(本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设数列n x 与n y 满足lim 0n n n x y →∞=,则下列断言正确的是 ( )(A) 若n x 发散,则n y 发散 (B) 若n x 无界,则n y 必有界 (C) 若n x 有界,则n y 必为无穷小 (D) 若1nx 为无穷小,则n y 必为无穷小 (2) 函数23()(2)f x x x x x =---的不可导点的个数是 ( )(A) 0 (B) 1 (C) 2 (D) 3 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++其中α是比(0)x x ∆∆→高阶的无穷小,且(0),y π=,则(1)y = ( ) (A) 4e ππ (B) 2π (C) π (D) 4e π (4) 设函数()f x 在x a =的某个邻域内连续,且()f a 为其极大值,则存在0δ>,当(,)x a a δδ∈-+时,必有 ( )(A) ()[()()]0x a f x f a --≥ (B) ()[()()]0x a f x f a --≤(C) 2()()lim0()()t af t f x x a t x →-≥≠- (D) 2()()lim 0()()t a f t f x x a t x →-≤≠- (5) 设A 是任一(3)n n ≥阶方阵,A *是其伴随矩阵,又k 为常数,且0,1k ≠±,则必有()kA *= ( )(A) kA *(B) 1n k A -* (C) n k A * (D) 1k A -*三、(本题满分5分)求函数tan()4()(1)x x f x x π-=+在区间(0,2)π内的间断点,并判断其类型.四、(本题满分5分)确定常数,,a b c 的值,使30sin lim(0).ln(1)x x b ax xc c t dtt →-=≠+⎰五、(本题满分5分)利用代换cos u y x=将方程cos 2sin 3cos xy x y x y x e '''-+=化简,并求出原方程的通解.六、(本题满分6分)计算积分312⎰七、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =f v .八、(本题满分8分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在0[,1]x 上以()y f x =为曲边的梯形面积.(2) 又设()f x 在区间(0,1)内可导,且2()()f x f x x'>-,证明(1)中的0x 是唯一的.九、(本题满分8分)设有曲线y =过原点作其切线,求由此曲线、切线及x 轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.十、(本题满分8分)设()y y x =是一向上凸的连续曲线,其上任意一点(,)x y,且此曲线上点(0,1)处的切线方程为1y x =+,求该曲线的方程,并求函数()y y x =的极值.十一、(本题满分8分)设(0,1)x ∈,证明: (1) 22(1)ln (1);x x x ++< (2)11111.ln 2ln(1)2x x -<-<+十二、(本题满分5分)设11(2)TE C B A C ---=,其中E 是4阶单位矩阵,TA 是4阶矩阵A 的转置矩阵,1232120101230120,,0012001200010001B C --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求A .十三、(本题满分8分)已知123(1,4,0,2),(2,7,1,3),(0,1,1,),(3,10,,4)T T T Ta b αααβ===-=,问:(1) ,a b 取何值时,β不能由123,,ααα线性表示?(2) ,a b 取何值时,β可由123,,ααα线性表示?并写出此表达式.1998年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limx x →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】3712【分析】求曲线与x 轴围成的图形的面积,应分清楚位于x 轴上方还是下方,为此,要先求此曲线与x 轴交点.【解析】322y x x x =-++与x 轴的交点,即322(2)(1)0x x x x x x -++=--+=的根。

考研数学三(综合)历年真题试卷汇编1(题后含答案及解析)

考研数学三(综合)历年真题试卷汇编1(题后含答案及解析)

考研数学三(综合)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 2. 填空题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(91年)曲线y=A.没有渐近线.B.仅有水平渐近线.C.仅有铅直渐近线D.既有水平渐近线也有铅直渐近线.正确答案:D解析:因为=1,则原曲线有水平渐近线y=1,又=∞,则原曲线有铅直渐近线χ=0,所以应选D.2.(93年)设f(χ)=∫0sinχsin(t2)dt,g(χ)=χ3+χ4,则当χ→0时,f(χ)是g(χ)的A.等价无穷小.B.同阶但非等价无穷小.C.高阶无穷小.D.低阶无穷小.正确答案:B解析:则应选B.3.(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为A.B.0C.-1D.-2正确答案:D解析:则f′(1)=-2,由f′(χ)周期性知,f′(5)=f′(1)=-2.故应选D.4.(97年)设在区间[a,b]上f(χ)>0,f′(χ)<0,fχ(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a)则A.S1<S2<S3B.S2<S1<S3C.S3<S1<S2D.S2<S3<S1正确答案:B解析:由题设可知,在[a,b]上,f(χ)>0单调减,曲线y=f(χ)上凹,如图1.5.S1表示y=f(χ)和χ=a,χ=b及χ轴围成曲边梯形面积,S2表示矩形abBC的面积,S3表示梯形AabB的面积.由图1.5可知,S2<S1<S3.故应选B.5.(97年)若f(-χ)=f(χ),(-∞<χ<+∞),在(-∞,0)内f′(χ)>0,且f〞(χ)<0,则在(0,+∞)内A.f′(χ)>0,f〞(χ)<0B.f′(χ)>0,f〞(χ)>0C.f′(χ)<0,fv(χ)<0D.f′(χ)<0,f〞(χ)>0正确答案:C解析:由f(-χ)=f(χ)知,f(χ)为偶函数,而由在(-∞,0)内f′(χ)>0,且f〞(χ)<0知在(-∞,0)内,y=f(χ)的图形下凹单调增,则f(χ)由图1.6图形可知,在(0,+∞)内,f′(χ)<0,f〞(χ)<0,则应选C.6.(93年)设随机变量X的密度函数是φ(χ),且φ(-χ)=φ(χ),F(χ)是X的分布函数,则对任意实数a,有A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由φ(-χ)=φ(χ)知,φ(χ)为偶函数,其图形关于y轴对称,如图1.7由几何意义可知,F(-a)=S1 ∫1aφ(χ)dχ=S2 则S1=-S2,即F(-a)=.故应选B.7.(99年)设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则A.P{X+Y≤0}=B.P{X+Y≤1}=C.P{X-Y≤0}=D.P{X-Y≤1}=正确答案:B解析:由于独立正态分布的随机变量的线性组合仍服从正态,则X+Y~N(1,).X-Y~N(-1,)由正态分布的几何意义知,正态分布的密度函数关于均值左右对称,则其小于均值的概率为,则P{X+Y<1}=故应选B.8.(06年)设函数y=f(χ)具有二阶导数,且f′(χ)>0.f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与曲分别为f(χ)在点χ0处对应的增量与微分,若△r>0,则A.0<dy<△y.B.0<△y<dy.C.△y<dy<0.D.dy<△y<0.正确答案:A解析:令f(χ)=χ2,在(0,+∞)上,f′(χ)=2χ>0,f〞(χ)-2>0,取χ0=1.则dy=2△χ△y=f(1+△χ)-f(1)=(1+△χ)2-12=2△χ+(△χ)2 由于△χ>0,则0<dy<△y,从而选项B、C、D均不正确,故应选A.9.(06年)设函数f(χ)在χ=0处连续,且=1,则A.f(0)=0且f-′(0)存在.B.f(0)=1且f-′(0)存在.C.f(0)=0且f+′(0)存在.D.f(0)=1且f+′(0)存在.正确答案:C解析:令f(χ)=,显然f(χ)满足原题设条件,而f(0)=0,f-′(0)==∞(不存在),则选项A、B、D均不正确,故应选C.10.(05年)以下四个命题中正确的是A.若f′(χ)在(0,1)内连续,则f(χ)在(0,1)内有界.B.若f(χ)在(0,1)内连续,则f(χ)在(0,1)内有界.C.若f′(χ)在(0,1)内有界,则f(χ)在(0,1)内有界.D.若f(χ)在(0,1)内有界,则f′(χ)在(0,1)内有界.正确答案:C解析:令f(χ)=,显然f(χ),f′(χ)=-都在(0,1)内连续,但f(χ)=在(0,1)内无界,则选项A、B不正确.若令f(χ)=,显然f(χ)在(0,1)内有界,但f′(χ)=在(0,1)内无界,则D不正确,故应选C.11.(05年)设an>0(n=1,2,…),若an发散,(-1)n-1an收敛,则下列结论正确的是A.B.C.D.正确答案:D解析:则A、B、C均不正确,故应选D.12.(96年)设函数f(χ)在区间(-δ,δ)内有定义,若当χ∈(-δ,δ)时,恒有|f(χ)|≤χ2,则χ=0必是f(χ)A.间断点.B.连续而不可导的点.C.可导的点,且f′(0)=0.D.可导的点,且f′(0)≠0.正确答案:C解析:令f(χ)=χ3,显然χ∈(-δ,δ)时,|f(χ)|=|χ3|≤χ2.且f′(χ)=3χ2,f′(0)=0,则A、B、D均不正确,故应选C.13.(90年)已知f(χ)在χ=0某邻域内连续,且f(0)=0,=2,则在点χ=0处f(χ)A.不可导.B.可导且f′(χ)≠0.C.取得极大值.D.取得极小值.正确答案:D解析:由于当χ→时0,1-cosχ~χ2,所以令f(χ)=χ2,则f(χ)符合原题设条件.而f(χ)在χ=0处可导,f′(0)=0,取极小值,则A、B、C均不正确,故应选D.14.(01年)设f(χ)的导数在χ=a处连续,又=-1,则A.χ=a是f(χ)的极小值点.B.χ=a是f(χ)的极大值点.C.(a,f(a))是曲线y=f(χ)的拐点.D.χ=a不是f(χ)的极值点,(a,f(a))也不是曲线y=f(χ)的拐点.正确答案:B解析:若取f′(χ)=-(χ-a),即令f(χ)=-(χ-a)2,则显然f(χ)符合原题条件,f(χ)=-(χ-a)2在χ=0取极大值,且(a,f(a))也不是y=-(χ-a)2的拐点,则A、C、D均不正确,故应选B.15.(99年)设f(χ)是连续函数,F(χ)是f(χ)的原函数,则A.当f(χ)是奇函数时,F(χ)必是偶函数.B.当f(χ)是偶函数时,F(χ)必是奇函数.C.当f(χ)是周期函数时,F(χ)必是周期函数.D.当f(χ)是单调增函数时,F(χ)必是单调增函数.正确答案:A解析:令f(χ)=cosχ+1,F(χ)=sinχ+χ+1.显然f(χ)是偶函数,周期函数,但F(χ)不是奇函数,也不是周期函数,则B、C均不正确.若令f(χ)=χ,F(χ)=χ2,则f(χ)单调增,但F(χ)不单调增,因此,D也不正确,故应选A.16.(96年)设f(χ)处处可导,则A.当f′(χ)=+∞时,必有f(χ)=+∞.B.当f(χ)=+∞时,必有f′(χ)=+∞.C.当f′(χ)=-∞时,必有f(χ)=-∞.D.当f(χ)=-∞时,必有f′(χ)=-∞.正确答案:A解析:令f(χ)=χ,则f′(χ)≡1 f(χ)=+∞,但f′(χ)=1≠+∞f(χ)=-∞,但f′(χ)=1≠-∞则选项B和D均不正确若令f(χ)=χ2,则f′(χ)=2χ=-∞,但f(χ)=+∞≠-∞所以C也不正确,故应选A.17.(96年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于A.1B.2C.3D.4正确答案:C解析:由f(0)=0,f′(0)≠0.取f(χ)=χ,则F(χ)=∫0χ(χ2-t2)tdt=.18.(87年)设f(χ)在χ=a处可导,则等于A.f′(a)B.2f′(a)C.0D.f′(2a)正确答案:B解析:令f(χ)=χ,则但f′(χ)=1,从而f′(a)=f′(2a)=1,则A、C、D均不正确,故应选B.19.(91年)若连续函数f(χ)满足关系式f(χ)=+ln2,则f(χ)等于A.e2ln2B.e2χln2C.eχln2D.e2χ+ln2正确答案:B解析:由f(χ)=+ln2知f(0)=ln2 (1) f′(χ)=2f(χ) (2) 显然C、D选项不符合(1)式,A选项不符合(2)式,故应选B.20.(95年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则A.φ[f(χ)]必有间断点.B.[φ(χ)]2必有间断点.C.f[φ(χ)]必有问断点.D.必有间断点.正确答案:D解析:令φ(χ)=f(χ)=χ2+1 显然f(χ)和φ(χ)符合原题条件,而φf[(χ)]=1,φ2(χ)=1,f[φ(χ)]=2均无间断点,则A、B、C均不正确,故应选D.21.(93年)若f(χ)=-f(-χ),在(0,+∞)内,f′(χ)>0,f〞(χ)>0,则f(χ)在(-∞,0)内A.f′(χ)<0,f〞(χ)<0B.f′(χ)<0,f〞(χ)>0C.f′(χ)>0,f〞(χ)<0D.f′(χ)>0,f〞(χ)>0正确答案:C解析:由原题设可令f(χ)=χ3,显然f(χ)符合原题条件.而在(-∞,0)内,f′(χ)=3χ2>0,f〞(χ)=6χ<0.则A、B、D均不正确,故应选C.22.(96年)设f′(χ0)=f〞(χ0)=0,f″′(χ0)>0,则下列选项正确的是A.f′(χ0)是f′(χ)的极大值.B.f(χ0)是f(χ)的极大值.C.f(χ0)是f(χ)的极小值.D.(χ0,f(χ0))是曲线y=f(χ)的拐点.正确答案:D解析:由题设f′(χ0)=f〞(χ0)=0,f″′(χ0)>0.可令f(χ)=(χ-χ0)3.显然此f(χ)符合原题条件,而f′(χ)=3(χ-χ0)2显然f′(χ0)是f′(χ)极小值而不是极大值,则A不正确,又f(χ0)=0,而在χ0任何邻域内f(χ)可正也可负,从而f(χ0)不是f(χ)的极值点,因此B和C也不正确,故应选D.23.(98年)设f(χ)连续,则tf(χ2-t2)dt=A.χf(χ2)B.-χf(χ2)C.2χf(χ2)D.-2χf(χ2)正确答案:A解析:令f(χ)≡1,则tf(χ2-t2)dt=tdt=χ显然B、C、D均不正确,故应选A.24.(94年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+=0在开区间(a,b)内的根有A.0个B.1个C.2个D.无穷多个正确答案:B解析:由题设条件,可令f(χ)≡1,此时方程∫f(t)dt+=0变为(χ-a)+(χ-b)=0,即2χ-(a+b)=0.该方程在(a,b)内有且仅有一个实根χ=,则A、C、D均不正确,故应选B.25.(03年)设f(χ)为不恒等于零的奇函数,且f′(0)存在,则函数g(χ)=A.在χ=0处左极限不存在.B.有跳跃间断点χ=0.C.在χ=0处右极限不存在.D.有可去间断点χ=0.正确答案:D解析:令f(χ)=χ,显然f(χ)满足原题条件,而g(χ)=.显然A、B、C 均不正确,故应选D.26.(99年)设A是m×n矩阵,B是,n×m矩阵,则A.当m>n时,必有行列式|AB|≠0.B.当m>n时,必有行列式|AB|=0.C.当n>m时,必有行列式|AB|≠0.D.当n>m时,必有行列式|AB|=0.正确答案:B解析:用排除法:当m>n时,若A=,B=[3,4],则有|AB|==0,故A不对;当n>m时,若A=[1 2],B=,则有|AB|=0,故C不对;当n>m时,若A=[1 2],B=,则有|AB|=3≠0,故D不对;因此,只有B正确.27.(94年)设有向量组α1(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).则该向量组的极大无关组是A.α1,α2,α3B.α1,α2,α4C.α1,α2,α5D.α1,α2,α4,α5正确答案:B解析:观察易知α3=3a1+α2,α5=2α1+α2.故A、C都是线性相关组,A、C都不对.当C组线性相关时,D组也线性相关,故D也不对,于是只有B正确.28.(96年)设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则(A*)*等于A.|A|n-1AB.|A|n+1AC.|A|n-2AD.|A|n+2A正确答案:C解析:令A=,显然A符合原题条件,由伴随矩阵定义易知而|A|=2,则|A|n-1=2,|A|n+1=8,|A|n+2=16;故A、B、D均不正确,故应选C.填空题29.(00年)=_______.正确答案:解析:本题常规的求解方法是先把根号里面配方,再用三角代换,但计算量较大·实际上,本题根据定积分几何意义立刻知道应填.事实上,该积分在几何上表示单位圆(χ-1)2+y2≤1面积的,如图1.1.30.(91年)若随机变量X服从均值为2,方差为σ2的正态分布.且P{2<X<4}=0.3,则P{X<0}=_______.正确答案:0.2解析:由于正态分布的密度函数是关于均值χ=2对称.由图1.2易知P{X <0}=S2=0.5-S1=0.5-0.3=0.231.(91年)=_______.正确答案:πa3解析:事实上,在几何上原题中积分应等于球体χ2+y2+z2≤a2的体积的一半,因此应为πa3.32.(94年)设D={(χ,y}|χ2+y2≤χ+y+1},则(χ+y)dχdy=_______.正确答案:解析:积分域D实际上是圆域.由形心公式知:其中分别表示区域D形心的χ坐标和y坐标,SD表示区域D的面积.本题中的圆域形心显然是圆心(),则,而SD=π×则故33.(99年)设D是由直线χ=-2,y=0,y=2以及曲线χ=-所围成的平面域,则ydχdy=_______.正确答案:4-解析:积分域D如图1.3所示,由图1.3不难看出=1,积分域D的面积SD应为正方形面积减去半圆面积,即SD=4-因此,34.(87年)∫-χπχ4sinχdχ=_______.正确答案:0解析:由于χ4sinχ为奇函数,且积分区间[-π,π]关于原点对称.35.(94年)_______.正确答案:ln3解析:原式=36.(01年)(χ3+sin2χ)cos2χdχ=_______.正确答案:解析:37.(94年)设区域D为χ2+y2≤R2,则=_______.正确答案:解析:由于本题积分域为χ2+y2≤R2,由χ和y的对称性知因此38.(01年)设平面域D由直线y=χ,y=-1及X=1所围成.则=_______.正确答案:解析:先画出积分域D如图1.4△ABC.y=-χ将D分为两部分D1(△ABO)和D2(ABOC) 由于是χ的奇函数,D1关于y轴左右对称.则同理,是y的奇函数,D2关于X轴上下对称.则.故原式=-.。

1998-2008考研数学三真题合集

1998-2008考研数学三真题合集

把所选项前的字母填在题后的括号内.
(7) 当 取下列哪个值时,函数
恰好有两个不同的零点:( )
(A) .
(B)
(C)
(D) .
(8) 设


,其中
,则:( )
(A)
(B)
. (C)
(D)
.
(9) 设

发散,
收敛,则下列结论正确的是:( )
(A)
收敛,
发散
(B)
收敛,
发散
(C) (10) 设
收敛
(D)
(2) 函数
由关系式
确定,其中函数 可微,且
,则
_________.
(3) 设

_________.
(4) 二次型
的秩为_________.
(5) 设随机变量 服从参数为 的指数分布,则
=_________.
(6) 设总体 服从正态分布
, 总体 服从正态分布

是来自总体 和 的简单随机样本,则

分别

,则 与 :( )
(A) 合同,且相似
(B) 合同,但不相似
(C) 不合同,但相似
(D) 既不合同,也不相似
(9) 某人向同一目标独立重复射击,每次射击命中目标的概率为
中目标的概率为:( )
(A)
(B)
(C)
(10) 设随机变量
服从二维正态分布,且 与 不相关,
条件下, 的条件概率密度
为:( )
,则此人第 4 次射击恰好第 次命
2006 年全国硕士研究生入学统一考试数学(三)试题
一、填空题:1~6 小题,每小题 4 分,共 24 分. 请将答案写在答题纸指定位置上.

全国硕士研究生入学统一考试数学三试题及答案解析

全国硕士研究生入学统一考试数学三试题及答案解析

年全国硕士研究生入学统一考试数学三试题一、 填空题(本题共小题,每小题分,满分分. 把答案填在题中横线上)()设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在处连续,则λ的取值范围是. ()已知曲线b x a x y +-=233与轴相切,则2b 可以通过表示为=2b .()设>,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(.()设维向量0,),0,,0,(<=a a a T α;为阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中的逆矩阵为,则.()设随机变量 和的相关系数为, 若4.0-=X Z ,则与的相关系数为.()设总体服从参数为的指数分布,n X X X ,,,21 为来自总体的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于.二、选择题(本题共小题,每小题分,满分分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)()设()为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=() 在处左极限不存在. () 有跳跃间断点.() 在处右极限不存在. () 有可去间断点. [ ] ()设可微函数()在点),(00y x 取得极小值,则下列结论正确的是() ),(0y x f 在0y y =处的导数等于零. ()),(0y x f 在0y y =处的导数大于零.() ),(0y x f 在0y y =处的导数小于零. () ),(0y x f 在0y y =处的导数不存在. [ ] ()设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ]()设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若的伴随矩阵的秩为,则必有 () 或. () 或≠.() ≠且. () ≠且≠. [ ] ()设s ααα,,,21 均为维向量,下列结论不正确的是() 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.() 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα() s ααα,,,21 线性无关的充分必要条件是此向量组的秩为.() s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ]()将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件() 321,,A A A 相互独立. () 432,,A A A 相互独立.() 321,,A A A 两两独立. () 432,,A A A 两两独立. [ ] 三、(本题满分分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义()使得()在]1,21[上连续.四 、(本题满分分)设()具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222y gx g ∂∂+∂∂ 五、(本题满分分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域}.),{(22π≤+y x y x六、(本题满分分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数()及其极值.七、(本题满分分)设()()(), 其中函数()()在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且(), .2)()(x e x g x f =+ (1) 求()所满足的一阶微分方程; (2) 求出()的表达式. 八、(本题满分分)设函数()在[,]上连续,在(,)内可导,且()()(), ().试证必存在)3,0(∈ξ,使.0)(='ξf 九、(本题满分分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和满足何种关系时,() 方程组仅有零解;() 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵的特征值之和为,特征值之积为. (1) 求的值;(2) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵. 十一、(本题满分分) 设随机变量的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()是的分布函数. 求随机变量()的分布函数.十二、(本题满分分)设随机变量与独立,其中的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而的概率密度为(),求随机变量的概率密度().年考研数学(三)真题解析一、填空题(本题共小题,每小题分,满分分. 把答案填在题中横线上)()设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在处连续,则λ的取值范围是2>λ. 【分析】 当≠x 可直接按公式求导,当时要求用定义求导.【详解】 当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ 显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在处连续.()已知曲线b x a x y +-=233与轴相切,则2b 可以通过表示为=2b 64a .【分析】 曲线在切点的斜率为,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与的关系.【详解】 由题设,在切点处有03322=-='a x y ,有 .220a x =又在此点坐标为,于是有0300230=+-=b x a x ,故 .44)3(6422202202a a a x a x b =⋅=-=【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. ()设>,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而表示全平面,则⎰⎰-=Ddxdy x y g x f I )()( 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=Ddxdyx y g x f I )()(dxdy ax y x ⎰⎰≤-≤≤≤10,102.])1[(212112adx x x ady dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.()设维向量0,),0,,0,(<=a a a T α;为阶单位矩阵,矩阵 T E A αα-=, T aE B αα1+=, 其中的逆矩阵为,则 .【分析】 这里T αα为阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T T a E E AB αααα+-= T T T T a a E αααααααα⋅-+-11T T T T a a E αααααααα)(11-+-T T T a a E αααααα21-+-E aa E T =+--+αα)121(,于是有 0121=+--aa ,即 0122=-+a a ,解得 .1,21-==a a 由于< ,故.()设随机变量 和的相关系数为, 若4.0-=X Z ,则与的相关系数为 .【分析】 利用相关系数的计算公式即可. 【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y )(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- () – ()()(), 且.DX DZ =于是有 ()DZDY Z Y ),cov(.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+()设总体服从参数为的指数分布,n X X X ,,,21 为来自总体的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于 21 .【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i pn i i【详解】 这里22221,,,nX X X 满足大数定律的条件,且22)(i i i EX DX EX +=21)21(412=+,因此根据大数定律有 ∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n二、选择题(本题共小题,每小题分,满分分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)()设()为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=() 在处左极限不存在. () 有跳跃间断点.() 在处右极限不存在. () 有可去间断点. [ ] 【分析】 由题设,可推出() , 再利用在点处的导数定义进行讨论即可. 【详解】 显然为()的间断点,且由()为不恒等于零的奇函数知,(). 于是有 )0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故为可去间断点. 【评注】 本题也可用反例排除,例如(), 则此时(),0,0,0,1=≠⎩⎨⎧=x x x x 可排除(),(),() 三项,故应选().【评注】 若()在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.()设可微函数()在点),(00y x 取得极小值,则下列结论正确的是() ),(0y x f 在0y y =处的导数等于零. ()),(0y x f 在0y y =处的导数大于零. () ),(0y x f 在0y y =处的导数小于零. () ),(0y x f 在0y y =处的导数不存在. [ ] 【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数()在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选().【评注】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注】 本题也可用排除法分析,取22),(y x y x f +=,在()处可微且取得极小值,并且有2),0(y y f =,可排除(),(),(), 故正确选项为().()设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.() 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.() 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ]【分析】 根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 【详解】 若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选().()设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若的伴随矩阵的秩为,则必有 () 或. () 或≠.() ≠且. () ≠且≠. [ ]【分析】 的伴随矩阵的秩为, 说明的秩为,由此可确定应满足的条件. 【详解】 根据与其伴随矩阵*秩之间的关系知,秩(),故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或.但当时,显然秩()2≠, 故必有 ≠且. 应选().【评注】 ()2≥阶矩阵与其伴随矩阵*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r()设s ααα,,,21 均为维向量,下列结论不正确的是() 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.() 若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα() s ααα,,,21 线性无关的充分必要条件是此向量组的秩为.() s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. [ ]【分析】 本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式. 应注意是寻找不正确的命题.【详解】(): 若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得 02211=+++s s k k k ααα ,矛盾. 可见()成立.(): 若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα ()不成立.() s ααα,,,21 线性无关,则此向量组的秩为;反过来,若向量组s ααα,,,21 的秩为,则s ααα,,,21 线性无关,因此()成立.() s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见()也成立.综上所述,应选().【评注】 原命题与其逆否命题是等价的. 例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关. 其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关. 在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.()将一枚硬币独立地掷两次,引进事件:1A {掷第一次出现正面},2A {掷第二次出现正面},3A {正、反面各出现一次},4A {正面出现两次},则事件() 321,,A A A 相互独立. () 432,,A A A 相互独立.() 321,,A A A 两两独立. () 432,,A A A 两两独立. [ ]【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】 因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且 41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选().【评注】 本题严格地说应假定硬币是均匀的,否则结论不一定成立.三 、(本题满分分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义()使得()在]1,21[上连续.【分析】 只需求出极限)(lim 1x f x -→,然后定义()为此极限值即可. 【详解】 因为)(lim 1x f x -→])1(1sin 11[lim 1x x x x --+-→πππxx xx x πππππsin )1(sin )1(lim 111---+-→xx x xx ππππππππcos )1(sin cos lim 111-+---+-→xx x x xx ππππππππππsin )1(cos cos sin lim 11221----+-→.1π由于()在)1,21[上连续,因此定义π1)1(=f ,使()在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换,转化为求+→0y 的极限,可以适当简化.四 、(本题满分分)设()具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂【详解】vfxu f y x g ∂∂+∂∂=∂∂, .vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ .22y x +【评注】 本题考查半抽象复合函数求二阶偏导. 五 、(本题满分分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x e e I Dy x)sin(22)(22+=⎰⎰+-π.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 tdt e A t sin 0⎰-=π,则t t de e A --⎰-=int 0π]cos sin [0⎰----ππtdt e t e t t⎰--πcos t tde]sin cos [0tdt e t e t t ⎰--+-ππ.1A e -+-π 因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数()及其极值.【分析】 先通过逐项求导后求和,再积分即可得和函数,注意当时和为. 求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n nxxx x f 上式两边从到积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰ 由(), 得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点. 由于,)1(1)(222x x x f +--=''01)0(<-=''f , 可见()在处取得极大值,且极大值为().【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分分)设()()(), 其中函数()()在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且(), .2)()(x e x g x f =+(3) 求()所满足的一阶微分方程; (4) 求出()的表达式.【分析】 ()所满足的微分方程自然应含有其导函数,提示应先对()求导,并将其余部分转化为用()表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】 () 由)()()()()(x g x f x g x f x F '+'=')()(22x f x g +)()(2)]()([2x g x f x g x f -+ (2)x e -2F(), 可见()所满足的一阶微分方程为.4)(2)(2x e x F x F =+'() ]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-]4[42C dx e e x x +⎰-.22x x Ce e -+ 将()()()代入上式,得 . 于是.)(22x x e e x F --=【评注】 本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.八、(本题满分分)设函数()在[,]上连续,在(,)内可导,且()()(), ().试证必存在)3,0(∈ξ,使.0)(='ξf 【分析】 根据罗尔定理,只需再证明存在一点)3,0[∈,使得)3(1)(f c f ==,然后在[]上应用罗尔定理即可. 条件()()()等价于13)2()1()0(=++f f f ,问题转化为介于()的最值之间,最终用介值定理可以达到目的.【详解】 因为()在[,]上连续,所以()在[,]上连续,且在[,]上必有最大值和最小值,于是 M f m ≤≤)0(, M f m ≤≤)1(, M f m ≤≤)2(. 故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为()(), 且()在[]上连续,在()内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf【评注】 介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考. 本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a 其中.01≠∑=ni ia试讨论n a a a ,,,21 和满足何种关系时,() 方程组仅有零解;() 方程组有非零解. 在有非零解时,求此方程组的一个基础解系.【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等. 可先将所有列对应元素相加,然后提出公因式,再将第一行的()倍加到其余各行,即可计算出行列式的值.【详解】 方程组的系数行列式ba a a a ab a a a a a b a a a a a ba A n nn n ++++=321321321321).(11∑=-+ni i n a b b(1) 当0≠b 时且01≠+∑=ni iab 时,秩(),方程组仅有零解.(2) 当 时,原方程组的同解方程组为 .02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零. 不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a)0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α 当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第行的倍加到其余各行,再从第行到第行同乘以∑=-ni ia11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a( 将第行n a -倍到第行的2a -倍加到第行,再将第行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = . 原方程组的一个基础解系为 .)1,,1,1(T =α【评注】 本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为(存在阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵的特征值之和为,特征值之积为. (3) 求的值;(4) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵. 【分析】 特征值之和为的主对角线上元素之和,特征值之积为的行列式,由此可求出 的值;进一步求出的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】 ()二次型的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设的特征值为).3,2,1(=i i λ 由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得 .() 由矩阵的特征多项式)3()2(220202012+-=+----=-λλλλλλA E ,得的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T )51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则为正交矩阵. 在正交变换下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】 本题求,也可先计算特征多项式,再利用根与系数的关系确定:二次型的矩阵对应特征多项式为)].2()2()[2(220022b a a bb aA E +----=+----=-λλλλλλλ设的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得.十一、(本题满分分) 设随机变量的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()是的分布函数. 求随机变量()的分布函数.【分析】 先求出分布函数() 的具体形式,从而可确定() ,然后按定义求 的分布函数即可.注意应先确定()的值域范围)1)(0(≤≤X F ,再对分段讨论.【详解】 易见,当<时,(); 当> 时,(). 对于]8,1[∈x ,有 .131)(3132-==⎰x dt t x F x设()是随机变量()的分布函数. 显然,当0<y 时,();当1≥y 时,(). 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤= })1({}1{33+≤=≤-y X P y X P .])1[(3y y F =+于是,()的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若【评注】 事实上,本题为任意连续型随机变量均可,此时()仍服从均匀分布: 当<时,();当 1≥y 时,();当 1<≤y 时,})({}{)(y X F P y Y P y G ≤=≤= )}({1y F X P -≤ .))((1y y F F =- 十二、(本题满分分)设随机变量与独立,其中的概率分布为 ⎪⎪⎭⎫⎝⎛7.03.021~X ,而的概率密度为(),求随机变量的概率密度().【分析】求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率. 注意只有两个可能的取值,求概率时可用全概率公式进行计算.【详解】 设()是的分布函数,则由全概率公式,知的分布函数为 }{)(u Y X P u G ≤+=}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P }22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P . 由于和独立,可见() }2{7.0}1{3.0-≤+-≤u Y P u Y P).2(7.0)1(3.0-+-u F u F 由此,得的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g ).2(7.0)1(3.0-+-u f u f【评注】 本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.。

考研数学三真题及全面解析2

考研数学三真题及全面解析2

1998年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1) 设曲线()nf x x =在点(1,1)处的切线与x 轴的交点为(,0)n ξ,则lim ()n n f ξ→∞= .(2)2ln 1x dx x -=⎰ .(3) 差分方程121050t t y y t ++-=的通解为 .(4) 设矩阵,A B 满足*28A BA BA E =-,其中100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,E 为单位矩阵,*A 为A 的伴随矩阵,则B = .(5) 设1234,,,X X X X 是来自正态总体()20,2N 的简单随机样本,()2122X a X X =-+()23434b X X -.则当a = ,b = 时,统计量X 服从2χ分布,其自由度为 .二、选择题(本题共5小题,每小题3分,共15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设周期函数()f x 在(),-∞+∞内可导,周期为 4.又()()11lim1,2x f f x x→--=-则曲线()y f x =在点()()5,5f 处的切线的斜率为 ( ) (A)12(B) 0 (C) 1- (D) 2- (2) 设函数()21lim ,1nn xf x x →∞+=+讨论函数()f x 的间断点,其结论为 ( )(A) 不存在间断点 (B) 存在间断点1x = (C) 存在间断点0x = (D) 存在间断点1x =-(3) 齐次线性方程组21231231230,0,0x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A .若存在三阶矩阵0B ≠使得0AB =,则 ( )(A) 2λ=-且||0B = (B) 2λ=-且||0B ≠(C) 1λ=且||0B = (D) 1λ=且||0B ≠ (4) 设()3n n ≥阶矩阵1111a a a a a a A aa a aaa⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 若矩阵A 的秩为1n -,则a 必为 ( ) (A) 1 (B)11n - (C) 1- (D) 11n - (5) 设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数.为使()12()()F x aF x bF x =-是某一变量的分布函数,在下列给定的各组数值中应取 ( )(A) 32,55a b ==- (B) 22,33a b == (C) 13,22a b =-= (D) 13,22a b ==-三、(本题满分5分)设arctan22()y xz x y e-=+,求dz 与2zx y∂∂∂.四、(本题满分5分)设(){}22,D x y xy x =+≤,求D.五、(本题满分6分)设某酒厂有一批新酿的好酒,如果现在(假定0t =)就售出,总收入为0()R 元.如果窖藏起来待来日按陈酒价格出售,t年末总收入为0R R =假定银行的年利率为r ,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大.并求0.06r =时的t 值.六、(本题满分6分)设函数()f x 在[],a b 上连续,在(,)a b 内可导,且()0.f x '≠试证存在,(,),a b ξη∈使得().()b a f e e e f b aηξη-'-=⋅'- 七、(本题满分6分)设有两条抛物线21y nx n =+和21(1)1y n x n =+++,记它们交点的横坐标的绝对值为.n a(1) 求这两条抛物线所围成的平面图形的面积n S ; (2) 求级数1nn nS a ∞=∑的和.八、(本题满分7分)设函数()f x 在[1,)+∞上连续.若由曲线(),y f x =直线1,(1)x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体体积为2()()(1).3V t t f t f π⎡⎤=-⎣⎦ 试求()y f x =所满足的微分方程,并求该微分方程满足条件229x y ==的解.九、(本题满分9分)设向量1212(,,,),(,,,)T T n n a a a b b b αβ==都是非零向量,且满足条件0.T αβ=记n 矩阵.T A αβ=求:(1) 2A ;(2) 矩阵A 的特征值和特征向量.十、(本题满分7分)设矩阵101020,101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦矩阵2(),B kE A =+其中k 为实数,E 为单位矩阵.求对角矩阵Λ,使B 与Λ相似,并求k 为何值时,B 为正定矩阵.十一、(本题满分10分)一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润为500元.试计算此商店经销该种商品每周所得利润的期望值.十二、(本题满分9分)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率p ;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .1998年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)【答案】1e【解析】曲线ny x =在点(1,1)处的切线斜率1x y ='()1nx x='=11n x n x n -===,根据点斜式,切线方程为:1(1).y n x -=-令0y =,代入1(1)y n x -=-,则11x n =-,即在x 轴上的截距为11n n ξ=-, lim ()n n f ξ→∞lim n n n ξ→∞=1lim(1)n n n →∞=-()()11lim(1)x x x --→∞=-1e=.(2)【答案】ln xC x-+【解析】由分部积分公式,2ln 1x dx x -⎰()1ln 1x dx x '⎛⎫=-- ⎪⎝⎭⎰()1ln 1x d x ⎛⎫=-- ⎪⎝⎭⎰ ln 11(ln 1)x d x x x - -+-⎰分部2ln 11x dx x x-=-+⎰ ln 11x dx x x '-⎛⎫=-- ⎪⎝⎭⎰ln 11x C x x -=--+ln x C x =-+. 【相关知识点】分部积分公式:假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰或者.udv uv vdu =-⎰⎰(3)【答案】51(5)()126tt y C t =-+- 【解析】首先把差分方程改写成标准形式1552t t y y t ++=,其齐次方程对应的特征方程及特征根分别为50,5,r r +==-故齐次方程的通解为(5),tt Y C C =-为常数.将方程右边的52t 改写成512t t ⋅,此处“1”不是特征根,故令非齐次方程的一个特解为,t y At B *=+从而1(1),t y A t B *+=++代入原方程,得5(1)5(),2A tB At B t ++++=56,60,2A A B =+=故 55,1272A B ==-.于是通解为 51(5)().126tt t t y Y y C t *=+=-+-(4)【答案】200040002⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦【解析】由题设 *28A BA BA E =-,由于20A =-≠,所以A 可逆.上式两边左乘A ,右乘1A -,得*11128AA BAA ABAA AA ---=-28A B AB E =-(利用公式:*1,AA A E AA E -==) 28A B AB E -=-(移项)()28A E A B E -=-(矩阵乘法的运算法则)将2A =-代入上式,整理得()14E A B E +=. 由矩阵可逆的定义,知E A +,B 均可逆,且()114B E A --=+1102002401040100021002-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦200040002⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(5)【答案】11,,220100【解析】由于1234,,,X X X X 相互独立,均服从2(0,2)N ,所以由数学期望和方差的性质,得2221212(2)0,(2)122220E X X D X X -=-=⨯+⨯=,所以12(2)(0,20)X X N -,同理34(34)(0,100)X X N -.又因为12(2)X X -与34(34)X X -相互独立,且122)(0,1)X X N -344)(0,1)X X N -,由2χ分布的定义,当11,20100a b ==时, 222123411(2)(34)(2)20100X X X X X χ=-+-.即当11,20100a b ==时,X 服从2χ分布,其自由度为2. 严格地说,当10,100a b ==时,2(1)X χ;当1,020a b ==时,2(1)X χ也是正确的.【相关知识点】1、对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2、定理:若2(,)XN μσ,则(0,1)X N μσ-.3、2χ分布的定义:若1,,n Z Z 相互独立,且都服从标准正态分布(0,1)N ,则221~()nii Zn χ=∑.二、选择题(本题共5小题,每小题3分,共15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.) (1)【答案】(D)【解析】根据导数定义:()0()()limx f x x f x f x x∆→+∆-'=∆0(1)(1)lim 2x f f x x →--01(1)(1)lim 2x f x f x →--=-1(1)2f '=1=- 所以 0(1)(1)(1)lim2.x f x f f x→--'==-- 因为()f x 周期为4,()f x '的周期亦是4,即()(4)f x f x ''=+, 所以(5)f '(14)f '=+(1)2f '==-.所以曲线()y f x =在点()5,(5)f 处的切线的斜率为(5)f '(1)2f '==-.选(D). (2)【答案】(B)【分析】讨论由极限表示的函数的性质,应分两步走.先求出该()f x 的(分段)表达式,然后再讨论()f x 的性质.不能隔着极限号去讨论. 【解析】现求()f x 的(分段)表达式: 当1x >时,21()lim 1n n x f x x →∞+=+2122lim 1n n n n x x x ---→∞+=+()()2122lim 01lim 1n n n n n x x x --→∞-→∞+==+0=; 当1x =时,21()lim1n n x f x x →∞+=+211lim 11n n →∞+=+22=1=;当1x =-时,21()lim1n n x f x x →∞+=+()211lim 11n n →∞-=+-02=0=; 当1x <时,21()lim 1n n x f x x →∞+=+()()2lim 1lim 1n n n x x →∞→∞+=+2011n x x →+ 1x =+. 由此, 0,1,0,1,()1,1,1,1,0,1.x x f x x x x x <-⎧⎪=-⎪⎪=+<⎨⎪=⎪>⎪⎩当当当当当 即0,11,()1,1,1, 1.x x f x x x x ≤->⎧⎪=+ <⎨⎪ =⎩当或当当 再讨论函数()f x 的性质:在1x =-处,()1lim x f x +→-()1lim 1x x +→-=+11=-0=,()()1lim 10x f x f -→-=-=,所以,()()11lim lim 0x x f x f x +-→-→-==,函数()f x 在1x =-处连续,不是间断点.在1x =处,()1lim x f x +→1lim 0x +→=0=;()1lim x f x -→()1lim 1x x -→=+2=; 所以()1lim x f x +→()1lim x f x -→≠,函数()f x 在1x =处不连续,是第一类间断点.故选(B). (3)【答案】(C)【解析】方法1:由0AB =知()()3r A r B +≤,又0,0A B ≠≠,于是1()3,r A ≤<1()3r B ≤<,故0,0A B ==,即2210101011011(1)0111111A λλλλλλλλλλλλ--==--==-=--,得 1.λ=应选(C).方法2:由0AB =知()()3r A r B +≤,又0,0A B ≠≠,于是1()3,r A ≤<1()3r B ≤<,故0B =.显然,1λ=时111111111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,有1()3,r A ≤<故应选(C). 作为选择题,只需在2λ=-与1λ=中选择一个,因而可以用特殊值代入法.评注:对于条件0AB =应当有两个思路:一是B 的列向量是齐次方程组0Ax =的解;二是秩的信息,即()()r A r B n +≤,要有这两种思考问题的意识. (4)【答案】(B) 【解析】1111100(1)110101101a a a aa aa a a a a A aa a a a aaaa a ⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦1(1)0100(2)00100001n aa a a a a a +-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦其中(1)变换:将1行乘以(-1)再分别加到其余各行;(2)变换:将其余各列分别加到第1列.由阶梯形矩阵知,当1(1)0n a +-=,即11a n=-时,有()1r A n =-,故应选(B). (5)【答案】(A)【解析】根据分布函数的性质lim ()1x F x →+∞=,即121lim ()()()()x F x F aF bF a b →+∞==+∞=+∞-+∞=-.在所给的四个选项中只有(A)满足1a b -=,故应选(A). 【相关知识点】分布函数()F x 的性质:(1) ()F x 单调不减;(2) lim ()()0,lim ()()1;x x F x F F x F →-∞→+∞=-∞==+∞=(3) ()F x 是右连续的.三、(本题满分5分) 【解析】 arctanarctan2222()()()y y xxdz ed x y x y d e--=+++[]arctan22arctan222arctan22arctan22()(arctan )122()()1(22(2)(2)y xyxy xy xy exdx ydy x y d x y exdx ydy x y d y x x xdy ydx e xdx ydy x x ex y dx y x dy ----⎡⎤=+++-⎢⎥⎣⎦⎡⎤⎢⎥=+-+⎢⎥⎢⎥+⎣⎦-⎡⎤=+-⋅⎢⎥⎣⎦=++- 由全微分与偏微分的关系可知,其中dx 的系数就是z x∂∂,即arctan (2)yxz x y ex -∂=+∂.再对y 求偏导数,得222arctanarctanarctan 222211(2).1yyyxxxzy xy x e x y ee y x yx x y x ---⎛⎫⎪∂--=-+= ⎪∂∂+ ⎪+⎪⎝⎭四、(本题满分5分)【解析】22{(,)}D x y x y x =+≤表示圆心为1,02⎛⎫ ⎪⎝⎭,半径为12的圆及其内部,画出区域D ,如右图. 方法1:{(,)|01,D x y x y =≤≤≤所以, 1102D===⎰⎰⎰,t =,则21x t =-,2dx tdt =-,:10t →所以上式1350122210082(1)(2)4(1)43515t t t t t dt t t dt ⎛⎫=-⋅-=-=-= ⎪⎝⎭⎰⎰.方法2:引入极坐标系cos ,sin x r y r θθ= =,于是(,)|,0cos 22D r r ππθθθ⎧⎫=-≤≤≤≤⎨⎬⎩⎭,3cos cos 2222232048cos .515Dd r drd ππθθπππθθθθ--====⎰⎰⎰⎰⎰其中倒数第二步用了华里士公式:21342cos 1253n n n d n n πθθ--=⋅⋅⋅⋅⋅-⎰,其中n 为大于1的正奇数.五、(本题满分6分)【分析】根据连续复利公式,在年利率为r 的情况下,现时的A (元)在t 时的总收入为()e rt R t A =,反之,t 时总收入为()R t 的现值为()()ertA t R t -=,将0R R =入的现值与窖藏时间t 之间的关系式,从而可用微分法求其最大值.【解析】由连续复利公式知,这批酒在窖藏t 年末售出总收入R 的现值为()e rt A t R -=,而由题设,t年末的总收入0R R =,据此可列出()A t :0()ert rtA t R R -==,令 dAdt0rtd R dt ⎛⎫= ⎪⎝⎭00rtR r ⎫=-=⎪⎭, 得惟一驻点 02125t t r ==. 22dA dtd dA dt dt ⎛⎫= ⎪⎝⎭0rtd R r dt ⎛⎫⎫=⎪⎪⎭⎝⎭00rtrtd d R r R r dt dt ⎛⎫⎫⎫=⋅-+- ⎪⎪⎪⎭⎭⎝⎭200rt rtR r R⎛⎫⎫=-+⎪⎭⎝ 20rt R r ⎡⎤⎫=-⎢⎪⎭⎢⎣1232502(12.5)0rt td A Re r dt ==-<.根据极值的第二充分条件,知:0t t =是()A t 的极大值点,又因驻点惟一,所以也是最大值点.故窖藏2125t r=年出售,总收入的现值最大.当0.06r =时, ()21250.06t =⋅100119=≈(年). 【相关知识点】极值的第二充分条件:设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,当0()0f x ''<时,函数()f x 在0x 处取得极大值;当0()0f x ''>时,函数()f x 在0x 处取得极小值.六、(本题满分6分)【分析】本题要证的结论中出现两个中值点ξ和η,这种问题一般应将含有ξ和η的项分别移到等式两边后再用微分中值定理,为此本题只要证()()()()b a f b a e e f e ηξη-''-=-.【解析】方法1: 函数()f x 在[],a b 上连续,在(,)a b 内可导,满足拉格朗日中值定理的条件,对函数()f x 在[],a b 上用拉格朗日中值定理,有()()()(),.f b f a f b a a b ξξ'-=-<<又函数()f x 与xe 满足柯西中值定理的条件,将函数()f x 与xe 在[],a b 上用柯西中值定理,有()()(),b a f b f a f a b e e e ηηη'-=<<-,即()()()b a f f b f a e e eηη'-=-(). 从而有()()()baf f b a e e eηηξ''-=-(),即(),,(,)()b a f e e e a b f b a ηξξηη-'-=⋅∈'-. 方法2:题中没有限制ξη≠,因此取ξη=,即成为要去证存在(,)a b η∈使.b ae e e b aη-=- 在[],a b 上对函数xe 用拉格朗日中值定理,存在(,)a b η∈使, 1.b a b a e e e e e e b a b aηη---=⋅=--即 再取ξη=,则()1()b a f e e e f b aηξη-'-==⋅'-,原题得证.【相关知识点】1.拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. 2. 柯西中值定理:如果函数()f x 及()F x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导; (3) 对任一(,)x a b ∈,()0F x '≠, 那么在(,)a b 内至少有一点ξ,使等式()()()()()()f b f a f F b F a F ξξ'-='-成立.七、(本题满分6分) 【解析】(1)由21y nx n =+与21(1)1y n x n =+++得n a =因图形关于y 轴对称,所以,所求图形的面积为220320112(1)121422(1)(1)33nn a n a n n S nx n x dx n n a a x dx n n n n ⎡⎤=+-+-⎢⎥+⎣⎦⎡⎤=-+=-=⎢⎥++⎣⎦⎰⎰ (2)由(1)的结果知41411()3(1)31n n S a n n n n ==-++, 根据级数和的定义,111411414lim lim lim 1.31313n nn k n n n n k k n k S S a a k k n ∞→∞→∞→∞===⎛⎫⎡⎤==-=-= ⎪⎢⎥++⎝⎭⎣⎦∑∑∑八、(本题满分7分)【分析】本题是微分方程的几何应用问题.在题目中给出了由曲线()y f x =等围成的平面图形绕x 轴旋转一周所形成的旋转体体积()V t 与包含函数f 的一个恒等式,这正是列方程的依据.【解析】由绕x 轴旋转的旋转体体积公式得21()()tV t f x dx π=⎰,于是,依题意得221()()(1)3tf x dx t f t f ππ⎡⎤=-⎣⎦⎰,即2213()()(1)tf x dx t f t f =-⎰. 两边对t 求导,化成微分方程223()2()()f t tf t t f t '=+,其中()f t 为未知函数.按通常以x 表示自变量,y 表示未知函数()f t ,于是上述方程可写为2232,x y y xy '=-即23()2().dy y ydx x x=- 这是一阶齐次微分方程.令y ux =,有dy duu x dx dx=+⋅,则上式化为 2()32,duu x u u dx+=- 即 3(1).duxu u dx=- (*) 若0u =,则0,y ux ==不满足初始条件229x y ==,舍弃;若1u =,则,y ux x ==也不满足初始条件229x y ==,舍弃;所以,0u ≠,且1u ≠.由(*)式分离变量得3,(1)du dx u u x =-两边积分得31u Cx u-=.从而方程(*)的通解为3,y x Cx y C -=为任意常数.再代入初值,由229x y==,得1C =-,从而所求的解为 33,,(1).1xy x x y y x x-=-=≥+或 【相关知识点】1. 对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则 [][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.九、(本题满分9分)【解析】(1)对等式0Tαβ=两边取转置,有()0TTT αββα==,即0T βα=.利用0Tβα=及矩阵乘法的运算法则,有()22TT T A αβαβαβ==()00T T T T αβαβαβαβ===0=,即2A 是n 阶零矩阵.(2)设λ是A 的任一特征值,(0)ξξ≠是A 属于特征值λ的特征向量,即A ξλξ=.对上式两边左乘A 得2A ξ()()A A λξλξλλξ===2λξ=,由(1)的结果20A =,得220A λξξ==,因0ξ≠,故0λ=(n 重根),即矩阵的全部特征值为零.下面求A 的特征向量:先将A 写成矩阵形式[]1111212212221212,,,n n Tn n n n n n a a b a b a b a a b a b a b A b b b a a b a b a b αβ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.不妨设110,0a b ≠≠,则有111211221222212221121212(0)1()01(2,,)n n n n n n n n n n n n n i a b a b a b b b b a ba b a b a b a b a b E A a a b a b a b a b a b a b b b b a i i n ---⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥-=÷-⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⨯=行行加到行00000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦于是得方程组(0)0E A x -=同解方程组11220n n b x b x b x +++=,这样基础解系所含向量个数为(0)1n r E A n --=-.选2,,n x x 为自由未知量,将它们的组值111(,0,,0),(0,,,0),(0,0,,)b b b 代入,可解得基础解系为12123111(,,0,,0),(,0,,,0),,(,0,0,,)n n b b b b b b ξξξ-=-=-=-则A 的属于0λ=的全部特征向量为112211n n k k k ξξξ--+++,其中121,,,n k k k -为不全为零的任意常数.十、(本题满分7分)【分析】由于B 是实对称矩阵,B 必可相似对角化,而对角矩阵Λ即B 的特征值,只要求出B 的特征值即知Λ,又因正定的充分必要条件是特征值全大于零,k 的取值亦可求出. 【解析】方法1:由2101112(2)(2)1111E A λλλλλλλλλ-----=-=-=-----,可得A 的特征值是1232,0.λλλ===那么,kE A +的特征值是2,2,k k k ++,而2()B kE A =+的特征值是222(2),(2),.k k k ++又由题设知A 是实对称矩阵,则,TA A =故222()()()TTT B kE A kE A kE A B ⎡⎤⎡⎤=+=+=+=⎣⎦⎣⎦, 即B 也是实对称矩阵,故B 必可相似对角化,且222(2)000(2)000k Bk k ⎡⎤+⎢⎥Λ=+⎢⎥⎢⎥⎣⎦. 当20k k ≠-≠且时,B 的全部特征值大于零,这时B 为正定矩阵.方法2:由2101112(2)(2)1111E A λλλλλλλλλ-----=-=-=-----,可得A 的特征值是1232,0.λλλ===因为A 是实对称矩阵,故存在可逆矩阵P 使1220P AP -⎡⎤⎢⎥=Λ=⎢⎥⎢⎥⎣⎦,即1A P P -=Λ.那么 221121()()()B kE A kPP P P P kE P ---⎡⎤=+=+Λ=+Λ⎣⎦1121()()().P kE P P kE P P kE P ---=+Λ+Λ=+Λ即12()P BP kE -=+Λ.故222(2)000(2)000k Bk k ⎡⎤+⎢⎥+⎢⎥⎢⎥⎣⎦. 当20k k ≠-≠且时,B 的全部特征值大于零,这时B 为正定矩阵.【相关知识点】1.特征值的性质:若A 有特征值λ,则A 的特征多项式()f A 有特征值()f λ.2.矩阵正定的充要条件是特征值全大于零.十一、(本题满分10分)【解析】设Z 表示商店每周所得的利润, 当Y X ≤时,卖得利润为1000Z Y =(元); 当Y X >时,调剂了Y X -,总共得到利润1000500()500()Z X Y X X Y =+-=+(元).所以,1000, ,500(), .Y Y X Z X Y Y X ≤⎧=⎨+>⎩由题设X 与Y 都服从区间[10,20]上的均匀分布,联合概率密度为1, 1020,1020,(,)1000, x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩其他.由二维连续型随机变量的数学期望定义得1212202020101010202021010()1000(,)500()(,)111000500()100100105()310(20)5(1050)2200005150014166.67().3D D D D yyE Z y f x y dxdy x y f x y dxdyy dxdy x y dxdy dy ydx dy x y dxy y dy y y dy=⋅++⋅=⋅++⋅=++=-+--=+⨯≈⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰元十二、(本题满分9分)【解析】记事件j B =“第j 次抽到的报名表是女生表”(1,2)j =,i A =“报名表是第i 个地区的”(1,2,3)i =.易见,123,,A A A 构成一个完备事件组,且1112131{}(1,2,3),3375{},{},{}.101525i P A i P B A P B A P B A =====(1) 应用全概率公式,知3111137529{}{}{}(310152590i i i p P B P A P B A ===⋅=++=∑.(2) 12{}q P B B =.需先计算概率12{}P B B 与2{}P B .对事件12B B 再次用全概率公式:3121211377852020{}{}{}()31091514252490i i i P B B P A P B B A ==⋅=⋅+⋅+⋅=∑,由“抽签原理”可知2161()()90P B P B ==, 12122()209020{}906161()P B B q P B B P B ===⋅=. 【相关知识点】1.全概率公式:如果事件1,,n A A 构成一个完备事件组,即它们是两两互不相容,其和为Ω(总体的样本空间);并且()0,1,2,,i P A i n >=,则对任一事件B 有()1()(|)ni i i P B P A P B A ==∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档