【VIP专享】电气化铁道供电系统与设计课程设计报告
电气化铁路牵引供电系统设计与分析

电气化铁路牵引供电系统设计与分析电气化铁路牵引供电系统是现代火车运输中不可或缺的关键部分。
它为电力机车或电动列车提供所需的功率,并确保它们在铁路线上平稳高效地运行。
本文将对电气化铁路牵引供电系统的设计与分析进行探讨,包括系统架构、供电方式以及系统性能等方面。
首先,我们需要了解电气化铁路牵引供电系统的基本架构。
该系统主要由接触网、接触装置、牵引变电所和牵引变流所等组成。
接触网是指铺设在铁路线上方的电气导线,通过接触装置和牵引变电所提供电力源。
牵引变电所负责将接触网提供的交流电或直流电转换为适用于牵引系统的电能。
而牵引变流所则将牵引变电所输出的电能转换为适用于电力机车或电动列车的电流。
在设计电气化铁路牵引供电系统时,需考虑到供电方式。
目前,电气化铁路牵引供电系统主要采用两种方式:交流供电和直流供电。
交流供电方式具有传输损耗小、设备便宜和传统技术成熟等优势,因此在大部分电气化铁路中较为常见。
而直流供电方式则具有电气设备轻巧、牵引系统效率高以及对长距离输电有优势等特点,因此在一些特定的电气化铁路中得到了广泛应用。
除了架构和供电方式,我们还需要对电气化铁路牵引供电系统的性能进行分析。
系统性能的评估主要涉及电源质量、能源利用率和牵引负载等方面。
电源质量包括电压稳定性和电流质量两方面衡量,需保证电压稳定在一定范围内,以及电流的波动小、谐波含量低。
能源利用率则为系统能源转换效率的指标,高效利用能源可减少能源消耗和环境污染。
牵引负载则是指牵引设备对供电系统的电流需求,需要考虑设备起动、加速、减速和制动等工况。
此外,为了确保电气化铁路牵引供电系统的可靠性和安全性,还需要考虑过载保护、维护和故障处理等因素。
过载保护是指当系统负荷超过一定限制时,自动断开供电以防止设备过热和损坏。
维护则包括定期检查设备和及时修复故障。
故障处理则需在设备故障发生时快速定位并及时修复,以确保系统正常运行。
在电气化铁路牵引供电系统的设计和分析过程中,还有许多其他因素需要考虑。
电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:年月日一、题目某牵引变电所位于大型编组站内, 向两条复线电气化铁路干线的两个方向供电区段供电, 已知列车正常情况的计算容量为27000 kV A(三相变压器), 并以10kV电压给车站电力照明机务段等地区负荷供电, 容量计算为2700 kV A, 各电压侧馈出数目及负荷情况如下: 25kV回路(1路备): 两方向年货运量与供电距离分别为, , 。
10kV共4回路(2路备)。
二、供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的首端, 送电线距离30km, 主变压器为SCOTT接线。
三、题目分析及解决方案框架确定2.1.选题背景、负荷分析和原始数据在保证电气化铁道供电安全可靠的同时, 也要求供电设备最经济的利用, 因此选择合适容量的变压器是很有现实意义的。
本文在这方面对已有的计算公式进行了分析, 并提出了一个较为准确的变电所有效电流公式, 说明在某些情况下机组的选择必须进一步考虑实际的运行情况。
牵引变电所是电气化铁路牵引供电系统的核心部分, 它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。
而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。
通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。
由上述资料可知, 本牵引变电所担负着重要的牵引负荷供电任务(一级负荷), 馈线数目多、影响范围广, 应保证安全可靠的供电。
10KV地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等, 应有足够的可靠性。
2.2.牵引变压器台数和容量的选择牵引变压器是牵引供电系统的重要设备, 其容量大小关系到能否完成国家交给的运输任务的问题。
从安全运行和经济方面来看, 容量过小会使牵引变压器长期过载, 将造成其寿命缩短, 甚至烧毁;反之, 容量过大将使牵引变压器长期不能满载运行, 从而造成其容量浪费, 损耗增加, 使运营成本增大。
《供变电工程课程设计指导书》的牵引变电所B。

电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:评语:2011 年 12 月 30 日一 题目《供变电工程课程设计指导书》的牵引变电所B 。
包含有A 、B 两牵引变电所的供电系统示意图如图1所示:图1 牵引供电系统示意图表1 设计基本数据项目B 牵引变电所 左臂负荷全日有效值(A ) 320 右臂负荷全日有效值(A ) 290 左臂短时最大负荷(A ) 410 右臂短时最大负荷(A ) 360牵引负荷功率因数 0.85(感性) 牵引变压器接线型式 YN,d11 牵引变压器110kV 接线型式 简单(双T)接线 左供电臂27.5kV 馈线数目 2 右供电臂27.5kV 馈线数目 210kV 地区负荷馈线数目 2回路工作,1回路备用 预计中期牵引负荷增长40%电力系统1、2容量分别为250MVA 和200MVA ,选取基准容量j S 为200MVA ,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统1、2的综合标幺值分别为0.15和0.17。
图1中,1L 、2L 、3L 长度为25km 、40km 、20km ,线路平均正序电抗1X 为0.4Ω/km,平均零序电抗0X 为1.2Ω/km 。
SYSTEM2SYSTEM1L1L2L3B A二 设计方案简述本课程设计较系统的阐明了牵引变电所B 设计的基本方法和步骤。
重点在于对牵引变压器的容量计算、牵引变压器的选择和运行技术指标的计算;牵引变电所电压不平衡度计算;电气主接线的设计;导线的选择。
三 牵引变压器的计算3.1牵引变压器容量的计算3.1.1牵引变压器计算容量牵引变电所的主变压器采用YN ,d11接线形式,主变压器正常负荷计算: )65.02(21x x t I I U K S +=(kVA ) (1) 将1x I =320A ,2x I =290A , t K =0.9,U =27.5kV 代入(1)可求得:S=20505.375(kVA )max max (20.65)b t a bx S K U I I =+(kVA )(2)将max a I =410A ,bx I =290A 代入(2)可以求得:max S b =24960.375(kVA )为满足铁路运输的不断发展,牵引变压器留有一定余量,预计中期牵引负荷增长40%。
电气化铁路供电系统设计

摘要本毕业设计介绍了电气化铁道供变电技术,以交流电气化铁道为重点,加强了对牵引供电系统的认识。
牵引供电系统又以牵引变电所为重点,介绍了供电系统一次设备和二次电气设备,对变电所一次电气设备的构成、类型、工作原理做了一定的介绍;对变电所的二次装置的构成、工作原理进行了比较详细的介绍。
本设计主要以电力牵引供变电系统为主,对其结构特点进行系统分析,包括主电路、控制电路、计量回路。
事故预告,报警回路;高低压电器等。
同时对电力牵引供变电系统供电方式的特点进行分析,对典型故障案例进行深入分析,提出解决方案,包括组织流程、安全、技术、处理措施。
本设计书还对接触网和牵引变电所倒闸部分进行了分析,更便于掌握牵引变电所的运行状态。
关键词:交流电气化设备供电系统供电方式结构特点ABSTRACTThe graduation design specification introduces electrified railway for substation technology, with ac electrified railway as the key point, to strengthen the understanding of the traction power supply system. Traction power supply system and focusing on traction substation, this paper introduces a power supply system and the secondary electrical equipment, equipment for substation once electrical equipment structure, type, principle of work done some introduction; The second device for substation structure, working principle are detailed introduced. This design is mainly for electric traction substation system is given priority to, on the structure characteristic of system analysis, including the main circuit and control circuit, measurement circuit. The accident forecast, alarm circuit, high and low voltage electric apparatus, etc. At the same time on the electric traction substation system for the power-supply modes, analyzes the characteristic of typical fault cases analysis, and proposes the solutions, including organizational processes, safety, technology, handling measures. This proponent of catenary and traction substation pour brake parts are analyzed, more facilitate master traction substation operation.Key words: Ac electrified equipment power supply system Power-supply modes Structure characteristics目录1 电力牵引供电系统概述 (1)1.1电力牵引特点 (1)1.2电力系统简介 (1)1.3牵引供变电系统的组成 (2)1.4牵引供电方式 (4)1.5接触网 (8)2 牵引变电所电气主接线 (11)2.1电气主接线概述 (11)2.2牵引变电所110kv侧的电气主接线 (11)3 牵引供电系统主要电气设备 (15)3.1电气设备的概述 (15)3.2牵引变压器 (15)3.2.1变压器的分类 (15)3.2.2油侵式电力变压器结构,构成部件的作用。
电气化铁道供电系统与设计课程设计指导手册自动化学院模板

电气化铁道供电系统与设计课程设计指导手册自动化学院《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
经过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
经过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
经过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁路供电系统的设计与实现

电气化铁路供电系统的设计与实现一、导言电气化铁路是现代交通运输的必需品,概念简单来说就是用电力作为牵引能源的铁路交通系统。
电气化铁路的供电系统是电气化铁路的重要组成部分,供电系统的设计与实现是电气化铁路建设的重要环节,本文将就此展开讨论。
二、供电系统的基本概念供电系统是支持电气化铁路正常运行的关键基础设施之一,它主要由供电站、电气化变电站、牵引变压器、接触网、集电装置、地线以及设备和通信控制系统等部分组成。
其中,供电站是供应电力给电气化铁路的核心部分,电气化变电站负责将高压输电线路的电压转换为低压直流电,牵引变压器用于将低压直流电转换为适合交流电驱动的电能,接触网则是供电系统的主要能量输出装置,集电装置用于对接触网所输出的电能进行集电,地线则是用于保证安全的配套设施。
三、供电系统的设计原则为了保证电气化铁路运行的安全性和运行效率,供电系统的设计必须符合一定的原则。
首先,供电系统必须满足稳定、可靠、高效、安全的电力供应要求。
其次,供电系统的设计需要考虑供电站覆盖面积、变电站的布局、接触网构造等因素,要在满足技术要求和经济需求的前提下进行合理布局和安排。
此外,供电系统的设计还需要考虑在地形条件不同的地方下如何解决供电站、变电站、接触网和车站等相互关联的问题。
四、供电系统的实现方法在实现供电系统的过程中,需要考虑到系统的可靠性、稳定性和灵活性等因素。
供电系统具体的实现方法根据不同的技术要求和经济条件进行选择。
一般情况下,供电系统的实现技术主要有以下几种:1. 直供直流电力系统(DC)该方法主要是通过直流电传输来实现电气化铁路的供电,其特点是输电损耗较小,系统结构简单,稳定性和可靠性高。
但由于操作难度较大,需要专业技术人员进行操作,因此使用范围相对较窄。
2. 交流电力系统(AC)该方法主要是通过交流电传输来实现电气化铁路的供电,其特点是输电噪音小,相对稳定,且操纵容易。
但对于电气化铁路的大规模使用来说,支持的电压和频率等参数需要与国家标准保持一致,造成的成本相对较高。
电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告电气化铁道供电系统与设计课程设计报告班级:电气***学号: **********姓名: **** **指导教师: ******2011 年 07 月 18 日目录1、题目 (1)2 题目分析及解决方案框架确定 (1)3 设计过程 (2)3.1 牵引变电所110kV侧主接线设计 (2)3.2 牵引变压器主接线设计 (3)3.3 牵引变电所馈线侧主接线设计 (4)3.3.1 55kV侧馈线的接线方式 (4)3.3.2动力变压器及其自用电变压器接线 (5)3.4 绘制电气主结线图 (6)3.5 牵引变压器容量计算 (6)3.6 牵引变压器类型选择 (8)3.7导线选择 (8)3.7.1 室外110kV进线侧母线的选择 (9)3.7.2 室外27.5kV进线侧母线的选择 (10)3.7.3 室外10kV馈线侧母线的选择 (10)3.8 开关设备的选择 (10)3.8.1 高压断路器的选择 (10)3.8.2 高压熔断器的选择 (12)3.8.3 隔离开关的选择 (13)3.9 仪用互感器的选择 (13)3.9.1电流互感器的选择 (13)3.9.2电压互感器的选择及作用 (14)4 小结 (14)参考文献 (15)附表1 钢芯铝绞线的物理参数及载流量 (16)附图1 牵引变电所电气主结线图 (17)AT供电方式下斯科特接线牵引变电所设计1、题目某牵引变电所戊采用AT供电方式向复线区段供电,牵引变压器类型为110/27.5kV,SCOTT接线,两供电臂电流归算到27.5kV侧电流如表1所示。
本次设计主要做了变电所AT供电方式下,从电源进线到向供电臂供电的所有接线设计和此种接线方式下变电所的容量计算。
2 题目分析及解决方案框架确定分析题目提供的资料可知,该牵引变电所要担负向区段安全可靠的供电任务,题目要求采用110/55kV、SCOTT接线牵引变压器,AT供电方式向复线区段供电的方式,此供电方式可减轻对邻近通信线路的干扰影响,大大降低牵引网中的电压损失,扩大牵引变电所间隔,减少牵引变电所的数目。
电气化铁道供电系统与设计课程设计报告

一、题目包含有A 、B 两牵引变电所的供电系统示意图如图1所示:L3L2L1BASYSTEM 1SYSTEM 2图1牵引供电系统示意图图1中,牵引变电所中的两台牵引变压器为一台工作,另一台备用。
电力系统1、2均为火电厂。
其中,电力系统容量分别为250MV A 和200MV A 。
选取基准容量j S 为200MV A ,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。
对每个牵引变电所而言,110kV 线路为一主一备。
图1中,1L 、2L 、3L 长度为25km 、40km 、20km .线路平均正序电抗1X 为0.4Ω/km ,平均零序电抗0X 为1.2Ω/km 。
设计基本数据如表1所示。
表1设计基本数据项目A 牵引变电所左臂负荷全日有效值(A )350 右臂负荷全日有效值(A ) 300 左臂短时最大负荷(A ) 440 右臂短时最大负荷(A ) 390牵引负荷功率因数 0.85(感性) 牵引变压器接线型式YN,d11 牵引变压器110kV 接线型式 桥型接线 10kv 地区负荷容量(10kv ) 2*100010kv 地区负荷功率因数 0.80(感性) 左供电臂27.5kV 馈线数目 2 右供电臂27.5kV 馈线数目 210kV 地区负荷馈线数目 2回路工作,1回路备用 预计中期牵引负荷增长40%二、题目分析及解决方案框架确定采用YN ,d11三相双绕组变压器的牵引变电所如图2所示。
它是我国电气化铁道目前采用较多的一类。
三相YN,d11接线牵引变压器的高压侧通过引入线按规定依次接到110kV(或220kV)三相电力系统的高压输电线上;变压器低压侧的一角c 与轨道、接地网连接,变压器另两个角a和b分别接到27.5kV的a相和b相母线上。
由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60,是60接线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁道供电系统与设计课程设计报告
图4馈线断路器100%备用
考虑到牵引变压器类型为三相V-v,且此牵引变电所为两个相邻区间的复
线供电,为了提高供电的可靠性,保障断路器转换的操作方便,牵引变电所27.5kV 侧馈线断路器采用100%备用的接线。
图5馈线断路器50%备用
图6带有旁路母线和旁路断路器的接线
3.3单相V-v直供方式变压器接线
单相V-v接线变压器是由两台单相变压器构成,高压侧两个绕组接在电力系统的两个线电压上。
因为是采用直接供电方式,低压侧两个绕组接成V形,两台变压器的次边绕组,各取一端联至27.5kV的a相和b相母线上。
而它们的另一端则联成公共端的方式接至地网和钢轨或钢轨引回的回流线。
为保证供电的可靠性及经济性,
1250A的铁道电气化线路中,作为有电压无负荷时分合电路用,也供铁道自动闭塞信事情装置时使用。
并可单级使用。
隔离开关配用CS11、CS14型手力操动机构,并与CJ2、CJ5、CJ6、CJ11免维护系列电动操动机构组合,特别适合电力系统和电气化铁路领域对远距离分、合的需要。
四、心得体会
这次课程设计是我们在校期间的一次重要设计,是我们走向工作岗位前重要的一步。
从最初的选题到分析计算、整理结果,每一个过程都考验了我们对专业知识的掌握程度,以及分析问题、搜集信息的各种能力。
通过这次课程设计,我了解了牵引变压器的用途及工作原理,熟悉了牵引变电所的设计步骤,锻炼了工程设计实践能力,培养了自己的独立设计能力,更加详细的了解了负序电流对电力系统的影响以及我们该怎样减少负序电流的影响。
此次课程设计是对我专业知识和专业基础的一次实际检验和巩固,同时也是走向工作岗位前的一次热身。
但这次课程设计中暴露出来的问题还是很多的,专业基础知识不够扎实用到时才去翻书,检索信息资料的能力尚有欠缺等等,所以我们会在这次课设之后努力去弥补自己已经暴露出来的问题,争取做一名合格的电气人,在走向工作岗位后,充分显示出交大人治学严谨、工作认真的作风,这此课程设计虽然结束,但我们的学习还在进行,我们会努力充实自己,在剩余不多的大学时光里,我们将奋力前行,为创造美好的未来而扬帆远航。
参考文献
[1] 铁道部电气化局电气化勘测设计院,电气化铁路设计手册-牵引供电系统.北京:中国
铁道出版社,1987.
[2] 贺威俊,简克良.电气化铁道供变电工程.北京:铁道出版社,1983.
[3] 李彦哲,王果,张蕊萍,胡彦奎.电气化铁道供电系统与设计[M].兰州:兰州大学出版
社,2006.
- 10 -。