2015高考名校热身试卷_甘肃省兰州市2015届高三下学期实战考试数学(理)试题 Word版含答案
甘肃省兰州市2015届高三3月诊断考试数学(理)试题

令()ln21fxxax得ln21xax=-,因为函数()lnfxxxax有两个极值点,所以()ln21fxxax有两个零点,等价于函数lnyx与21yax的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作lnyx的切线,设切点为(x0,y0),则切线的斜率01xk,切线方程为110xxy. 切点在切线上,则01000xxy,又切点在曲线lnyx上,则10ln00xx,即切点为(1,0).切线方程为1yx. 再由直线21yax与曲线lnyx有两个交点,知直线21yax位于两直线0y和1yx之间,其斜率2a满足:0<2a<1,解得实数a的取值范围是1(0,)2. 三、解答题 17. 解:(Ⅰ)∵sinsin3cosacaCAA, ∴3cossinAA ∴tan3A ∵0A ∴ 3A …………6分 (Ⅱ)由正弦定理得:643sinsinsin3cos3abcABC, ∴43sinbB,43sincC ∴43sin43sinbcBC 43sinsin()43sinsin()3BABBB
C1 D1 z
所以3AC,建立如图空间直角坐标系, 则(3,0,0)A,(0,1,0)B,1(0,0,3)D 设平面11ABCD的一个法向量(,,)nxyzr 由100nABnADuuurruuurr得300yxzx 可得平面11ABCD的一个法向量(1,3,1)nr. 又1(0,0,3)CDuuur为平面ABCD的一个法向量. 因此1115cos,5||||CDnCDnCDnuuurruuurruuurr 所以平面11ABCD和平面ABCD所成的角(锐角)的余弦值为55. 19. 解(Ⅰ)设印有“绿色金城行”的球有n个,同时抽两球不都是“绿色金城行”标志为事件A,则同时抽取两球都是“绿色金城行”标志的概率是226(),nCPAC 由对立事件的概率: ()PA=41().5PA 即2261()5nCPAC, 解得 3.n …………6分 (Ⅱ)由已知,两种球各三个,可能取值分别为1,2,3, 23261(1)5CPC 2211233333222266664(2)25CCCCCPCCCC, 16(3)1(1)(2)25PPP (或222111121111333333333333222222226666666616(3)25CCCCCCCCCCCCPCCCCCCCC) 则 的分布列为:
2015高考名校热身试卷_甘肃省兰州市2015届高三实战考试数学(理)试题

甘肃省兰州市2015届高三实战考试数学(理)试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、考号填写在答题纸上。
2.本试卷满分150分,考试用时120分钟。
答题全部在答题纸上完成,试卷上答题无效。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U={1,2,3,4,5,6,7),M={1,3,5,6},N={2,3,5},则C U (M N )=A .{1,4,6,7}B .{2,4,6,7}C .{1,2,4,6,7}D .{1,3,4,6,7}2.i .z=1一i (i 为虚数单位),则z=A .-1+iB .-1-iC .1+iD .1-i3.已知命题cos()cos R ραπαα∃∈-=:,;命题2:,10q x R x ∀∈+>.则下面结论正确的是A .p ∨q 是真命题B .p ∧q 是假命题C .⌝q 是真命题D .p 是假命题4.已知数列{a n }是等差数列,且a 1 +a 4+a 7=2π,则cos (a 3+a 5)=A .12B .一12CD 5.已知实数x ,y 满足a x <a y (0<a<1),则下列关系式恒成立的是A .33x y >B .sin sin x y >C .221(1)1(1)n x n y +>+D .221111x y >++ 6.已知点F 是挞物线y 2 =4x 的焦点,M ,N 是该抛物线上两点,|MF| +|NF|=6,则MN 中点的横坐标为A .32B .2C .52D .37.某四棱锥的三视图如图所示,则最长的一条侧棱的长度是AB .13C .29D8.阅读右侧程序框图,如果输出i=5,那么在空白矩形中应填入的语句为A .S=2*i-2B .S= 2*i-1C .S=2*iD .2*i+49.设F1、F2分别是椭圆2214x y +=的两焦点,点P 是该椭圆上一个动点,则12.PF PF 的取值范围是A .[一2,1)B .(—2,1)C .(一2,1]D .[—2,1]10.已知长方体ABCD – A 1B 1 C l D 1的各个顶点都在球O 的球面上,若球O 的表面积为16π且AB :AD :AA 11:2,则球O 到平面ABCD 的距离为A .1B .CD .211.函数()2sin()(0)4f x x πωω=+>与函数g (x )= cos (2)()2x πϕϕ+<的对称轴完全相同,则ϕ=A .-4πB .4πC .2πD .-2π 12.已知函数31[0,]32()21(,1]12x x f x x x x ⎧∈⎪⎪=⎨⎪∈⎪+⎩,函数()3(0)2a g x ax a =-+>,若对任意1[0,1]x ∈,总存在21[0,]2x ∈,使得12()()f x g x =成立,则实数a 的取值范围是A .(,4]-∞-B .(,6]-∞C .[4,)-+∞D .[6,)+∞ 第II 卷本卷包括必考题和选考题两部分。
甘肃省兰州市高三理综(物理部分)实战考试试题

甘肃省兰州市2015届高三实战考试理科综合能力试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、考号填写在答题纸相应的位置上。
2.本卷满分300分,考试用时150分钟。
3.答题全部在答题纸上完成,试卷上答题无效。
4.可能用到的相对原子质量:C-12 N-14 O-16 Ca-40 S-32 Na-23第I 卷二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.在物理学理论建立的过程中,有许多物理学家做出了杰出的贡献。
关于物理学家和他们 的贡献,下列说法中正确的是A.笛卡尔首先通过实验测出万有引力常量B .奥斯特最早发现了电磁感应现象C.安培首先发现了电流的磁效应D.法拉第发现了电磁感应现象15.质量相等的甲乙两物体从离地面相同高度同时由静止开始下落,由于两物体的形状不同, 运动中受到的空气阻力不同。
将释放时刻作为t=0时刻,两物体的v-t 图象如图所示。
则下列判断正确的是A. to 时刻之前,甲物体受到的空气阻力总是大于乙物体受到的空气阻力B .甲物体在 时刻的速度小于乙物体0-to 时间内的平均速度C. to 时刻甲乙两物体在同一高度D.两物体不可能同时落地16.如图所示,有一自耦变压器接在稳定的交流电源上,V1、V2为理想电压表。
下列说法中正确的是A.若F 不动,滑片P 向上滑动时,Vl 示数变大,V2示数变小B .若F 不动,滑片P 向上滑动时,灯泡消耗的功率变小C .若P 不动,滑片F 向下移动时,Vl 示数不变,V2示数增大D.若P 不动,滑片F 向下移动时,灯泡消耗的功率变小17. 1913年美国物理学家密立根设计了著名的油滴实验,首先直接测定了基元电荷的量值。
其模型简化如图,平行板电容器两极板M 、N 相距d ,两极板分别与电压为U 的恒定电源两极连接,极板M 带正电。
甘肃省兰州一中2015届高三数学冲刺模拟试题 理

甘肃省兰州一中2015届高三冲刺模拟试题数 学(理 科)第I 卷(选择题)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮 擦干净后,再选涂其他答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合M={}22|21x x y -=,N={}2|y y x =,则M N =( )A. {(1,1)}B. {(-1,1),(1,1)}C. )1,2⎡+∞⎢⎣ D. 2,2⎡⎫+∞⎪⎢⎣⎭2. 设i 是虚数单位,那么使得31()122n i -+=的最小正整数n 的值为( )A. 2B. 3C. 4D. 53. 如果直线ax +by =4与圆C :x 2+y 2=4有两个不同的交点,那么点(a ,b )和圆C 的位置关系是( ) A.在圆外B.在圆上C.在圆内D.不能确定4.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度5.过椭圆22143yx +=的右焦点F 作两条相互垂直的直线分别交椭圆于A ,B ,C ,D 四点,则11||||AB CD +的值为( ) A. 18 B. 16 C. 1 D. 7126. 已知ABC ∆的外接圆半径为R ,且B b a C A R sin )2()sin (sin 222-=-(其中a ,b 分别是A ∠,B ∠的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°7.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某多面件的三视图,该多面体的体积为( ) A. 403cm B. 503cm C. 603cm D. 803cm8.电子钟表一天显示的时间是从00:00到23:59,每一时刻都 由4个数字组成,那么一天中任一时刻的4个数字之和等于23 的概率是( )A. 1180B. 1288C. 1360D. 14809.已知三棱锥S —ABC 的所有顶点都在球O 的表面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此三 棱锥的体积为( ) A. 14B.24 C. 26 D. 21210.执行右图程序框图,如果输入的正实数x 与输出的实数y 满足y =x ,则x = ( ) A. 3 B.132+ C. 13 D. 1132+ 11.已知函数3y x =在k x a =时的切线和x 轴交于1k a +,若11a =,则数列{}n a的前n 项和为( )A. 1233n +B. 12()3n -C. 23()3n -D. 1233nn -- 12.已知函数()3,f x x mx x R =-∈,若方程()f x =2在[4,4]x ∈-恰有3 个不同的实数解,则实数m 的取值范围是( )A. (31,32⎤-⎥⎦B. (313,2⎤⎥⎦C. ()()31,3,2-∞-+∞D. ()()31,3,2-∞+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.13. 在(x 2+24x-4)5的展开式中含x 4项的系数是___________. (用数字填写答案) 14.在△ABC 中,∠A=90°,AB=1,BC=5,点M ,N 满足AM AB λ= ,(1)AN AC λ=-,R λ∈,若2BN CM ⋅=-,则λ=_________.15.平面上满足约束条件2,0,100.x x y x y ≥⎧⎪+≤⎨⎪--≤⎩的点(x ,y )形成的区域为D ,区域D 关于直线y =2x对称的区域为E ,则两个区域中距离最近的两点之间的距离为__________.16.定义在R 上的奇函数()f x 的导函数满足()()f x f x '<,且()()31f x f x ⋅+=-,若()2015f e =-,则不等式()x f x e <的解集为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知点A (sin ,1)θ,B (cos ,0)θ,C (sin ,2)θ-,且AB BP =.(Ⅰ)记函数()f BP CA θ=⋅,(,)82ππθ∈-,讨论函数的单调性,并求其值域;(Ⅱ)若O ,P ,C 三点共线,求||OA OB +的值.18. (本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 是直角梯形,AB ∥CD , ∠DAB=60°,AB=AD=2CD=2,侧面PAD ⊥底面ABCD ,且△PAD 是以AD 为底的等腰三角形. (Ⅰ)证明:AD ⊥PB ;(Ⅱ)若四棱锥P —ABCD 的体积等于32,试求PB 与平面PCD 所成角的正弦值.19. (本小题满分12分)一种智能手机电子阅读器,特别设置了一个“健康阅读”按钮,在开始阅读或者阅读期间的任意时刻按下“健康阅读”按钮后,手机阅读界面的背景会变为蓝色或绿色以保护阅读者的视力. 假设“健康阅读”按钮第一次按下后,出现蓝色背景与绿色背景的概率都是.21从按钮第二次按下起,若前次出现蓝色背景,则下一次出现蓝色背景、绿色背景的概率分别为31、32;若前次出现绿色背景,则下一次出现蓝色背景、绿色背景的概率分别为53、.52记第)1,(≥∈n N n n 次按下“健康阅读”按钮后出现蓝色背景概率为P n . (Ⅰ)求P 2的值;(Ⅱ)当,2n N n ∈≥时,试用P n -1表示P n ; (Ⅲ)求P n 关于n 的表达式.20. (本小题满分12分)已知椭圆C:()222210y x a b a b+=>>的左右焦点1F ,2F 与椭圆短轴的一个端点构成边长为4的正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 上任意一点P 做椭圆C 的切线与直线1F P 的垂线1F M 相交于点M ,求点MABCDP的轨迹方程;(Ⅲ)若切线MP 与直线x =-2交于点N ,求证:11||||NF MF 为定值.21. (本小题满分12分)已知函数()ln h x x x =,2()(0)a x a xϕ=>. (Ⅰ)求()()xag x t dt ϕ=⎰;(Ⅱ)设函数()()()1f x h x g x '=--,试确定()f x 的单调区间及最大最小值; (Ⅲ)求证:对于任意的正整数n ,均有111123!nne e n ++++≥ 成立.请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,在四边形ABCD 中,已知60BAD ∠=︒,90ABC ∠=︒,120BCD ∠=︒,对角线BD AC ,交于点S ,且SB DS 2=,P 为AC 的中点.求证:(Ⅰ)︒=∠30PBD ;(Ⅱ)DC AD =.23. (本小题满分10)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=2,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线L 的参数方程为123x ty t=+⎧⎪⎨=+⎪⎩ (t 为参数).(Ⅰ)写出直线L 的普通方程与曲线C 的直角坐标方程;(Ⅱ)设曲线C 经过伸缩变换12x x y y '=⎧⎪⎨'=⎪⎩得到曲线C ',设 M(x ,y )为C '上任意一点,求2232x xy y -+的最小值,并求相应的点M 的坐标.24. (本小题满分10)选修4-5:不等式选讲已知正数a ,b ,c 满足a +b +c =6,求证:1111(1)(1)(1)2a b b c c a ++≥+++.SD A PCB甘肃省兰州一中2015届高三冲刺模拟试题参考答案数 学(理 科)第I 卷(选择题)一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DBACDBACCDDB第Ⅱ卷二、填空题13. -960 ; 14. 23; 15.1255; 16.()1,+∞ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)解:设P (x ,y ),由 AB BP =得 OB OA OP OB -=- ,即 (cos sin ,1)(cos ,)x y θθθ--=-,所以 2cos sin ,1x y θθ=-=-,亦即(2cos sin ,1)P θθ--;…………………… 2分(Ⅰ)()(sin cos ,1)(2sin ,1)f BP CA θθθθ=⋅=-⋅-22sin 2sin cos 1sin 2cos 2θθθθθ=--=--2sin(2)4πθ=-+;由(,)82ππθ∈-得52(0,)44ππθ+∈,所以,当2(0,)42ππθ+∈即(,88ππθ⎤∈-⎥⎦时,()f θ单调递减,且2()0f θ-≤<,当)52,424πππθ⎡+∈⎢⎣即),82ππθ⎡∈⎢⎣时,()f θ单调递增,且2()1f θ-≤<,故,函数()f θ的单调递减区间为(,88ππ⎤-⎥⎦,单调递增区间为),82ππ⎡⎢⎣,值域为)2,1⎡-⎣. …………………………………… 6分(Ⅱ)由O 、P 、C 三点共线可知,OP ∥OC,即 (1)(sin )2(2cos sin )θθθ-⋅-=⋅-,得4tan 3θ=,所以 2||(sin cos )122sin cos OA OB θθθθ+=++=+222752sincos 2tan 22sin cos tan 15θθθθθθ=+=+=++ ………………………………… 12分18. (本小题满分12分)(Ⅰ)证明:取AD 的中点G ,连PG ,BG ,CG ;60PA PDPG AD AD PGB AB AD BG AD DAB =⇒⊥⎫⎪⇒⊥=⎫⎬⇒⊥⎬⎪∠=︒⎭⎭平面 …………………………………… 5分(Ⅱ) ∵ 侧面PAD ⊥底面ABCD ,PG ⊥AD ,∴ PG ⊥底面ABCD ;在底面直角梯形ABCD 中,由已知可得3BC =, 由 32P ABCD V -=,即311[123]322PG ⋅+⋅⋅=(),得3PG =,而BG=CG=3,DG=1,在Rt △PGB 、Rt △PGC 、Rt △PGD 中分别可求得PB=6、PC=6、PD=2,在△PCD 中,2221cos 24PD CD PC PDC PD CD +-==-⋅⋅,∴ 15sin 4PDC =,∴△PCD 的面积151sin 24PDC S PD CD PDC =⋅⋅⋅= , 设点B 到平面PCD 的距离为h ,由P BCD B PCD V V --=得2155h =, ∴ PB 平面PCD 所成角的正弦值为215101556h PB=⋅=.…………………………………… 12分19. (本小题满分12分)解:(Ⅰ)若按钮第一次、第二次按下后均出现蓝色背景,则其概率为613121=⨯; 若按钮第一次、第二次按下后依次出现绿色背景、蓝色背景,则其概率为.1035321=⨯ 故所求概率为.157103612=+=P …………………………………… 4分 (Ⅱ)第1-n 次按下按钮后出现蓝色背景的概率为2,(1≥∈-n N n P n ),则出现绿色背景的概率为11--n P .若第1-n 次、第n 次按下按钮后均出现蓝色背景,则其概率为311⨯-n P ; 若第1-n 次、第n 次按下按钮后依次出现绿色背景、蓝色背景,则其概率为.53)1(1⨯--n PPB PGB ⊂平面AD PB ⎫⇒⊥⎬⎭GABCDP所以,53154)1(5331111+-=-+=---n n n n P P P P (其中2,≥∈n N n ). …………………………………… 8分(Ⅲ)由(2)得)199(1541991--=--n n P P (其中2,≥∈n N n ). 故}199{-n P 是首项为381,公比为154-的等比数列,所以).1,(199)154(3811≥∈+-=-n N n P n n …………………………………… 12分 20. (本小题满分12分)解:(Ⅰ)依题意,2c =a =4,∴ c =2,b =23;∴椭圆C 的标准方程为2211612y x +=; …………………………………… 2分(Ⅱ)设00(,)P x y ,由(Ⅰ),1(2,0)F -,设00(,)P x y ,(,)M x y 过椭圆C 上过P 的切线方程为: 0011612x x y y+=, ① 直线1F P 的斜率1002F P y k x =+,则直线1MF 的斜率1002MF x k y +=-, 于是,则直线1MF 的方程为:002(2)x y x y +=-+, 即 00(2)(2)yy x x =-++, ②① 、②联立,解得 x = -8,∴ 点M 的轨迹方程为 x = -8; …………………………………… 8分 (Ⅲ)依题意及(Ⅱ),点M 、N 的坐标可表示为(8,)M M y -、(2,)N N y -, 点N 在切线MP 上,由①式得 003(8)2N x y y +=, 点M 在直线1MF 上,由②式得 006(2)M x y y +=, 02022129(8)||4Nx NF y y +==, 022002221236[(2)]||[(2)(8)]M y x MF y y ++=---+=, ∴ 002222001222222100009(8)(8)||1||436[(2)]16(2)y x x NF MF y y x y x ++=⋅=++++, ③ 注意到点P 在椭圆C 上,即 220011612x y +=,于是020484x y -=代人③式并整理得2121||1||4NF MF =, ∴11||||NF MF 的值为定值12. …………………………………… 12分21. (本小题满分12分) 解:(Ⅰ)2111()()[]|()xxx a aaa x a g x t dt dt a a t t x a xϕ-===-=--=⎰⎰; …………… 3分 (Ⅱ)∵ ()(ln )ln 1(0)h x x x x x ''==+>,∴ ()ln 11ln (0)x a x a f x x x x x x--=+--=->,22()1()(0)x x a x af x x x x x---'=-=>,∵ a >0,∴ 函数()f x 在区间(0,)a 上单调递减,在区间(,)a +∞上单调递增, 函数()f x 的最小值为()ln f a a =,函数()f x 无最大值; ……………… 7分 (Ⅲ)取a =1,由(Ⅱ)知,1()ln (1)0x f x x f x-=-≥=,∴ 11ln 1x x x x -≥=-,即 11ln ln e x x x ≥-=,亦即 1x e e x≥,……… 10分分别取 1,2,,x n = 得111e e ≥,122e e ≥,133e e ≥,…,1n e e n≥,将以上各式相乘,得:111123!nne en ++++≥ ……………………………… 12分22.(本小题满分10)选修4—1:几何证明选讲证明: (Ⅰ)由已知得 90ADC ∠=︒,从而D C B A ,,,四点共圆,AC 为直径,P 为该圆的圆心.作BD PM ⊥于点M ,知M 为BD 的中点,所以BPM ∠=12BPD ∠=60A ∠=︒, 从而︒=∠30PBM . …………………………………… 5分(Ⅱ)作BP SN ⊥于点N ,则12SN SB =.又BD MB DM SB DS 21,2===,∴ SN SB SB SB DM DS MS ==-=-=21232, NM SDAP C B∴ Rt △PMS ≌Rt △PNS , ∴ ︒=∠=∠30NPS MPS ,又PB PA =,所以1152PAB NPS ∠=∠=︒, 故DCA DAC ∠=︒=∠45,所以DC AD =. ……………………10分23. (本小题满分10)选修4-4:坐标系与参数方程解:(1)圆C 的方程为224x y += …………………………………… 1分直线L 方程为3320x y --+= ………………………… 3分(2)由''12x x y y⎧=⎪⎨=⎪⎩和224x y +=得'C 2214x y += ………………… 5分设M 为2x cos y sin θθ==⎧⎨⎩,则 223232cos(2)3x xy y πθ-+=++ …… 8分所以当M 为3(1,)2或3(1,)2--时原式取得最小值1. …………… 10分 24. (本小题满分10)选修4-5:不等式选讲 已知正数a ,b ,c 满足a +b +c =6,求证:1111(1)(1)(1)2a b b c c a ++≥+++.证明:由已知及均值不等式:33111(1)(1)(1)(1)(1)(1)a b b c c a abc a b c ++≥++++++3333111(1)(1)(1)33a b c a b c abc a b c =≥+++++++⋅+++⋅31232==⋅ ……………………… 10分。
2015年甘肃省三校生高考模拟试卷-数学

共1页 第1页 12三校生模拟考试试卷《数学》部分1. 设集合M={2,3,5,a},N={1,3,4,b},若M ∩N={1,2,3},则a, b 值分别为A. a=2,b=1B. a=1,b=1C. a=1,b=2D. a=1,b=52.函数y =的定义域是 A.(-3, 2 ] B.[-3,2]C.[-2,3]D.[-2,3)3. 函数y=12x 2+x-3的最小值是 ( ) A .-3 B .-72 C .3 D 724.下列各对向量中互相垂直的是 ( )A.a =(4,2),b =(-3,5)B.a =(-3,4),b =(4,3)C.a =(5,2),b =(-2,-5)D.a =(2,-3),b =(3,-2) 5. 已知4sin ()52x x ππ=≤≤,那么tanx 的值是 ( ) A .43- B .34 C .- 34 D .436.数列1,3,5,7,9,…的一个通项公式是 ( )A.21n a n =+B.23n a n =+C.2n a n =D.21n a n =- 7. 在等比数列{n a }中,已知2a =2, 3a =6,则公比q =( )A.1B. 2C.3D. 48.若A (2,-2),B (4,6),则向量AB 的坐标为 ( )A.(2,-4)B.(2,8)C.(2,-2)D.(2,4)二、填空题(每小题3分,共12分)9. 如果αβ⊥,βγ⊥,则平面α与γ的位置关系是 。
10. 已知两个数的等差中项是10,等比中项是6,则这两个数是11. 求点P (-1,2)到直线l :0102=-+y x 的距离为12.不等式 - x 2-2x+3>0的解集为三、解答题(共14分)1.求过直线x-2y+1=0与y=x+2交点且与直线3x-4y+5=0垂直的直线方程。
2. 某礼堂共有25排座位,后一排比前一排多两个座位,最后一排共有70个座位,问礼堂共有多少个座位?。
2015年3月12日兰州市一诊数学(理)试题与解答

2015年高三诊断考试数学(理科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考 生必将自已的姓名、考号填写在答题纸上. 2.本试满分150分,考试用时120分钟.答题全部在答题纸上完成,试卷上答题无效.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}|||1A x x =<,{}|21x B x =>,则A B =∩A .(1,0)-B .(1,1)-C .1(0,)2D .(0,1) 解:因为{}|||1(1,1)A x x ==-<,{}|21(0,)x B x ==+∞>,所以(0,1)∩A B =,选D2.复数11i-(i 是虚数单位)的虚部是 A .1 B .i C .12 D .12i 解:11111(1)(1)22∵i i i i i +==+--+,∴虚部为123.复数||1a = ,||2b = ,且a ,b 夹角3π,则||2|a b +=A .2B .4C .12D .解:1∵a b ⋅= ,222|2|4444412∴a b a a b b +=+⋅+=++= ,|2|∴a b += 4.从数字1 、2、3、4、5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为A .15 B .25 C .35D .45解:从1 、2、3、4、5中任取两个不同的数字构成一个两位数,不同的两位数共有2520A = 个,其中大于40的两位数共有11248C C =,82205∴p == 5.已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =A .18B .36C .54D .72解:4518∵a a =-,4518∴a a +=,又8184()∵S a a =+,818454()4()72∴S a a a a =+=+=6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是 A .2 B .92C .32D .3 解:如图所示,由三视图知,该几何体是一个四棱锥,底面是直角梯形,高为2,上底是下底的一半,下底为2, 棱锥的高为x ,所以1(12)26V x x =+⨯= 所以3x =.7.如图,程序输出的结果132S =,则判断框中应填A .10i ≥B .11i ≥C .11i ≤D .12i ≥解:因为初值12i =,1s =,所以第一次循环后12s =,11i = 第二次循环后132s =,10i =此时终止循环,输出132s =. 说明条件不成立,故选B8.设a ,b 是两条不同的直线,α,β是两个不同的平面,a α⊂,b β⊥则∥αβ是a b ⊥的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件解:因为∥a b a b αβαβ⊂⎫⎪⊥⇒⊥⎬⎪⎭ ,又因为∥a b a b αβαβ⊂⎫⎪⊥⇒⎬⎪⊥⎭,故充分不必要,选Ax正视图侧视图俯视图29.已知不等式组11x yx yy+⎧⎪--⎨⎪⎩≤≥≥所表示的平面区域为D,若直线3y kx=-与平面区域D有公共点,则k的取值范围是A.[3,3]-B.11(,]],)33∪-∞-+∞C.(,3]-∞-11]解:如图,设直线3y kx=-过点(1,0)和(1,0)-时的斜率分别为1k和2k因为直线过定点(0,3)-所以13k=,23k=-又因为直线与区域D有公共点,所以3k≥或3k≤-10.在直角坐标系xoy中,设P是曲线C:1(0)xy x=>上任意一点,l是曲线C在点P处的切线,且l交坐标轴于A、B两点,则以下结论正确的是A.△OAB的面积为定值2B.△OAB的面积有最小值3C.△OAB的面积有最大值4D.△OAB的面积的最取值范围是[3,4]解:设1(,)P mm(0m>),1∵xy=,21∴yx'=-,所以切线斜率为21km=-所以切线方程为211()y x mm m-=--,两截距点分别为2(0,)m和(2,0)m所以12222△OABS mm=⨯⨯=,即△OAB的面积为值2;选A.11.已知抛物线1C:22x y=的焦点为F,以F为圆心的圆2C交1C于A、B两点,交1C的准线于C、D两点,若四边形ABCD是矩形,则圆2CA.221()42x y+-=B.221()42x y-+=C.221()22x y+-=D.221()22x y-+=解:如图,根据题意,圆2C的圆心为1(0,)2因为3)2A,所以22||4r AF==,故圆2C的方程为221()42x y+-=,选A.2y12.已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(2)f x +为偶函数,(4)1f =,则不等式()x f x e <的解集为A .(2,)-+∞B .(0,)+∞C .(1,)+∞D .(4,)+∞ 解:(2)∵f x +是偶函数,(2)(2)∴f x f x +=-+,()∴f x 关于直线2x =对称, 又(4)1∵f =,(0)1∴f =,令()()xf xg x e =,则2()()()()()x x x xe f x e f x f x f x g x e e''--'== ∵()()f x f x '<,()0∴g x '<,()∴g x 在R 上单调递减,又0(0)(0)1∵f g e== 0∴x >时,()(0)1∴g x g =<,()1∴x f x e<,()∴x f x e <, 即()x f x e <的解集为(0,)+∞第II 卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13.已知(0,)2πα∈,4cos 5α=,则sin()πα-=_________________________. 解:(0,)2∵πα∈,4cos 5α=,3sin 5∴α=,3sin()sin 5∴παα-== 14.椭圆C 的中心在原点,焦点在x 轴上,若椭圆C 的离心率等于12,且它的一个顶点恰好是抛物线2x =的焦点,则椭圆C 的标准方程为_______________________________.解:2∵x =的焦点为,212∴b =,又12∵e =,224∴a c =,223∴b c =, 24∴c =,216∴a =,故椭圆C 的方程为2211612x y +=. 15.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是____________________. 解:()(ln )∵f x x x ax =-,()ln 21∴f x x ax '=-+,x >0,令()0∴f x '=,则ln 210x ax -+=ln 12∴x a x +=,令ln 1()x g x x +=,则2ln ()xg x x-'=,(1)0g '= 0∴x <<1时,()0g x '>, ∴x >1时,()0g x '<, max ()(1)1∴g x g ==,又∵x >1时, ()0g x >,021∴a <<时,ln 12x a x+=有两解, 即102a <<时,函数()(ln )f x x x ax =-有两个极值点. 16.数列{}n a 的首项为11a =,数列{}n b 为等比数列且1n n na b a +=,若11010112015b b =,则21a =___.解:1∵n n n a b a +=,11a =,12∴b a =,322a b a =,123b b a =,433∵ab a =,1234∴b b b a =,544∵a b a =12345∴b b b b a =,…, 12341∴n n bb b b b a += ,12342021∴bb b b b a = ,又因为{}n b 为等比数列1101010211234201011()(2015)2015∴a b b b b b b b ==== . 三、解答题:解答题要写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、csin cC=(1)求A 的大小;(2)若6a =,求b c +的取值范围. 解 (1)sin c C =,又sin sin ∵a cA C =,sin ∴a A =sin ∴A A =tan ∴A ,3∴A π=.(2),63∵A a π==,2∴R = 如图当点A在圆弧上运动时,2∴R = 当6b c ==时,max ()12b c += 所以b c +的取值范围是(6,12]ABCa =660°bc解法二:转化为三角函数问题求取值范围.( 23B C π+=) 18.(本小题满分12分)如图,在四棱柱1111ABCD A BC D -中,底面ABCD 是等腰梯形,∥AB CD ,2AB =,1BC CD ==,顶点1D 在底面ABCD 内的射影恰为点C .(1)求证:1AD BC ⊥;(2)若直线1DD 与直线AB 所成的角为3π,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦函数值.(1)证明:如图,连结1D C ,则1D C ⊥底面ABCD , 1∴BC DC ⊥, ∵ABCD 是等腰梯形,∥AB CD ,2AB =,1BC CD ==,60∴ABC ∠=,AC =AC BC ⊥∴BC ⊥平面1ACD , 1∵AD ⊂平面1ACD , ∴BC ⊥1AD ,(2) ∵∥CD AB ,又∵1DD 与AB 所成的角为3π,1∴DD 与DC 所成的角为3π, 13∴D DC π∠=,1∵DC =,12∴DD =,1∴CD∵AC =1BC =1∴AD =12BD =,1∴ABD S =V∴ABC S =V 又因为1∵△ABD 在底面ABCD 上的射影为△ABC 设平面11ABC D 与平面ABCD 所成角为θ,则1cos ABC ABD S S θ==V V , 故平面11ABC D 与平面ABCDABCD1A1B1C 1D19. (本小题满分12分)为迎接2015年在兰州举行的“中国兰州国际马拉松”,某单位在推介晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“兰州马拉松”和“绿色金城行”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“兰州马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“绿色金城行”标志的概率为45. (1)求盒中印有“兰州马拉松”标志的小球个数;(2)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.解:(1)设盒中印有“兰州马拉松”标志的小球个数为m 个,记A = {从盒中抽取两个小球不都是“绿色金城行”},则A ={从盒中抽取两个小球不都是“绿色金城行”},4()5∵P A =,1()5∴P A = 22615∴m C C =,3)(2)0∴(m m -+=,3∴m = 即盒中印有“兰州马拉松”标志的小球有3个.(2)由(1)知,盒中分别印有“兰州马拉松”和“绿色金城行”小球各有3个, 又因为每位嘉宾最多抽奖3次,所以η取值为1,2,3所以23261(1)5C P C η===,232614(2)(1)525C P C η==-=,1416(3)152525P η==--= 所以η的分布列为:η的期望为1235252525E η=⨯+⨯+⨯=.(注:3η=时,分第三次获奖与不获奖两种情形)20. (本小题满分12分)已知双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线为y =,右焦点F 到直线2a x c=的距离为32.(1)求双曲线C 的方程;(2)斜率为1且在y 轴上的截距大于0的直线l 与曲线C 相交于B 、D 两点,已知(1,0)A ,若1DF BF ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切.解:(1)由题意知ba =且232a c c -=,222,3,1c b a === 所以双曲线C 的方程为2213y x -= 证明 (2)设11(,)B x y ,22(,)D x y ,BD 中点为00(,)M x y ,直线l 的方程为y x m =+,0m >解方程组2213y x m y x =+⎧⎪⎨-=⎪⎩得222230x mx m ---=,12x x m ∴+=, 21232m x x +=-, 123y y m ∴+=, 2212121233()2m y y x x m x x m -=+++=1DF BF ⋅=,(2,0)F ,(1,0)A ,1212(2)(2)1x x y y ∴--+=12121232()0x x x x y y ∴-+++=,12121232()0x x x x y y ∴-+++=220m m ∴-=,0m ∴=(舍) 或2m =,(1,3)M ∴,又(1,0)A ,MA x ∴⊥轴11221212121,)1,)()0AB AD x y x y x x x x y y ⋅=-⋅-=-++= ((所以过,,A B D 三点的圆是以BD 为直径的圆,且与x 轴切于A 点.21. (本小题满分12分)设函数2()ln(1)f x x m x =++.(1)若函数()f x 是定义域上的单调函数,求实数m 的取值范围; (2)若1m =-,试比较当(0,)x ∈+∞时时,()f x 与3x 的大小;(3)证明:对任意的正整数n ,不等式201429(1)(3)2n n n n e ee e -⨯-⨯-+++++ <成立. 解:(1)2()ln(1)f x x m x =++ ,222()211m x x mf x x x x ++'∴=+=++,且(1,)x ∈-+∞ ()f x 是定义域上的单调函数, ∴对(1,)x ∀∈-+∞,222x x m ++≥0恒成立 112m ∴-+≥0,12m ∴≥,所以实数m 的取值范围是1[,)2+∞(2) 1m =- ,2()ln(1)f x x x ∴=-+,令32()ln(1)g x x x x =-++则3232213213(1)()32111x x x x x g x x x x x x +-++-'=-+==+++ 0x > ,()0g x '∴>,()g x ∴在(0,)+∞上单调递增,又(0)0g = ,()0g x ∴> 32ln(1)0x x x ∴-++>,32ln(1)x x x ∴>-+,即3()f x x <.(3)分析:观察要证不等式左边的通项为23n n e -,而(2)中证明的不等式为23ln(1)x x x -<+23ln(1)1xx x e e x -+∴<=+,从而有231nn e n -∴<+,从此想到借助函数不等式的证明.证明: 对(0,)x ∀∈+∞,都有32ln(1)x x x >-+成立,23ln(1)1x x x e e x -+∴<=+231nn e n -∴<+,(*n N ∈)23111(3)(1)(1)22nni i i i n n ei n n n -==+∴<+=++=∑∑ 即21429(1)(3)2n n n n e eee-⨯-⨯-+++++ <成立. 23. (本小题满分12分)选修修4-4:极坐标系与参数方程在直角坐标xoy 中,曲线1C的参数方程为x y siin αα⎧=⎪⎨=⎪⎩,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4πρθ+=(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值.解:(1)因为曲线1C的参数方程为x y sin αα⎧=⎪⎨=⎪⎩,所以2222cos sin 1y αα+=+=2213x y +=,即曲线1C 普通方程为:2213x y +=.又因为sin()4πρθ+=sin cos 8ρθρθ∴+=,8x y ∴+=即曲线2C 直角坐标方程为:8x y +=(2)设(,)P x y ,则,x y sin αα==,设点P 到2C 上点的距离为d即当()13sin πα+= 时,点P 到2C 上点的距离的最小值为24. (本小题满分12分)选修修4-5:不等式选讲 已函数()|2|f x x a a =-+.(1)若不等式()6f x ≤的解集为{}|23x x -≤≤,求实数a 的值(2)在(1)的条件下,若存在实数n 使()()f n m f n --≤成立,求实数m 的取值范围.解:(1)()|2|f x x a a =-+ ,()6f x ≤, |2|6x a a ∴-+≤,|2|6x a a ∴-≤- 626a x a a ∴-≤-≤-, 3a x ∴-≤≤3, 32a ∴-=-, 1a ∴= 所以实数a 的值为1.(2)在(1)的条件下1a =,所以()|21|1f x x =-+,若存在实数n ,使()()f n m f n ≤--成立,则()()21212m f n f n n n ≥+-=-+++,又因为212121212n n n n -++≥---=,所以{}min ()()4m f n f n ≥+-=故m 的取值范围是[4,)+∞.2015年高三诊断考试 数学参考答案及评分标准(理科)一、选择题7. 解析 :由题意,S 表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次所以每次执行后i 的值依次为11,10,由于i 的值为10时,就应该退出循环,再考察四个选项,B 符合题意11. 解析 :依题意,抛物线1C :y x 22=的焦点为1(02F ,1(0)2,∵四边形ABCD 是矩形,且BD 为直径,AC 为直径,F ∴点F 为该矩形的两条对角线的交点,到直线CD 的距离为1p =∴圆2C 的半径2r AF === ∴圆2C 的方程为:221()42x y +-=12. 解析 :∵(2)f x +为偶函数,∴(2)f x +的图象关于0x =对称,∴()f x 的图象关于2x =对称∴(4)(0)1f f ==设()()x f x g x e =(x R ∈),则2()()()()()()x x x xf x e f x e f x f xg x e e''--'== 又∵()()f x f x '<,∴()0g x '<(x R ∈),∴函数()g x 在定义域上单调递减 ∵()()()1x x f x f x e g x e <⇔=<,而0(0)(0)1f g e ==∴()()(0)x f x e g x g <⇔< ∴0x >故选B . 二、填空题13. 3514.2211612x y += 15. 1(0,)2 16. 2015 15.解析 :函数()()ln f x x x ax =-,则1()ln ()ln 21f x x ax x a x ax x'=-+-=-+, 令()ln 21f x x ax '=-+得ln 21x ax =-,因为函数()()ln f x x x ax =-有两个极值点,所以()ln 21f x x ax '=-+有两个零点,等价于函数ln y x =与21y ax =-的图象有两个交点,在同一个坐标系中作出它们的图象,过点(0,-1)作ln y x =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为110-=x x y . 切点在切线上,则01000=-=x x y ,又切点在曲线ln y x =上,则10ln 00=⇒=x x ,即切点为(1,0).切线方程为1y x =-. 再由直线21y ax =-与曲线ln y x =有两个交点,知直线21y ax =-位于两直线0y =和1y x =-之间,其斜率2a 满足:0<2a <1,解得实数a 的取值范围是1(0,)2.16.解析 11=,得2121a b a a ==. 2b =32212a b bb ==.3b =433123a b bb b ==.…121...n n a bb b -=.∴211220...a bb b =.∵数列{}n b 为等比数列, ∴()()()()11010102112021910111011...(2015)2015a b b b b b b b b ==== 三、解答题 17. 解:(Ⅰ)∵sin sin c aC A==,sin A A = ∴tan A = ∵0A π<< ∴ 3A π=…………6分(Ⅱ)由正弦定理得:6sin sin sin3a b cA B Cπ====∴b B=,c C=∴b c B C+=+]sin sin()sin sin()3B A B B Bππ⎤=+--=++⎥⎦12sin()6Bπ=+∵5666Bπππ<+<∴612sin()126Bπ<+≤即:(]6,12b c+∈…………12分18. 解:(Ⅰ)证明:连接1D C,则1D C⊥平面ABCD,∴1D C⊥BC在等腰梯形ABCD中,连接AC∵2AB=,1BC CD==AB∥CD∴BC AC⊥∴BC⊥平面1AD C∴1AD BC⊥…………6分(Ⅱ)解法一:∵AB∥CD∴13D DCπ∠=∵1CD=∴1DC=在底面ABCD中作CM AB⊥,连接1D M,则1D M AB⊥,所以1D MC∠为平面11ABC D与平面ABCD所成角的一个平面角在1Rt D CM∆中,2CM=,1DC=∴1D M==∴1cos D CM∠=即平面11ABC D与平面ABCD所成角(锐角)…………12分解法二:由(Ⅰ)知AC 、BC 、1D C 两俩垂直, ∵AB ∥CD ∴13D DC π∠=∴1DC =在等腰梯形ABCD 中,连接AC 因2AB =,1BC CD ==AB ∥CD ,所以AC =则A ,(0,1,0)B,1D 设平面11ABC D 的一个法向量(,,)n x y z =r由100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩uu u r r uuu r r得00y z x ⎧-=⎪⎨-=⎪⎩可得平面11ABC D的一个法向量(1n =r.又1CD =uuu r为平面ABCD因此111cos ,||||CD n CD n CD n ⋅<>==uuu r ruuu r r uuu r r 所以平面11ABC D 和平面ABCD 所成的角(锐角)的余弦值为5. 19. 解(Ⅰ)设印有“绿色金城行”的球有n 个,同时抽两球不都是“绿色金城行”标志为事件A ,则同时抽取两球都是“绿色金城行”标志的概率是226(),nC P A C =由对立事件的概率: ()P A =41().5P A -= 即2261()5n C P A C ==,解得 3.n = …………6分 (Ⅱ)由已知,两种球各三个,η可能取值分别为1,2,3,23261(1)5C P C η===2211233333222266664(2)25C C C C C P C C C C η==⋅+⋅=, 16(3)1(1)(2)25P P P ηηη==-=-==1(或222111121111333333333333222222226666666616(3)25C C C C C C C C C C C C P C C C C C C C C η==⋅+⋅+⋅+⋅=) 则η 的分布列为:所以1416611235252525E η=⨯+⨯+⨯= . …………12分 20.解:(Ⅰ)依题意有ba =,232a c c -= ∵222a b c += ∴2c a = ∴1a =,2c = ∴23b =∴曲线C 的方程为2213y x -= ……………6分 (Ⅱ)设直线l 的方程为y x m =+,则11(,)B x x m +,22(,)D x x m +,BD 的中点为M由2213y x m y x =+⎧⎪⎨-=⎪⎩ 得 222230x mx m ---=∴12x x m +=,21232m x x +=-∵1DF BF ⋅=uuu r uu u r,即1212(2)(2)()()1x x x m x m --+++=∴0m =(舍)或2m = ∴122x x +=,1272x x =-M 点的横坐标为1212x x +=∵1212(1)(1)(2)(2)DA BA x x x x ⋅=--+++uu u r uu r1212525720x x x x =+++=-+= ∴AD AB ⊥∴过A 、B 、D 三点的圆以点M 为圆心,BD 为直径 ∵M 点的横坐标为1 ∴MA x ⊥ ∵12MA BD =∴过A 、B 、D 三点的圆与x 轴相切 ……………12分21. 解:(Ⅰ)∵222()211m x x mf x x x x ++'=+=++又函数()f x 在定义域上是单调函数. ∴ ()0f x '≥或()0f x '≤在(1,)-+∞上恒成立若()0f x '≥在(1,)-+∞上恒成立,即函数()f x 是定义域上的单调地增函数,则2211222()22m x x x ≥--=-++在(1,)-+∞上恒成立,由此可得12m ≥;若()0f x '≤在(1,)-+∞上恒成立,则()201mf x x x '=+≤+在(1,)-+∞上恒成立.即2211222()22m x x x ≤--=-++在(1,)-+∞上恒成立.∵2112()22x -++在(1,)-+∞上没有最小值 ∴不存在实数m 使()0f x '<在(1,)-+∞上恒成立.综上所述,实数m 的取值范围是1[,)2+∞. ……………4分(Ⅱ)当1m =-时,函数2()ln(1)f x x x =-+.令332()()ln(1)g x f x x x x x =-=-+-+则32213(1)()3211x x g x x x x x +-'=-+-=-++ 显然,当(0,)x ∈+∞时,()0g x '<, 所以函数()g x 在(0,)+∞上单调递减又(0)0g =,所以,当(0,)x ∈+∞时,恒有()(0)0g x g <=, 即3()0f x x -<恒成立.故当(0,)x ∈+∞时,有3()f x x < ……………8分 (Ⅲ)证法一:由(Ⅱ)可知23ln(1)x x x -<+ ((0,)x ∈+∞)∴2(1)1x x e x -<+ ((0,)x ∈+∞) ∴2(1)1n n e n -<+ (n N *∈)∴201429(1)(3)234(1)2n n n n e e e e n -⨯-⨯-+++++<+++++=………12分 证法二:设(3)2n n n S +=则11(2)n n n a S S n n -=-=+≥ ∵112a S == ∴1,n a n n N +=+∈ 欲证2)3(2)1(92410+<++++⨯-⨯-⨯-n n e e e e n n 只需证12)1(+<⨯-n e n n 只需证)1ln()1(2+<⨯-n n n由(Ⅱ)知),0(),1ln(32+∞∈+<-x x x x 即)1ln()1(2+<⨯-n n n 。
理科数学 兰州市2015年高三试卷

理科数学兰州市2015年高三试卷理科数学考试时间:____分钟题型单选题填空题简答题总分得分单选题(本大题共12小题,每小题____分,共____分。
)1.已知集合A={x||x -|≤},B={x|y=lg(4x-x2)},则A∩B等于()A. (0,2]B. [-1,0)C. [2,4)D. [1,4)2.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数对应的点位于复平面内的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知函数f(x)=cos(2x-),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值是()A.B.C.D.4.设S n为等差数列{a n}的前n项和,若S n=,S m=(m≠n),则S m+n-4的符号是()A. 正B. 负C. 非负D. 非正5.从平行六面体的8个顶点中任取5个顶点为顶点,恰好构成四棱锥的概率为()A.B.C.D.6.设f(x)=(1+x)6(1-x)5,则导函数f ′(x)中x2的系数是()A. 0B. 15C. 12D. -157.设直线x+y=1与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则△OAB的面积为()A. 1B.D. 28.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A.B.C.D.9.下图是某算法的程序框图,若程序运行后输出的结果是27,则判断框①处应填入的条件是()A. n>2B. n>3D. n>510.已知双曲线(a>0,b>0),被方向向量为k=(6,6)的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D. 211.函数f(x)=(x-a)e x在区间(2,3)内没有极值点,则实数a的取值范围是()A. (-∞,3]∪[4,+∞)B. [3,4]C. (-∞,3]D. [4,+∞)12.两球O1和O2在棱长为1的正方体ABCD—A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A. 3(2-)B. 4(2-)C. 3(2+)D. 4(2+)填空题(本大题共5小题,每小题____分,共____分。
甘肃省兰州市2015届高三下学期实战考试文综试题及答案

甘肃省兰州市2015届高三实战考试文科综合能力试题注意事项:1.本试卷分第I卷(选择题)和第Il卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、考号填写在答题纸相应的位置上。
2.本卷满分300分,考试用时150分钟。
3.答题全部在答题纸上完成,试卷上答题无效。
第I卷本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
图1为我国东部沿海某市人口变化率图。
读图完成1-2题。
1.据图可知A.人口总量先升后降B.人口总量持续下降C. 1990年人口总量最大D. 2000年人口增长速度最快2.导致该省人口机械增长率变化的原因可能是A.户籍政策的变化B.高房价及购房政策的变化C.产业结构调整D.自然灾害多发图2为南半球某区域近地面1000百帕等压面上的等高线分布图。
读图完成3-4题.3.对图示区域天气现象的说法,正确的是A,P地的风向为西南风B.N地气流以上升运动为主C.M地为阴雨天气D.M地为高压中心4.影响Q地的天气系统和天气特征分别是A.暖锋晴朗B.冷锋阴雨C.气旋阴雨D.反气旋晴朗“淘宝村”是指大量网商聚集在农村,以淘宝为主要交易平台,网店数量达到当地家庭户数l0% 上、电子商务年交易额达到1 000万元以上的村庄。
2009年我国“淘宝村”数量有3个,2014年增至211个。
图3为我国淘宝村的地理分布示意图。
据此完成5-7题.5.淘宝村的区位选择A.多沿海分布,方便商品进出口B.多分布在经济发达地区C.多分布在工业发达的地区D.多分布在交通便利,基础设施完善的地区6.在图示地区淘宝村快速兴起,得益于①农村土特产多样,资源丰富②电子商务向农村渗透③剩余劳动力多④城市化的推进与辐射带动A.①④B.①②C.②③D.③④7.淘宝村的出现与快速增长,对当地最直接的影响是A.加快农村工业化进程B.增加就业机会C.带动旅游业发展D.导致农业人口减少图4为世界两区域地图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃省兰州市 2015届高三实战考试
数学(理)试题
注意事项:
1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的
姓名、考号填写在答题纸上。
2.本试卷满分150分,考试用时120分钟。
答题全部在答题纸上完成,试卷上答题无效。
第I 卷
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.已知全集U={1,2,3,4,5,6,7),M={1,3,5,6},N={2,3,5},则C U (M N )
= A .{1,4,6,7} B .{2,4,6,7}
C .{1,2,4,6,7}
D .{1,3,4,6,
7}
2.i .z=1一i (i 为虚数单位),则z= A .-1+i B .-1-i
C .1+i
D .1-i
3.已知命题cos()cos R ραπαα∃∈-=:,
;命题2:,10q x R x ∀∈+>.则下面结论正确的是
A .p ∨q 是真命题
B .p ∧q 是假命题
C .⌝q 是真命题
D .p 是假命题 4.已知数列{a n }是等差数列,且a 1 +a 4+a 7=2π,则cos (a 3+a 5)=
A .
12
B .一
12
C D 5.已知实数x ,y 满足a x <a y (0<a<1),则下列关系式恒成立的是
A .3
3
x y > B .
sin sin x y
>
C .221(1)1(1)n x n y +>+
D .
22
11
11
x y >++ 6.已知点F 是挞物线y 2 =4x 的焦点,M ,N 是该抛物线上两点,|MF| +|NF|=6,则MN 中
点的横坐标为 A .
32
B .2
C .
5
2
D .3
7.某四棱锥的三视图如图所示,则最长的一条侧棱的长度是
A B .13
C .29
D
8.阅读右侧程序框图,如果输出i=5,那么在空白矩形中应填入的语句为 A .S=2*i-2 B .S= 2*i-1 C .S=2*i D .2*i+4
9.设F1、F2分别是椭圆2
214
x y +=的两焦点,点P 是该椭圆上一个动点,则12.PF PF 的取值范围是
A .[一2,1)
B .(—2,1)
C .(一2,1]
D .[—2,1] 10.已知长方体ABCD – A 1B 1 C l D 1的各个顶点都在球O 的球面上,若球O 的表面积为16π且
AB :AD :AA 1
1:2,则球O 到平面ABCD 的距离为 A .1
B .
C
D .2
11.函数()2sin()(0)4
f x x π
ωω=+
>与函数g (x )= cos (2)()2
x π
ϕϕ+<
的对称轴完全
相同,则ϕ=
A .-
4
π
B .
4
π C .
2
π D .-
2
π 12.已知函数31[0,]32
()21(,1]
1
2x x f x x x x ⎧∈⎪⎪=⎨⎪∈⎪+⎩,函数()3(0)2a g x ax a =-+>,若对任意1[0,1]x ∈,
总存在21[0,]2
x ∈,使得12()()f x g x =成立,则实数a 的取值范围是
A .(,4]-∞-
B .(,6]-∞
C .[4,)-+∞
D .[6,)+∞
第II 卷
本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答。
第
22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分,共20分。
13.已知向2(1,2),(,1)a x x b x =-+=,a ∥b ,则x= 。
14.三名学生两位老师站成一排,则老师站在一起的概率为 。
15.已知实数x ,y ,满足约束条件200,0x y x y z x y y k +≥⎧⎪
-≤=+⎨⎪≤≤⎩
,若z 的最大值为12,则z 的最小
值为 。
16.已知数列{a n }中1
1*122
1
222,1,(),42
n n n n n n n
a a a a a a n N S a a ++++⎧≥⎪⎪===∈⎨⎪<⎪⎩ 是数列{a n }的前n 项和,则S 2015= 。
三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分l2分) 在△ABC 中,a 、b .c 分别为内角A 、B 、C 的对边,且有(2c 一a )cosB=bcosA 。
(I )求角B 的值:
(Ⅱ)若△ABC 的面积为
b=7,求a+c 的值
18.(本小题满分12分)
在直三棱柱ABC -A 1B 1C 1中,D 、E 、F 分别是BB1、AA 1、AC 的中点
,
11
,2
AC BC AA AB ==
= (Ⅰ)求证:CD ∥平面BEF (Ⅱ)求平面ACD 与平面A 1C 1D 所成二面角的大小 19.(本小题满分12分)
据统计某校学生在上学路上所需时间最多不超过120分钟.该校随机抽取部分新入校的
学生就
其上学路上所需时间(单位:分钟)进行调查,并将所得数据绘制成频率分布直方图。
(I )为减轻学生负担,学校规定上学路上所需 时间不少于1小时的学生可申请在校内住 宿,请根据抽样数据估计该校600名新生 中有多少学生可以申请在校内住宿;
(II )从新入校的学生中任选4名学生,以频率 分布直方图中的频率作为概率,这4名学 生中上学所需时间少于20分钟的人数记为 X ,求X 的分布列和期望. 20.(本小题满分12分)
已知点P 为y 轴上的动点,点M 为x 轴上的动点,点F (1,0)为定点,且满足
1
0,.02
PN NM PM PE +
== (I )求动点N 的轨迹E 的方程;
(II )过点F 且斜率为k 的直线,与曲线E 交于两点A ,B ,试判断在x 轴上是否存在点C ,
使得2
2
2
CA CB AB +=成立,请说明理由,
21. (本小题满分12分) 已知函数()1(1)2
m
f x n x x =+++ (I )当函数()f x 在点(0,(0))f 处的切线与直线4y-x+1=0垂直时,求实数m 的值;
(Ⅱ)若0x ≥时,()1f x ≥恒成立,求实数m 的取值范围;
(Ⅲ)求证:*11
1
1(1)()35
(1)
n x n N n n +>
+++
∈+
请从下面所给的22、23、24三题中选定一题作答,如果多答按所答第一题评分。
22.(本小题满分10分)选修4-1:几何证明选讲 如图,在正△ABC 中,点D .E 分别在边BC, AC 上,且BD =13BC,CE=1
3
CA ,AD ,BE 相交于点P .
求证: (I )四点P 、D 、C 、E 共圆; (II )AP ⊥CP . 23.(本小题满分10分)选修4-4:极坐标系与参数方程 已知平面直角坐标系xoy 中,曲线C l 方程为cos (1sin x y α
αα
=⎧⎨
=+⎩为参数,以O 为极点,x 轴
的正半轴为极轴,建立极坐标系.C 2的极坐标方程为(cos sin )50ρθθ-+=. (I )求曲线C l 的普通方程和C 2的直角坐标系方程;
(II )设P 为曲线C l 上的任意一点,M 为C 2上的任意一点,求|PM|的取值范围. 24.(本小题满分10分)选修4-5:不等式选讲 设函数()|1|||()f x x x a a R =-+-∈ (I )当a=4时,求不等式()f x ≥5的解集;
(II )若()f x )≥4对a ∈R 恒成立,求实数a 的取值范围.。