高考模拟试卷数学卷(理科01)

合集下载

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则AB =(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=(A)3 (B)75. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(B)3 (C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131(C)139(D)14110. 已知πlog e,a =πln ,eb =2e ln ,πc =则(A)a b c << (B)b c a <<(C)b a c <<(D)c b a <<11. 过正方形1111ABCD A B C D -的顶点A 作直线l ,使得l 与直线11,B C C D 所成的角均为60︒,则这样的直线l 的条数为(A)1 (B)2 (C) 3 (D) 412. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB 的最大值是第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数x y a =(0a >且1)a ≠与三次函数3y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为 “中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“优”、“良”、“中”、“差”的班级中抽取10个班级,再从这10个班级中随机抽取2个班级进行抽样复核,记抽样复核的2个班级获得的奖励小红旗面数和为X ,求X 的分布列与数学期望()E X .19.(本小题满分12分)如图,在四棱锥M ABCD -中,2,2.,,3AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且2BE EM =,求直线EC 与平面BDM 所成角的正弦值.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)若存在*0[,1)()x n n n N ∈+∈使得对任意的(e,)x ∈+∞都有0()()f x f x ≥成立. 求n 的值.(其中e 2.71828=是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15;; 16.3e (1,e ).三、解答题(共70分)17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A=于是1cos ,2A =因为0π,A <<所以π.3A =6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0,c >所以 3.c =故ABC ∆的面积为11πsin 23sin 223bc A =⨯⨯⨯=12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分.5分 (2)由(1)知题意“优”、“良”、“中”、“差”的频率分别为0.3,0.4,0.2,0.1.又班级总数为40.于是“优”、“良”、“中”、“差”的班级个数分别为12,16,8,4.分层抽样的方法抽取的“优”、“良”、“中”、“差”的班级个数分别为3,4,2,1. 由题意可得X 的所有可能取值为1,2,3,4,5,6.211214410101111111324221120211(1),(2),(3,145945)C C C C C C P X P X P C C C X C C C +=======+== 2432111123101021304224(4),(5),(6)41151515.C C C C P X P X P X C C C C C ========+=9分 所以X459451512()123456515.455E X =⨯+⨯+⨯+⨯+⨯+⨯==所以X 的数学期望19().5E X = 12分 19.解:(1)因为2AB AM ==,MB =所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂平面,ADM AD ⊂平面ADM ,所以AB ⊥平面.ADM5分(2)因为2,23AM AD MD ===所以120.MAD ∠=︒如图所示,在平面ADM 内过点A 作x 轴垂直于AM ,又由(1)知AB ⊥平面ADM ,于是分别以,AM AB 所在直线为,y z 轴建 立空间直角坐标系.A xyz -于是4(3,1,0),(3,1,),(0,0,2),(0,2,0).3D C B M --因为2BE EM =,于是42(0,,).33E 所以72(3,,),(0,2,2),(3,1,2).33EC BM BD =-=-=--设平面BDM 的法向量为,n 于是00BM n BD n ⎧⋅=⎪⎨⋅=⎪⎩即220.320y z x y z -=⎧⎪--=取1z =得(3,1,1).n = 设直线EC 与平面BDM 所成角为θ,则413sin cos ,.54553EC n EC n EC nθ⋅====⨯ 所以直线EC 与平面BDM 所成角的正弦值为1.512分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).exx x x ->∈+∞+ 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3e ln .e x x x ->+则222223e 4e 1()(e )(e )2(4e 1)2(),e 2x h x x x x x x x x x -+>--++=-+=-+ (i)当4e 1[,)2x +∈+∞时,于是()0h x>,从而()0.f x '> 故()f x 在4e 1[,)2++∞严格单调递增.其中4e 15.936562+=9分 (ii)当(e,5]x ∈时,则2222222222()(e )ln 5(e )2(e )(e )3e h x x x x x x x x x ≤--++<--++=-- 2203e 0.≤-<(用到了223e x x --在(e,5]单调递增与2e 7>)于是()0f x '<,故()f x 在(e,5]严格单调递减.11分综上所述,()f x 在(e,5]严格单调递减,在4e 1[,)2++∞严格单调递增. 因为4e 16,2+<所以0[5,6).x ∈所以 5.n =12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||5AB ===5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M'===9分令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=; 当3t =+时,11||.2F M'=> 所以||F M '的取值范围为1).212分 22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得 22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤ 5分(2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅==10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM == 由切割线定理知2|||||| 1.OA OB OM ⋅==10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++==5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab =时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为10分。

高考数学(理科)模拟试卷及答案3套

高考数学(理科)模拟试卷及答案3套

高考数学(理科)模拟试卷及答案3套模拟试卷一试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡......上) 1. 2020i = ( )A .1B .1-C .iD .i -2.设i 为虚数单位,复数()()12i i +-的实部为( )A.2B.-2C. 3D.-3 3.若向量,)()3,(R x x a∈=ρ,则“4=x ”是“5=a ρ”的()A.充分而不必要条件B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件 4.下列函数中,在区间(0,+∞)上单调递增的是( )A. B. C.x y 21log = D.5.已知)cos(2)2cos(απαπ+=-,且31)tan(=+βα,则βtan 的值为( ) .A 7- .B 7.C 1.D 1-6.将函数()()()sin 20f x x ϕϕ=+<<π的图象向右平移4π个单位长度后得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象,则函数()f x 的一个单调减区间为( )A .5,1212ππ⎡⎤-⎢⎥⎣⎦ B .5,66ππ⎡⎤-⎢⎥⎣⎦ C .5,36ππ⎡⎤-⎢⎥⎣⎦ D .2,63ππ⎡⎤⎢⎥⎣⎦ 7. 如图,在平行四边形ABCD 中,11,,33AE AB CF CD G ==为EF 的中点,则DG =u u u r ( )A .1122AB AD -u u u r u u u r B .1122AD AB -u u u r u u u r C. 1133AB AD -u u u r u u u r D .1133AD AB -u u ur u u u r8. 执行如图所示的程序框图,则输出的a 值为( )A .3-B .13 C.12- D .2 9. 公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自于阴影部分的概率是( )A .384ππ++ B .684ππ++ C. 342ππ++ D .642ππ++10.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,在x 轴上F 的右侧有一点A ,以FA 为直径的圆与椭圆在x轴上方部分交于M 、N 两点,则||||||FM FN FA +等于( )A . 22a b -B 22a b +C 222a b -D 222a b +11. 已知函数21181,2,log 2)(21≤≤<≤⎪⎩⎪⎨⎧+=x x x x f x,若))(()(b a b f a f <=,则ab 的最小值为 A.22B.21C.42D.3512. 已知双曲线C :)0,0(12222>>=-b a by a x ,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且点C 位于点A ,B 之间.已知O 为原点,且a OA 35||=,则=||||FC FAA.45 B.34C.23D.25二、填空题: 本题共4小题,每小题5分,共20分.将答案填在答题卡横线上。

2023届高考理科数学模拟试卷一(含答案及解析)

2023届高考理科数学模拟试卷一(含答案及解析)

2023届高考理科数学模拟试题一(含答案及解析)本卷分选择题和非选择题两部分,满分150分,考试时间120分钟。

注意事项:1. 考生务必将自己的姓名、准考证号用黑墨水钢笔、签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上,答在试题卷上不得分;3. 考试结束,考生只需将答题卷交回。

参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B *=*第一部分 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知复数1z i =+,则2z= A . i 2-B .i 2C .i -1D .i +12. 设全集,U R =且{}|12A x x =->,{}2|680B x x x =-+<,则()U C A B =A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14B .12C . 2D .4 4. ABC ∆中,3A π∠=,3BC =,AB =,则C ∠=A .6πB .4π C .34π D .4π或34π5. 已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ,则过点(,)n P n a 和2(2,)n Q n a(n N +)的直线的斜率是A .4B .3C .2D .16.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f )()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示, 则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是A .2B .4C .5D .87. 一台机床有13的时间加工零件A ,其余时间加工零件B , 加工A 时,停机的概率是310,加工B 时,停机的概率是25,则这台机床停机的概率为( )A . 1130B .307 C .107 D .1018. 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过()n n N +∈个整点,则称函数()f x 为n 阶整点函数。

【冲锋号考场模拟】赢战2023年高考数学模拟仿真卷 01卷(理科)(全国卷专用)(解析版)

【冲锋号考场模拟】赢战2023年高考数学模拟仿真卷 01卷(理科)(全国卷专用)(解析版)

【冲锋号·考场模拟】赢战2023年高考数学模拟仿真卷01卷(理科)(全国卷专用)(解析版)本卷满分150分,考试时间120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2023·浙江温州·模拟预测)已知全集U =R ,集合{}2230A x x x =-->,{}2,B x x k k ==∈Z ,则()UB A ⋂=ð()A .{2}B .{0,2}C .{0,2,4}D .{1,0,1,2,3}-数.则正确说法的个数为().A .3B .2C .1D .03.(2022·河南南阳·高三期中(理))若函数()()e sin xf x x a =+在点()()0,0A f 处的切线方程为3y x a =+,则实数a 的值为()A .1B .2C .3D .4【答案】B【分析】求出函数的导函数,即可求出()0f 、()0f ',从而求出切线方程,即可得到方程,解得即可.【详解】解:因为()()e sin x f x x a =+,所以()()00e sin 0a f a =+=,又()()e sin cos x f x x a x '=++,所以()()00e sin 0cos01a f a '+==++,所以切线方程为()()10y a a x -=+-,即()1y a x a =++,所以13a +=,解得2a =;故选:B4.新式茶饮是指以上等茶叶通过萃取浓缩液,再根据消费者偏好,添加牛奶、坚果、柠檬等小料调制而成的饮料.下图为2021年我国消费者购买新式茶饮频次扇形图及月均消费新式茶饮金额条形图:根据所给统计图,下列结论中不正确的是()A .每周消费新式茶饮的消费者占比超过90%B .每天消费新式茶饮的消费者占比超过20%C .月均消费50—200元的消费者占比超过50%D .月均消费新式茶饮超过100元的消费者占比超过60%【答案】D【分析】由所给统计图逐一判断即可【详解】每周消费新式茶饮的消费者占比19.1%90%->,A 正确,每天消费新式茶饮的消费者占比5.4%16.4%20%+>,B 正确;月均消费50—200元的消费者占比30.5%25.6%50%+>,C 正确;月均消费新式茶饮超过100元的消费者占比114.5%30.5%60%--<.D 错误.故选:D5.刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆困,径二寸,高二寸.又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方益”平均分为八份,取它的八分之一(如图一).记正方形OABC 的边长为r ,设OP h =,过P 点作平面PQRS 平行于平面OABC .OS OO r ==,由勾股定理有PS PQ ==PQRS 面积是22r h -.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等高处阴影部分的面积等于2h .(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现对于任何高度h ,此截面面积必为2h ,根据祖暅原理计算牟合方盖体积()注:祖暅原理:“幂势既同,则积不容异”.意思是两个同高的立体,如在等高处的截面积相等,则体积相等A .383r B .383r πC .3163r D .3163r π6.(2022·河北·模拟预测)若2cos230,,21tan 8αα⎛⎫∈= ⎪+⎝⎭,则cos 6α⎛⎫+= ⎪⎝⎭()A .2B .2C .12D .13BC CD =,若AD AB AC λμ=+,则()A .53-B .12-C .12D .53.8.(2022·河南·模拟预测(理))如图是函数的图象,则函数的解析式可以为().A .e ln xx+B .2e e x x-+C .21x x+D .21x x +.(江西二模(理))若正整数、只有1为公约数,则称、互质.对于正整数,是小于或等于n 的正整数中与n 互质的数的个数.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如:()32ϕ=,()76ϕ=,()96ϕ=,则下列说法正确的是()A .()127ϕ=B .数列(){}3nϕ是等差数列C .()977log 79log6ϕ=+D .数列()2nnϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则4n S <【答案】D【分析】利用题中定义可判断A 选项;利用特殊值法可判断B 选项;求出()97ϕ的值,结合对数的运算性质可判断C 选项;计算出()2nϕ,利用错位相减法可求得n S ,可判断D 选项.【详解】对于A 选项,在不超过12的正整数中,与12互质的正整数有:1、5、7、11,故()412ϕ=,A 错;对于B 选项,因为()32ϕ=,()96ϕ=,()2718ϕ=,显然()3ϕ、()9ϕ、()27ϕ不成等差数列,B 错;对于C 选项,7 为质数,在不超过97的所有正整数中,能被7整除的正整数的个数为87,所有与97互质的正整数的个数为9877-,所以,()()9988877777167ϕ=-=-=⨯,因此,()()98777log 7log 678log6ϕ=⨯=+,C 错;对于D 选项,因为2为质数,在不超过2n 的正整数中,所有偶数的个数为12n -,10.(2022·四川资阳·一模(理))已知函数,其中.给出以下命题:①若()f x 在π0,4⎛⎫⎪⎝⎭上有且仅有1个极值点,则15ω<≤;②若()f x 在π,π2⎛⎫⎪⎝⎭上没有零点,则304ω<≤或3724ω≤≤;③若()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则103ω<≤或532ω≤≤.其中所有真命题的序号是()A .①②B .①③C .②③D .①②③的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B .23C 33D 64【答案】C【分析】设出外层椭圆方程,利用离心率表达出内层椭圆方程,设出直线方程,联立后由根的判别式得到()22121b k a λλ=-与()22221b k aλλ-=,利用斜率乘积列出方程,求出2223b a =,从而求出离心率.【详解】设外层椭圆方程为22221x y a b+=,则内层椭圆方程为()222201x y a b λλ+=<<,设过A 点的切线方程为()11,0y k x a k =+<,与()222201x y a bλλ+=<<联立得:()222232422211120b a k x a k x a k a b λ+++-=,由()()6422242221111Δ440a k b a k a k a b λ=-+-=得:()22121b k a λλ=-,设过点B 的切线方程为2y k x b =+,与()222201x y a bλλ+=<<联立得:()()222222222210b a k x a k bx a b λ+++-=,由()()42222222222Δ4410a k b b a ka bλ=-+-=得:()22221b ka λλ-=,从而()()22422122241419b b b k k a a a λλλλ-=⋅==-,故2223b a =,椭圆的离心率为22313b a -=.故选:C.12.设50a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,ln 550c =,则a ,b ,c 的大小关系正确的是()A .a b c <<B .a c b <<C .b<c<aD .b a c<<【答案】D【分析】由于10.0250ln e ln e a ==,211ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,6551ln 50c ⎛⎫= ⎪⎝⎭,所以只要比较6250.0211151e ,sin cos 1sin 1sin 0.02,1001005050x y z ⎛⎫⎛⎫==+=+=+= ⎪ ⎪⎝⎭⎝⎭的大小即可,然后分别构造函数()e (1sin )(0)x f x x x =-+>, 1.2()(1)e x g x x =+-,判断出其单调性,利用其单调性比较大小即可第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.已知()1022001201x x a a x a x +-=+++ ,则3a =_____________.【答案】30【分析】利用二项式定理的原理与组合的意义求解即可.【详解】因为()1022001201x x a a x a x +-=+++ ,所以3a 是含3x 项的系数,若从10个()21x x +-式子中取出0个()2x -,则需要从中取出3个x ,7个1,则得到的项为()0023********7C C C 1120x x x -=;若从10个()21x x +-式子中取出1个()2x -,则需要从中取出1个x ,8个1,则得到的项为()1218831098C C C 190x x x -=-;若从10个()21x x +-式子中取出大于或等于2个()2x -,则无法得到含3x 的项;综上:含3x 的项为3331209030x x x -=,则含3x 项的系数为30,即330a =.故答案为:30.14.(2022·福建·模拟预测)已知数列{}n a 满足奇数项成等差数列,公差为d ,偶数项成等比数列,公比为q ,且数列{}n a 的前n 项和为n S ,1=1a ,22a =,5452S a a =+,934a a a =+.若12m m m a a a ++=,则正整数m =__________.【答案】2【分析】利用等差等比数列的通项公式求解即可.【详解】由题意知,1=1a ,22a =,因为54521222S a a a q a d =+=++,51234512121122233S a a a a a a a a d a q a d a d a a q =++++=++++++=+++,所以得420q d -+=,①由934a a a =+得1142a d a d q +=++,即32d q =,②联立①②解得2,3d q ==,所以121,=21,=2×3,=2,n k k n k k N a n k k N *-*--∈∈⎧⎨⎩,当2m k =时,由12m m m a a a ++=得123(21)23k k k -⨯⨯+=⨯,解得=1k ,此时=2m ;当21m k =-时,由12m m m a a a ++=得1(21)2321k k k --⨯⨯=+,此等式左边为偶数,右边为奇数,则方程无解.故答案为:2.15.(2022·山东·一模)已知1F ,2F 分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点,过2F 的直线与双曲线C 的右支交于A ,B ,两点(其中点A 在第一象限),设M ,N 分别为12AF F △,12BF F △的内心,则ME NE -的取值范围是______.设12AF F △的内切圆与12,AF AF 所以12|||||||AF AF AH HF -=+又12||||2GF GF c +=,所以|GF 又12||,||EF a c EF c a =+=-,所以设直线AB 的倾斜角为θ.则∠()||||tan2ME NE c a πθ--=-()sin()sin 222c a πθθ⎛⎫- ⎪=-⋅-⎪11111111列说法中所有正确的序号是___________①G 在AB 上运动时,存在某个位置,使得MG 与1A D 所成角为60 ;②G 在AB 上运动时,MG 与1CC③G 在1AA 上运动且113AG GA =时,过,,G M N 三点的平面截正方体所得多边形的周长;④G 在1CC 上运动时(G 不与1C 重合),若点1,,,G M N C 在同一球面上,则该球表面积最大值24π.AB ⊥Q 平面11ADD A ,1A D ⊂11ADD A ,1AB A D ∴⊥; 四边形又1AD AB A ⋂=,1,AD AB ⊂平面11ABC D ,1A D ∴⊥平面1ABC 又MG ⊂平面11ABC D ,1A D MG ∴,即MG 与1A D 所成角恒为对于②,取CD 中点P ,连接,PG ,,M P 分别为11,C D CD 中点,1//MP CC ,又1CC ⊥平面ABCD MG ∴与CC 所成角即为PMG ∠sin PGPMG ∠=,当sin PMG ∠取11A D 中点K ,连接NK ,NK ,1112SD D M SK NK ∴==,∴同理可得:1113B Q A G =,11D R ∴;224225GQ GR ∴==+=22125NQ =+=,MN =∴五边形GQNMR 的周长为2,③错误;对于④,若点1,,,G M N C 在同一球面上,则该球即为三棱锥生都必须作答。

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)

高考数学(理科)模拟考试卷(附参考答案与解析)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 若复数z满足iz=4+3i,则复数z在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知集合A={(x,y)|x2+y2=1}和B={(x,y)|y=x},则A∩B中元素的个数为( )A. 3B. 2C. 1D. 03. 已知向量a⃗,b⃗⃗满足|a⃗|=1,|b⃗⃗|=√ 3和|a⃗⃗−2b⃗⃗|=3,则a⃗⃗⋅(a⃗⃗+b⃗⃗)=( )A. −2B. −1C. 1D. 24. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如16=3+13.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是( )A. 15B. 215C. 115D. 255. 的展开式中x3y3的系数为40,则实数a的值为( )A. 4B. 2C. 1D. 126. 设椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1和F2,离心率为√ 22,P是C上一点,且F1P⊥F2P.若△PF1F2的面积为2,则a=( )A. 1B. 2C. √ 2D. 47. 在△ABC中cosC=23,AC=4和BC=3则cos A2=( )A. √ 306B. √ 33C. 13D. 568. 如图,四边形ABCD为正方形,ED⊥平面ABCD,FB//ED和AB=ED=2FB=2,则三棱锥F−ACE 的体积为( )A. 23B. 43C. 2D. √ 39. 在正方体AC1中,点M为平面ABB1A1内的一动点,d1是点M到平面ADD1A1的距离,d2是点M到直线BC的距离,且d1=λd2(λ>0)(λ为常数),则点M的轨迹不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线10. 已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于x=1对称.若f(1)=3,则f(2)+f(3)+⋯+f(50)=( )A. 3B. 2C. 0D. 5011. 设A,B,C,D是同一个半径为4的球的球面上四点,AB=AC=2√ 3和BC=6,则三棱锥D−ABC 体积的最大值为( )A. 3√ 3B. 6√ 3C. 12√ 3D. 18√ 312. 已知a∈R,设函数若关于x的不等式f(x)≥0在R上恒成立则a 的取值范围为( )A. [0,e2] B. [0,2] C. [0,1] D. [0,e]二、填空题(本大题共4小题,共20.0分)13. 已知等差数列{a n}前9项的和为27,且a10=8,则a15=______ .14.15. 在直线l:y=−2上取一点D作抛物线C:x2=4y的切线,切点分别为A,B,直线AB与圆E:x2+ y2−4x−2018=0交于M,N两点,当|MN|最小时,则D的横坐标是______ .16. 已知函数f(x)=sin(ωx+φ)(ω>0),下述四个结论:①若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,2π)有且仅有3个极大值点;②若φ=π4,且f(x)在[0,2π]有且仅有4个零点,则f(x)在[0,2π]有且仅有2个极大值点; ③若φ=π5,且f(x)在[0,2π]有且仅有5个零点,则f(x)在(0,π10)上单调递增; ④若φ=π3,且f(x)在(0,π)有且仅有2个零点和3个极值点,则ω的范围是(136,83). 其中所有正确结论的编号是______ .三、解答题(本大题共7小题,共82.0分。

最新高三数学理科第一次模拟试卷(附答案)

最新高三数学理科第一次模拟试卷(附答案)

最新高三数学理科第一次模拟试卷(附答案)一、单选题1.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A.B.C.D.2.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“⊥”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于()A.B.C.D.64.设,,,则()A.B.C.D.二、填空题5.角终边上有点,且,则____________6.已知在等腰直角中,,若,则等于________.7.已知的反函数为,当时,函数的最大值为,最小值为,则__________.8.函数有四个零点,则的取值范围为_______.9.已知,则________10.记等差数列的前项和为,若,,则____.11.计算是否正确?______________.12.已知复数,其中是虚数单位,则_______.13.从0,1,2,3,4,5这六个数字中任取两个奇数和两个不为0的偶数,组成没有重复数字的四位数的个数为__________.14.等腰直角三角形直角边长为2,以斜边所在直线为轴旋转,其余各边旋转一周形成几何体,则该几何体的体积为_______.15.已知集合则___________.16.设抛物线为,过点(1,0)的直线与抛物线交于、两点,则.三、解答题17.某市为创建全国卫生城市,引入某公司的智能垃圾处理设备.已知每台设备每月固定维护成本万元,每处理一万吨垃圾需增加万元维护费用,每月处理垃圾带来的总收益万元与每月垃圾处理量(万吨)满足关系:(注:总收益=总成本+利润)(1)写出每台设备每月处理垃圾获得的利润关于每月垃圾处理量的函数关系;(2)该市计划引入台这种设备,当每台每月垃圾处理量为何值时,所获利润最大?并求出最大利润.18.求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.19.如图,已知梯形中,,,,,,在平面内,过作,以为轴将梯形旋转一周,求所得旋转体的表面积及体积.20.在数列中,.(1)证明:数列是等差数列.(2)设,是否存在最小正整数k,使对任意,恒成立?若存在,求出k的值;若不存在,说明理由.21.已知= (cos x,sin x),= (-cos x,cos x),函数f (x)=.(⊥)求函数f (x)的最小正周期;(⊥)当x⊥时,求f(x)的值域.。

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)

高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。

注意事项:1.答题前,请务必填写自己的姓名和考籍号。

2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。

3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,请只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。

2024年高考第一次模拟考试——数学(新高考Ⅰ卷01)(全解全析)

2024年高考第一次模拟考试——数学(新高考Ⅰ卷01)(全解全析)

2024年高考数学第一次模拟考试数学(新高考I卷)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是,再根据共轭复数定义即可得结果....【答案】C【分析】根据奇偶性和赋值即可判断选项【详解】由2()sin ln f x x x f -=-⋅=-()x 是奇函数,且定义域为{BD ;π时,()2πsinπln π0f =⋅=,排除C.已知n S 是公差为d (0d ≠)的无穷等差数列}n a 的前n 项和,设甲:数列*N n ∈,均有0n S >,则(.甲是乙的充分条件但不是必要条件.甲是乙的必要条件但不是充分条件.甲是乙的充要条件.甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】利用定义法直接判断符合数列7.已知tan(+)αβ,tan(α-A .2-B .-【答案】D【分析】由题意可求出tan(α()()2ααβαβ=++-,2β式求值即可.【详解】因为tan(+)αβ,tan(所以tan(+)+tan()=a b a b --因为()()sin sin 2cos 2cos αβαβαβ++⎡⎣=+-⎡⎣()()()()tan tan 1tan tan αβαβαβαβ++-=++⋅-故选:D8.已知91ln ,,e 89a b c -===A .a b c>>二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得5分,部分选对的得2分,有选错的得0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟试卷数学卷01(理科)考试时间:120分钟 分值:150分选择题部分(共40分)一、选择题:本大题共8小题, 每小题5分, 共40分.在每小题给出的四个选项中, 只有一个是符合题目要求的. 1.函数2lg)(-=x x f 的定义域为 ( )A .()0-,∞ B .()2-,∞ C .[)∞+,2 D . ()∞+,2 【根据《2015年10月浙江省普通高中学业水平考试》第1题改编】2.在ABC ∆中, “0AB BC ⋅>u u u r u u u r”是“ABC ∆是钝角三角形”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【根据《2014学年第一学期联谊学校期中考试高三数学(理科)试卷》(设计人:夏国良)第2题改编】3.若对任意()+∞∈,1x , 不等式0)1)(1(≥+-ax x 恒成立, 则a 的取值范围为 ( ) A .0>a B .0≥a C. 1->a D. 1-≥a 【原创】4.已知函数)0(),cos()(πθθ<<+=x x f 在3π=x 时取得最小值, 则)(x f 在[]π,0上的单调增区间是 ( ) A .[ππ,3]B .[323ππ,] C .⎥⎦⎤⎢⎣⎡320π, D .⎥⎦⎤⎢⎣⎡ππ,32 【根据《2013学年第一学期联谊学校期中考试高三数学(理科)试题卷》第8题改编】 5.设等差数列{a n }的前n 项和为S n , 若S 6>S 7>S 5, 则满足S n •S n+1<0的正整数n 的值为( )A .10B .11C .12D .13 【原创】 6.已知二面角βα--l 的大小为o60, b 和c 是两条异面直线, 且b ⊥α,c ⊥β, 则b 与c 所成的角为( )A .300B .60C .900D .1200【原创】 7.已知O 为△ABC 的外心, ||=16, ||=10, 若=x+y, 且32x+25y=25,则∠B=( ) 【原创】 A . 3πB .4π C .6π D .12π 8.已知实数a<b<c,设方程0111=-+-+-cx b x a x 的两个实根分别为)(,2121x x x x <, 则下列关系中恒成立的是( ) 【原创】A .c x b x a <<<<21B .c x b a x <<<<21C .c b x x a <<<<21D .21x c b x a <<<<非选择题部分(共110分)二、填空题:本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分.9.双曲线1222=-x y 的焦距是_______, 渐近线方程是_______. 【根据2015年浙江省高考理科卷第9题改编】10. 设e 1, e 2为单位向量, 且e 1, e 2的夹角为π3, 若a =e 1+3e 2, b =2e 1, 则e 1·e 2 = ,向量a 在b 方向上的投影为________.【根据《2015学年第一学期期中考试题卷(高三理科)》第11题改编】11.一个棱锥的三视图如图, 则该棱锥的各棱长之和等于______,棱锥的的体积等于______. 【原创】12.已知函数)22)(2cos()2sin()(πϕπϕϕ<<-+++=x x x f 的图像经过点)22,(π, 则ϕ的值为 .【原创】13.已知正方体ABCD-A 1B 1C 1D 1的边长为1, 过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S , S 的取值范围是______.【原创】14.已知函数221)(m mx x x f -+-=, 若)(x f 在]1,0[上单调递增, 则实数m 的取值范围_______ . 【原创】15.已知kx x x f +=2)(, f (x )的值域为_________ _ (用含k 的字母表示);记)]([)(x f f x F =, 若)()(x f x F 与有相同的值域, 则k 范围为_________ _;1)()(2-+=x x f x g 记, 若)(x g 在(0,2)上有两个不同的零点x 1, x 2, 则k 的取值范围是__________ . 【原创】俯视图侧视图正视图11111三、解答题:本大题共5小题, 共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在△ABC 中, 角C B A ,,所对的边分别为c b a ,,, 满足sin sin sin B A a cC a b-+=+ (Ⅰ)求角B ;(Ⅱ)若sin cos A C =求角C . 【原创】17. (本题满分15分)如图ABCD 为梯形, CD AB //,︒=∠60C , 点E 在CD 上,221===DE EC AB , BC BD ⊥.现将ADE ∆沿AE 折起, 使得平面⊥DBC 平面ABCE 。

(1)求证:⊥BD 平面BCEF ;(2)求直线CE 与平面ADE 所成角的正弦值. 【原创】18. (本题满分15分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且 1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式;(2)函数()g x 在区间()0,1上有两个零点, 求λ的取值范围. 【原创】A B C D E F A BCD E F19. (本题满分15分)已知),0,1(),0,2(N M 若动点P 满足||2→→→=⋅NP MP MN , 且动点错误!未找到引用源。

的轨迹为错误!未找到引用源。

(1)求轨迹错误!未找到引用源。

的方程;(2)若A , B 是轨迹C 上两点, 且满足3||||22=+OB OA (O 是坐标原点) ①若直线OB OA ,的斜率分别为OB OA k k ,, 求证:||OB OA k k ⋅②求△AOB 面积的最大值.【改编自2012年高考样卷】20.(本题满分15分)已知数列{}n a 的首项1a a =, 其前n 和为n S , 且满足21)1(3+=++n S S n n (n ∈N *).(1)用a 表示2a 的值; (2)求数列{}n a 的通项公式;(3)当23=a 时, 证明:对任意*N n ∈, 都有1211111222122322<++++-nn a a a a Λ.【原创】高考模拟试卷数学卷参考答案选择题部分(共40分)一、选择题:本大题共8小题, 每小题5分, 共40分.在每小题给出的四个选项中, 只有一个是符合题目要求的. 1.函数2lg)(-=x x f 的定义域为 ( )A .()0-,∞ B .()2-,∞ C .[)∞+,2 D . ()∞+,2 【解析】考虑到真数大于零, 故选D【设计意图】学考改编题, 考察函数的定义域求法, 除了检验双基外, 还需考生对真数大于零进行辨析, 考察学生数学思维的严谨性, 基础题.2.在ABC ∆中, “0AB BC ⋅>u u u r u u u r”是“ABC ∆是钝角三角形”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】Θ0AB BC ⋅>u u u r u u u r , 即0cos >⋅θC B B A ρρ, ()πθθ,0,0cos ,且∈>∴, 所有两个向量的夹角为锐角, 又两个向量夹角为三角形内角的补角, 所以B 为钝角.反过来,三角形为钝角三角形不一定B 为钝角, 所以反推不成立, 故选A. 【设计意图】改编题, 考察充要条件的判断, 涉及三角形形状的判断和向量数量积问题, 考察学生罗辑思维的严谨性, 较基础.3.若对任意()+∞∈,1x , 不等式0)1)(1(≥+-ax x 恒成立, 则a 的取值范围为 ( ) A .0>a B .0≥a C. 1->a D. 1-≥a 【解析】因为()+∞∈,1x , 所以01,01≥+∴>-ax x 恒成立, 即()0,11-∈-≥xa , 所有0≥a , 故选B.【设计意图】本题原创, 主要考察变量分离这一个基本方法, 之前需要学生利用条件把二次不等式转化为一次不等式, 是基础题. 4.已知函数)0(),cos()(πθθ<<+=x x f 在3π=x 时取得最小值, 则)(x f 在[]π,0上的单调增区间是( )A .[ππ,3] B .[323ππ,] C .⎥⎦⎤⎢⎣⎡320π, D .⎥⎦⎤⎢⎣⎡ππ,32 【解析】由题意ππθπk 23+=+, 且πθ<<0, 32πθ=∴.增区间为πππππk x k 22322+<+<+(Z k ∈)ππππk x k 23423+<<+∴(Z k ∈), 又[]π,0∈x Θ, 故选A.【设计意图】改编题, 考察学生三角函数固定区间上单调性的求解, 基础题.5.设等差数列{a n }的前n 项和为S n , 若S 6>S 7>S 5, 则满足S n •S n+1<0的正整数n 的值为( ) A . 10 B . 11 C . 12 D .13 【解析】∵S 6>S 7>S 5, 得 S 6-S 7>0, S 7-S 5>0, , ∴a 7<0, a 6+a 7>0. ∴,=6(a 6+a 7)>0.∴满足S n •S n+1<0的正整数n 的值为12.故选C , 基础题. 【设计意图】原创题, 学生熟练掌握等差数列的前n 项和公式和基本性质是解题的关键.由S 6>S 7>S 5, 利用等差数列的前n 项和公式可得a 7<0, a 6+a 7>0.进而得到足S n •S n+1<0的正整数n 的值为12.6.已知二面角βα--l 的大小为o60, b 和c 是两条异面直线, 且b ⊥α,c ⊥β, 则b 与c 所成的角为( )A .300B .60C .900D .1200【解析】选B , 基础题.【设计意图】原创题, 本题主要考查空间点、线、面位置关系, 二面角等基础知识, 同时考查空间想象能力和推理能力. 7.已知O 为△ABC 的外心, ||=16, ||=10, 若=x+y, 且32x+25y=25,则∠B=( ) A . 3πB .4π C .6π D .12π 【解析】解:如图.若=x +y,则=x+y,由于O 为外心, D , E 为中点, OD , OE 分别为两中垂线.=||(||cos ∠DAO )=||•||=||××||=16×8=128,同样地, =||2=100,所以2=128x+100y=4(32x+25y )=100,∴||=10.由220sin AC R B ==得2sin 2B =故B=4π,故选B .【设计意图】原创题, 本题考查三角形外心的性质、向量数量积的运算、向量模的求解, 及正弦定理的应用.本题中进行了合理的转化=x+y, 根据向量数量积的几何意义分别求出, 后, 得出关于x , y 的代数式, 利用32x+25y=25整体求解, 属较难题.8.已知实数a<b<c,设方程0111=-+-+-cx b x a x 的两个实根分别为)(,2121x x x x <, 则下列关系中恒成立的是( )A .c x b x a <<<<21B .c x b a x <<<<21C .c b x x a <<<<21D .21x c b x a <<<< 【解析】0))()(())(())(())((111=-----+--+--=-+-+-c x b x a x a x b x c x a x c x b x c x b x a x 令))(())(())(()(a x b x c x a x c x b x x f --+--+--=由0))(()(,0))(()(,0))(()(>--=<--=>--=a c b c c f c b a b b f c a b a a f 所以c x b x a <<<<21, 故选A.【设计意图】原创题.能力方面, 考查了学生思维能力、运算能力、分析问题与解决问题的能力和创新意识能力;方法方面, 考查了学生函数思想、转换与化归、特殊与一般等数学思维方法.学生需根据条件特征构造函数, 转化方程根的分布问题为函数零点问题, 利用函数方程思想或数形结合思想解决本题, 难度大.非选择题部分(共110分)二、填空题:本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分.9.双曲线1222=-x y 的焦距是_______, 渐近线方程是_______. 【解析】.2,02;322,3122x y x y c c ±==±=∴=+=即渐近线方程为【设计意图】改编自2015年浙江省高考理科卷第9题, 考察学生解析几何中的基本概念.对于这一类送分题, 考生除了有扎实的基本功, 还需仔细审题:第一空需辨析焦距是c 还是2c ;第二空需注意双曲线的焦点是在x 轴上还是在y 轴上.10. 设e 1, e 2为单位向量, 且e 1, e 2的夹角为π3, 若a =e 1+3e 2, b =2e 1, 则e 1·e 2 = ,向量a 在b 方向上的投影为________. 【解析】213cos21==⋅πe e ρρ,.25231322)3(cos 2121121=+=⋅+=⋅+=⋅=e e e e e e bb a a ρρρρρρρρρρθ【设计意图】本题改编自《2015学年第一学期期中考试题卷(高三理科)》(设计人:冯科), 考察学生向量数量积和向量投影的关系, 基础题.11. 一个棱锥的三视图如图, 则该棱锥的各棱长之和等于______,棱锥的的体积等于______【解析】三视图复原的几何体是中间横竖均为等腰直角三角形的四面体, 可求得棱锥的各棱长之和等于434+,棱锥的的体积等于23【设计意图】原创题, 本题考查由三视图求几何体的棱长和体积, 先判断三视图复原的几何体的形状, 结合三视图的数据, 确定中间横竖均为等腰直角三角形, 考查空间想象能力, 是基础题.12. 设△ABC 的三边a , b , c 所对的角分别为A , B , C ,CA C A c b c a sin sin )sin(++=--, 则角A 为_______. 【解析】3sin sin sin 222222π=⇒=-+⇒-=-⇒+=+=--A bc a c b bc b c a c a b C A B c b c a 【设计意图】原创题, 本题考查三角形的性质和正弦定理、余弦定理, 考查转化能力和运算求解能力, 基础题.一般的, 在已知关系式中, 若既含有边又含有角, 通常的思路是将角都化成边或将边都化成角, 再结合正、余弦定理即可求角.13.已知正方体ABCD-A 1B 1C 1D 1的边长为1, 过正方体ABCD-A 1B 1C 1D 1的对角线BD 1的截面面积为S , S 的取值范围是______. 【解析】6,22⎡⎤⎢⎥⎣ 【设计意图】原创题, 本题主要考查空间点、线、面位置关系等基础知识, 同时考查空间想象能力和运算求解能力.14. 已知函数221)(m mx x x f -+-=, 若)(x f 在]1,0[上单调递增, 则实数m 的取值范围_______.俯视图侧视图正视图11111【解析】01≤≤-m 或2≥m 【设计意图】原创题, 本题主要考查函数的图象与性质、方程与函数的关系等基础知识, 以及综合运用所学知识、分类讨论、数形结合等思想方法分析和解决问题的能力.15. 已知kx x x f +=2)(, f (x )的值域为_________ _ (用含k 的字母表示);记)]([)(x f f x F =, 若)()(x f x F 与有相同的值域, 则k 范围为_________ _;1)()(2-+=x x f x g 记, 若)(x g 在(0,2)上有两个不同的零点x 1, x 2, 则k 的取值范围是__________.【解析】⎪⎪⎭⎫⎢⎣⎡+∞-∈,4)(2k x f ;)]([)(x f f x F =看做以)(x f 为自变量的二次函数, 值域相同, 只需抛物线取到顶点, 所以20,242≥≤∴-≤-k k kk 或;⎩⎨⎧<<-+≤<+=-+=21,1210,11)()(22x kx x x kx x x f x g 有两个不同的零点.因为一次函数至多一个零点, 所以有两种情况:①一次函数上面没有零点, 两个零点都子啊二次函数上;②分段函数的两段各有一个零点, 下面讨论. ①0122=-+kx x 在(1,2)上有两个零点, 这于2121-=x x 矛盾, 不符合题意. ②21,10,012,01212221<<≤<=-+=+x x kx x kx 其中,所以(]1,011∈-=k x ,1-≤∴k ,又单调递减,关于22221x x x k -=又212<<x , 所以 )1,27(--∈k .综上, )1,27(--∈k .【设计意图】根据《普高学业水平测试模拟卷(一)》第25题改编, 考察学生函数综合能力, 既要熟练掌握换元法、复合函数相关知识, 又要能够数形结合考虑问题;第三空考察分段函数知识点, 需要分类讨论思想解决, 属较难题.三、解答题:本大题共5小题, 共74分.解答应写出文字说明、证明过程或演算步骤. 16.(本题满分14分)在△ABC 中, 角C B A ,,所对的边分别为c b a ,,, 满足sin sin sin B A a cC a b-+=+(Ⅰ)求角B ;(Ⅱ)若1sin cos 4A C =, 求角C . 【解析】(Ⅰ)sin sin sin B A b a C c--=a c a b +=+, 化简得222a cb ac +-=-,所以2221cos 22a c b B ac +-==-, 23B π=.(Ⅱ)1,sin()cos 334A C C C ππ+=∴-=Q ,即211cos sin cos 224C C C -=即11cos 2)sin 2444C C +-=,112sin 244C C -=- 1sin(2),2,232333364C C C C πππππππ∴-=-<-<∴-=∴=Q【设计意图】原创题, 考察正弦定理、余弦定理和三角恒等变换, 属基础题.17. (本题满分15分)如图ABCD 为梯形, CD AB //,︒=∠60C , 点E 在CD 上,221===DE EC AB , BC BD ⊥.现将ADE ∆沿AE 折起, 使得平面⊥DBC 平面ABCE 。

相关文档
最新文档