福建省三明市四中2012-2013学年七年级(下)第一次月考数学试题

合集下载

七年级下第一次月考数学试卷(含答案)6

七年级下第一次月考数学试卷(含答案)6

七年级下第一次月考数学试卷(含答案)6一.选择题(共10小题,满分30分,每小题3分)1.(3分)四条直线相交于一点,总共有对顶角()A.8对B.10对C.4对D.12对2.(3分)下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.3.(3分)某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4B.8C.12D.164.(3分)如图,∠AOB=50°,CD∥OB交OA于E,则∠AEC的度数为()A.120°B.130°C.140°D.150°5.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定6.(3分)如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠3=180°7.(3分)下列说法:①平方等于其本身的数有0,±1;②32某y3是4次单项式;③将方程第1页共18页=1.2中的分母化为整数,得线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个=12;④平面内有4个点,过每两点画直8.(3分)把图中的一个三角形先横向平移某格,再纵向平移y格,就能与另一个三角形拼合成一个四边形,那么某+y()A.是一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值9.(3分)学校,电影院,公园在平面图上的标点分别是A,B,C,电影院在学校的正东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB等于()A.115°B.155°C.25°D.65°10.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.12.CD相交于点O,OE⊥AB,O为垂足,(3分)如图,直线AB,∠EOD=26°,则∠AOC=,∠COB=.第2页共18页13.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.14.(3分)如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG的交点),则图③中∠DHF=°15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.若∠En=1度,那∠BEC等于度16.(3分)如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC=.第3页共18页三.解答题(共8小题,满分72分)17.(8分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.18.(8分)已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).19.(8分)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,求∠BOF的度数;(2)若∠BOF=36°,求∠AOC的度数;(3)若|∠AOC﹣∠BOF|=α°,请直接写出∠AOC和∠BOF的度数.(用含的代数式表示)20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA第4页共18页度数;若不存在,说明理由.21.(8分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.22.(10分)已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)第5页共18页23.(10分)如图,直线AB∥CD,直线MN与AB,CD分别交于点M,N,ME,NE分别是∠AMN与∠CNM的平分线,NE交AB于点F,过点N作NG⊥EN交AB于点G.(1)求证:EM∥NG;(2)连接EG,在GN上取一点H,使∠HEG=∠HGE,作∠FEH的平分线EP交AB于点P,求∠PEG的度数.24.(12分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.(1)如图①,求证:∠BEC=∠ABE+∠DCE;(2)如图②,求证:∠BE2C=∠BEC;(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接写出结论).第6页共18页七年级(下)第一次月考数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:如图所示,,共有12对,故选D.2.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.3.【解答】解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2某8=16对.故选:D.4.【解答】解:∵CD∥OB,∠AOB=50°,∴∠AOB=∠CEO=50°,∵∠AEC+∠CEO=180°,∴∠AEC=180°﹣50°=130°.故选:B.5.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,第7页共18页∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.6.【解答】解:A、∠1=∠2不能判断直线l1∥l2,故此选项错误;B、∠1=∠5不能判断直线l1∥l2,故此选项错误;C、∠3=∠5不能判断直线l1∥l2,故此选项错误;D、∠1+∠3=180°,能判断直线l1∥l2,故此选项正确.故选:D.7.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.8.【解答】解:(1)当两斜边重合的时候可组成一个矩形,此时某=2,y=3,某+y=5;(2)当两直角边重合时有两种情况,①短边重合,此时某=2,y=3,某+y=5;②长边重合,此时某=2,y=5,某+y=7.综上可得:某+y=5或7.故选:B.9.【解答】解:从图中发现平面图上的∠CAB=∠1+∠2=115°.故选A.第8页共18页。

七年级下数学第一次月考经典试题

七年级下数学第一次月考经典试题

2012七年级下数学第一次月考试题一、选择题1、以下计算正确的选项是 〔 〕 A.2x 3·3x 4=5x 7 B. 4a 3·2a 2=8a 5 C.2a 3+3a 3=5a 6 D 12 x 3÷4x 3=3 x 32、计算 (-2a 2) 3的结果是 〔 〕A 6a 6B -6a 6C 8a 6D -8a 63、假设0.5a 2b y+2与34a x-1b 的和仍是单项式,则正确的选项是 〔 〕 A.x =3,y = -2 B.x =3, y =1 C.x=3,y=-1 D.x=2,y=-14、小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+〔 〕,你觉得这一项应是:〔 〕 A .23b B .26bC .29bD .236b5、以下各题中,能用平方差公式的是 : 〔 〕A. ( -3a -2b)(3a +2b)B.(3a -2b)( -3a +2b)C.( -3a -2b)( -3a -2b)D. (-2b +3a)( -3a -2b)6、一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是〔 〕A 、第一次向右拐50°,第二次向左拐130°B 、第一次向左拐30°,第二次向右拐30°C 、第一次向右拐50°,第二次向右拐130°D 、第一次向左拐50°第二次向左拐130°; 7、以下计算中结果为x2+5x -6的算式是: 〔 〕A.( x +2)( x +3)B. ( x +2)( x -3)C. ( x +6) (x - 1)D. ( x -2)( x -3)8、如图1:直线AB,CF 相交于点O ,∠EOB=∠DOF=900,则图中与∠DOE 互余的角有〔 〕 A 、1对 B 、2对 C 、3对 D 、4对 9、如图2,AB//CD ,BC//DE ,则∠B+∠D 的值为〔 〕 A.90° B.150° C.180° D. 以上都不对图1 图2 图310、如图3,以下条件中,不能判断直线l 1∥l 2的是〔 〕 A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°二、填空题:11、-232y x π的系数是 ,次数是 。

七年级数学第一次月考测试卷

七年级数学第一次月考测试卷

七年级数学第一次月考测试卷时间 120 分,满分 120 分一、选择题(每题 3 分,共 30 分,请将答案填写在下面的表格中)题号12345678910答案1.若是收入 200 元记作 +200 元,那么支出150 元记作()A . +150 元B.- 150 元C.+50 元D.- 50 元以下数中,2, 0 ,— 4,1,,,,- 15%,。

负分数共2.- 8 , 2005 ,-111034有:()A.2 个B.3 个C.4 个D.5 个3. 以下说法中,正确的个数是().①柱体的两个底面相同大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体必然是柱体;⑤棱柱的侧面必然是长方形.A,2 个个个个C.零既能够是正整数也能够是负整数;D.一个有理数不是正数就是负数6. 如图绕虚线旋转获取的几何体是().(A)(B)(C)(D)7.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()8.下面每个图形都是由 6 个全等的正方形组成的,其中不是正方体的张开图的是()4. 下面几何体截面必然是圆的是()A B C DA. 圆柱B.圆锥C.球D.圆台9.小新准备用如图 1 所示的纸片做一个礼品盒,为了雅观,他想在六个正方形纸片5. 以下说法正确的选项是:()上画上图案,使做成后三组对面的图案相同,那么画上的图案后正确的选项是(A.正整数和负整数统称整数;B.正分数、负分数统称分数;1 / 6⋯⋯⋯⋯15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图 3 所示,○⋯⋯这个几何体最少能够由个这样的正方体组成。

⋯A.B.C.D.图 1⋯密三、解答题(共 75 分)⋯10.如图是由一些相同的小正方体组成的立体图形的三种视图:16. (9 分)把以下各数分别填入相应的大括号里:⋯⋯—1,,—, 260 ,— 2002 ,6,—,— 5% , 0 ,⋯封37⋯整数会集: {}⋯⋯分数会集: {}⋯正有理数会集: {}⋯组成这个立体图形的小正方体的个数是().⋯⋯17.(9 分)请画出如图 4 所示的几何体的三视图 .⋯A. 5 个 B.6 个 C .7 个 D .8 个内⋯⋯二、填空题(每题 3 分,共 15 分)⋯11.长方体是一个立体图形,它有 _____个面, _______个极点,经过每个极点有⋯不条棱。

专题11.1 七年级(下)数学月考试卷(3月份)(考查范围:第6~7章)-2023-2024学年七年

专题11.1 七年级(下)数学月考试卷(3月份)(考查范围:第6~7章)-2023-2024学年七年

2023-2024学年七年级(下)月考数学试卷(3月份)【华东师大版】考试时间:60分钟;满分:100分;考试范围:第6~7章姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023上·四川泸州·七年级校联考期中)若x=−1是方程2x−m−6=0的解,则m的值是()A.−4B.4C.8D.−82.(3分)(2023上·四川南充·七年级校考期中)下列等式变形中,不正确的是()A.若a=b,则a+c=b+c B.若ac=bc,则a=bC.若ac−1=bc−1,则a=b D.若a=b,则a1+x2=b1+x23.(3分)(2023上·贵州贵阳·七年级校考期中)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g4.(3分)(2023上·山西大同·七年级统考期末)若当b=1,c=−2时,代数式ab+bc+ca=10,则a 的值为()A.−12B.−6C.6D.125.(3分)(2023上·重庆沙坪坝·七年级重庆南开中学校考期中)2023年杭州亚运会期间,吉祥物琮琮、宸宸、莲莲因其灵动可爱的形象受到了大家的喜爱.为了提高销量,某店家推出了吉祥物套装礼盒,一个套装礼盒里包含1个吉祥物宸宸玩偶和2个其他吉祥物的钥匙扣.已知一个玩偶的进价为60元,一个钥匙扣的进价为20元,该店家计划用5000元购进一批玩偶和钥匙扣,使得刚好配套,设购进x个玩偶,y个钥匙扣,则下列方程组正确的是()A.{x=2y60x+20y=5000B.{x=2y20x+60y=5000C .{2x =y 60x +20y =5000D .{2x =y 20x +60y =50006.(3分)(2023下·内蒙古呼和浩特·七年级校考期中)若关于x ,y 的二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =2y =−3 ,则关于m ,n 的二元一次方程组{a 1(m −n )+b 1(m +n )=c 1a 2(m −n )+b 2(m +n )=c 2的解是( ) A .{m =−12n =−52 B .{m =−12n =52 C .{m =−52n =12 D .{m =52n =127.(3分)(2023上·内蒙古鄂尔多斯·七年级统考期中)小明解方程2x−13=x+a 2−1去分母时,方程右边的−1忘乘6,因而求出的解为x =−2,那么a 的值为( )A .a =−23B .a =−3C .a =−5D .a =−18.(3分)(2023上·浙江杭州·七年级校考期中)如图,两个形状、大小完全相同的大长方形内放入五个如图③的小长方形后分别得到图①、图②,已知大长方形的长为a ,则图②中阴影部分的周长与图①中阴影部分的周长的差是( )A .45aB .54aC .43aD .34a 9.(3分)(2023下·上海·七年级专题练习)若m 、n 是有理数,关于x 的方程3m (2x ﹣1)﹣n =3(2﹣n )x 有至少两个不同的解,则另一个关于x 的方程(m +n )x +3=4x +m 的解的情况是( )A .有至少两个不同的解B .有无限多个解C .只有一个解D .无解10.(3分)(2023·湖南常德·中考真题)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023下·重庆江津·七年级校考期中)关于x ,y 的二元一次方程组{2x +3y =6a +83x +2y =4a +7的解满足x −y =5,则满足条件的a 值为 .12.(3分)(2023上·江苏常州·七年级校考期中)设a,x 为有理数,定义新运算:a※x =−a ×|x |.例如:2※3=−2×|3|=−6,若4※(a+1)=−4,则a的值为.13.(3分)(2023下·福建泉州·七年级校考期中)已知关于x,y的二元一次方程(k−1)x+(2k+1)y+7−k=0,无论k取何值时,此二元一次方程都有一个相同的解,则这个相同的解是.14.(3分)(2023上·福建泉州·七年级泉州七中校考期中)如图,是一个3×3的幻方,当空格中填上适当的数后,下列每行每列以及每条对角线上的和都相等,则k=.15.(3分)(2023上·内蒙古通辽·七年级统考期中)如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,按此规律排列下去,若第n个图案由1234个基础图形组成,则n的值为16.(3分)(2023下·湖北十堰·七年级统考期末)若m1,m2,…,m2021是从0,1,2,这三个数中取值的一列数,且m1+m2+…+m2021=1530,(m1-1)2+(m2-1)2+…+(m2021-1)2=1525,则在m1,m2,…,m2021中,取值为2的个数为.三.解答题(共7小题,满分52分)17.(6分)(2023下·海南·七年级校考期中)计算(1)3x−2=1−2(x+1)(2)2x+13−5x−16=1(3)解方程组{x+y=1①x-3y=9②(4)解方程组{2(x-1)+y=6 y3=x+118.(6分)(2023上·江苏泰州·七年级统考期中)小明同学做一道题:“已知两个多项式A,B,计算2A−B.”小明同学误将2A−B看作2A+B,求得结果是4xy−4y+1.若多项式A=x2−xy−2y.(1)请你帮助小明同学求出2A−B的正确答案;(2)若2A−B的值与y的取值无关,求x的值.19.(8分)(2023上·贵州贵阳·七年级校考期中)某风扇专卖店准备购进两款风扇,一款是手持小风扇,一款是落地大风扇.已知购进20台小风扇和10台大风扇需花费1100元;购进15台小风扇和20台大风扇需花费1825元.(1)求购进一台小风扇和一台大风扇分别需要多少元?(2)若该专卖店准备用900元购买若干台小风扇和大风扇(既要有小风扇又要有大风扇且钱刚好花完),请问有几种购买方案?最多可以买几台小风扇?20.(8分)(2023上·浙江杭州·七年级校考期中)已知a−2b=6.(1)用a的代数式表示b为______;用b的代数式表示a为______.(2)求代数式5−3a+6b的值.(3)a,b均为整数,且|a|<5,|b|<5,求满足条件的a,b的值.21.(8分)(2023下·福建泉州·七年级统考期中)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x−2=x+10是“美好方程”,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程12023x+3=2x+k和12023x+1=0是“美好方程”,求关于y的一元一次方程12023(y+1)+3=2y+k+2的解.22.(8分)(2023上·山东日照·七年级校考期中)在数轴上,点A代表的数是−12,点B代表的数是2,AB代表点A与点B之间的距离.(1)①AB=______;②若点P为数轴上点A与B之间的一个点,且AP=6,则BP=______;③若点P为数轴上一点,且BP=2,则AP=______.(2)若C点为数轴上一点,且点C到点A点的距离与点C到点B的距离的和是35,求C点表示的数.(3)若P从点A出发,Q从原点出发,M从点B出发,且P、Q、M同时向数轴负方向运动,P点的运动速度是每秒6个单位长度,Q点的运动速度是每秒8个单位长度,M点的运动速度是每秒2个单位长度,当P、Q、M同时向数轴负方向运动过程中,______秒时,其中一个点与另外两个点的距离相等.23.(8分)(2023下·浙江金华·七年级统考期中)阅读材料并完成题目【材料一】我们可以将任意三位数记为abc(其中a,b,c分别表示该数百位数字、十位数字和个位数字,且a≠0),显然abc=100a+10b+c.【材料二】若在一个两位正整数N的个位数字与十位数字之间添上数字4,组成一个新的三位数,我们称这个三位数为N的“明礼数”,如36的“明礼数”为346;若将一个两位正整数M加4后得到一个新数,我们称这个新数为M的“修身数”,如37的“修身数”为41.(1)30的“明礼数”是______,“修身数”是______;(2)求证:对任意一个两位正整数A,其“明礼数”与“修身数”之差能被9整除;(3)若一个两位正整数B的“修身数”的各位数字之和是B的“明礼数”各位数字之和的一半,求B的最大值.。

七年级第一次月考数学试题

七年级第一次月考数学试题

一、精心选一选(10小题,每小题2分,共20分,请将答案写在答题卡上)1.在-(-5),-(-5)2,-|-5|,(-5)3中负数有…………………………………()A、0个B、1个C、2个D、3个2.下列各数中互为相反数的是…………………………………………………()A.-2.25与124B.13与-0.33 C.12与0.2 D.5与-(-5)3.已知|x|=5,2y=4,且x+y<0,则xy的值等于……………………………………()A.10 B.10或-10 C.-10 D.以上答案都不对4.在-2,-12,0,2四个数中,最大的数是………………………………( )A. -2B. -12C. 2D. 05.下列判断错误的是……………………………………………………………()(A)任何数的绝对值一定是非负数;(B)一个负数的绝对值一定是正数;(C)一个正数的绝对值一定是正数;(D)0既是正数也是负数;6.有理数a、b、c在数轴上的位置如图所示则下列结论正确的是…………………………………………………………()(A)a>b>0>c(B)b>0>a>c(C)b<a<0<c(D)a<b<c<0 7.在数轴上与-3的距离等于4的点表示的数是……………………………( ) A. 1或-7 B.-7 C.1 D.无数个8.两个有理数的和是正数,积是负数,则这两个有理数…………………()(A).都是正数; (B).一正一负,且正数的绝对值较大;(C). 都是负数; (D)一正一负,且负数的绝对值较大。

9.若x是有理数,则x2+6一定是……………………………………………()A.等于6 B.大于6 C.不小于6 D.不大于610.下列各式一定成立的是……………………………………………………()A. 3÷9×(-19)=-3 B.23=(-2)3 C. -22=∣-22∣ D. 22=(-2)2b a c二、专心填一填(8小题,每小题2分,共16分,请将答案写在答题卡上) 11.规定向东为正,那么向西走5千米记作________千米. 12.-0.25的倒数是______ ______ . 13.绝对值小于2的非负整数是____ ___.14.据《2011年三明市国民经济和社会发展统计公报》数据显示,截止2011年末三明市 常住人口约为2 510 000人,2 510 000用科学记数法表示为 . 15.某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件____________.(填“合格”或“不合格”).16.观察下面的数,按某种规律在横线上填上适当的数2,-4,8,-16, . 17.若+=++-x y x ,则0)3(22=y .18.如果定义新运算“※”,满足a ※b =a ×b -a ÷b ,那么1※(-2)= .三、解答题(共64分)19.细心算一算(8小题,1-4题每题5分,5-8题每题6分,共44分) (1).11+(-22)-3×(-11) (2). ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-41243211(3).151(2)()(0.5)(1)266-+++-++ (4). (-5)×(-7)-5×(-6);(5).22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭(6). )()(23235-÷-+--(7).)24()4332125(-⨯-+ (8).)2(])5()3[(22-÷---20.(本题6分)从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则 S 的值为_____________.(2)根据上题的规律计算2+4+6+8+10+…+100=_____________.(3)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n=____________. 21.“十·一”黄金周期间,西樵山风景区在7天假期中每天旅游的人数变化如下表: (正数表示比前一天多的人数,负数表示比前一天少的人数): (7分)(1)若9月30日的游客人数记为5万人,则10月5日的游客人数是 万人 。

七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版

七年级数学第一次月考卷(人教版2024)(全解全析)【测试范围:第一、二章】A4版

2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第一章~第二章(人教版2024)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。

2024年9月福建省三明市小升初数学内招思维应用题专项模拟三卷含答案解析

2024年9月福建省三明市小升初数学内招思维应用题专项模拟三卷含答案解析

2024年9月福建省三明市小升初数学内招思维应用题专项模拟三卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。

一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。

)1.师徒二人加工同样的零件,徒弟比师父少加工80个,徒弟加工的个数是师傅的3/5,师傅加工零件多少个?2.某校四、五、六年级同学去影剧院看电影,四年级137人,五年级143人,六年级162人,平均每17人坐一排,需多少排座位?3.某工厂有男工人25人,女工人20人,女工人比男工人少百分之几?4.小红长到妈妈今年的年龄时,妈妈77岁,当妈妈是小红今年的年龄时,小红2岁,求小红今年的年龄.5.商店里有红气球306个,黄气球比红气球多90个,蓝气球比黄气球多74个.商店里有蓝气球多少个?6.食堂买来五只羊,每次取出两只合称一次重量,得到10种不同的重量(单位:千克):35,38,39,40,41,42,43,45,46,47.问这五只羊的重量分别是多少千克?7.一辆汽车上午行驶4小时,共行驶280千米;下午又行驶了3小时,共行驶了222千米.这辆汽车,下午每小时比上午每小时多行多少千米?8.服装店购进大号与小号儿童服装各25套.大号每套60元,小号每套40元,一共应付多少元?用两种方法解答.9.某小区物业管理费为每月每平方米9角,妮妮家住的房子有112平方米,每月应交物业管理费多少元钱?10.一共有5名老师和65名学生去野营,每顶帐篷最多住6人,至少要搭多少顶帐篷?11.甲乙两地相距770千米,客车、货车同时从甲乙两地相对开出,客车每小时行65千米,货车每小时行45千米,多少小时后两车相距110千米?12.王老师用150元为小强买一些文具,他用96元钱买了一个书包,剩下的钱最多还能买几本日记本?(钢笔7元、日记本6元、文具盒15元、书包46元)13.五星小学五(2)班卖了一学期回收的废纸共收入427.65元.为家庭困难同学买文具用去74.6元,慰问敬老院的老人用去112.8元,组织观看科技展览用去200元。

2024学年湘教版七年级下册数学第一次月考卷

2024学年湘教版七年级下册数学第一次月考卷

2024学年湘教版七年级下册数学第一次月考卷(时间:120 分钟,满分:150 分)一、单选题(共40分)1.(本题4分)下列运算正确的是()A.B.C.D.2.(本题4分)已知、是二元一次方程组的解,那么的值是()A.B.C.D.3.(本题4分)下列从左到右的变形正确的是( )A.B.C.D.4.(本题4分)方程是关于x、y的二元一次方程,则( )A.;B.,C.,D.,5.(本题4分)已知关于x的代数式是完全平方式,则M的值为( )A.6B.C.D.不能确定6.(本题4分)《九章算术》是古代东方数学代表作,书中记载:“五只雀、六只燕,共重斤(等于两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀的重量为两,每只燕的重量为两,则列方程组为()A.B.C.D.7.(本题4分)已知,,则()A.-6B.6C.12D.248.(本题4分)已知,,,,则a、b、c、d的大小关系是()A.B.C.D.9.(本题4分)已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是()A.B.C.D.10.(本题4分)某校数学兴趣小组设置了一个数字游戏:第一步:取一个自然数,计算得到;第二步:算出的各位数字之和得到,计算得到;第三步:算出的各位数字之和得到,再计算得到;…;依此类推,则的值是()A.63B.80C.99D.120二、填空题(共32分)11.(本题4分)计算__.12.(本题4分)若,则的值为_____.13.(本题4分)如果,,那么的值等于______.14.(本题4分)如果,那么___;当时,则___.15.(本题4分)已知方程组的解为则的值为______.16.(本题4分)《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为_____.17.(本题4分)若,那么代数式______.18.(本题4分)若对任意自然数都成立,先求出.然后计算_______________.三、解答题(共78分)19.(本题8分)计算:(1);(2).20.(本题8分)解方程组(1)(2).21.(本题8分)先化简,再求值:,其中a、b 满足22.(本题10分)已知方程组与方程组的解相等,试求、的值.23.(本题10分)(1)已知,,求的值;(2)已知,求的值.24.(本题10分)某商场用相同的价格分两次购进A型和B型两种型号的电脑,前两次购进情况如下表.A型(台)B型(台)总进价(元)第一次2030210000第二次1020130000(1)求该商场购进A型和B型电脑的单价各为多少元?(2)已知商场A型电脑的标价为每台4000元,B型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A型电脑打九折,B型电脑打八折全部销售完,问两种电脑商场获利多少元?25.(本题12分)如图,图1是长为,宽为的长方形,沿图中虚线(对称轴)剪开,用得到的四个全等的小长方形,拼成如图2所示的大正方形(无重叠无缝隙),设图2中小正方形(阴影部分)面积为.(1)用两种不同方法求;(用含、的式子表示)(2)请直接写出、、这三个代数式之间的数量关系;(3)利用(2)中结论,完成下列计算:①若,,求的值;②已知,,求的值.26.(本题12分)已知.(1)根据以上式子计算:①;②(n为正整数);③.(2)通过以上计算,请你进行下面的探索:①_______;②_______;③________.2024学年湘教版七年级下册数学第一次月考卷(时间:120 分钟,满分:150 分)一、单选题(共40分)1.(本题4分)下列运算正确的是()A.B.C.D.【答案】A【分析】根据合并同类项法则判断A选项;根据积的乘方法则判断B选项;根据同底数幂的乘法法则判断C选项;根据幂的乘方法则判断D选项.【详解】A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意.故选:A【点睛】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方,熟练掌握运算性质和法则是解题的关键.2.(本题4分)已知、是二元一次方程组的解,那么的值是()A.B.C.D.【答案】A【分析】根据等式的性质,方程组中,左边加左边等于右边加右边,由此即可求解.【详解】解:方程组中,左边加坐左边等于右边加右边,∴,合并同类项得,,∴,故选:.【点睛】本题主要考查解二元一次方程组,掌握等式的性质,加减消元法解方程组是解题的关键.3.(本题4分)下列从左到右的变形正确的是( )A.B.C.D.【答案】C【分析】根据平方差公式、多项式乘多项式、完全平方公式分别对各选项进行逐一分析即可.【详解】解:A.,原变形错误,故此选项不符合题意;B.,原变形错误,故此选项不符合题意;C.,原变形正确,故此选项符合题意;D.,原变形错误,故此选项不符合题意;故选:C.【点睛】本题考查平方差公式和完全平方式,准确运用乘法公式是解决问题的关键.4.(本题4分)方程是关于x、y的二元一次方程,则( )A.;B.,C.,D.,【答案】D【分析】根据二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,进行解答即可.【详解】解:∵是关于x、y的二元一次方程,∴,,,,解得:,,故D正确.故选:D.【点睛】本题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.5.(本题4分)已知关于x的代数式是完全平方式,则M的值为( )A.6B.C.D.不能确定【答案】C【分析】根据关于x的代数式是完全平方式,得到,即可得出结论.【详解】解:∵关于x的代数式是完全平方式,∴,或,∴;故选C.【点睛】本题考查完全平方式.熟练掌握完全平方式的特点,是解题的关键.6.(本题4分)《九章算术》是古代东方数学代表作,书中记载:“五只雀、六只燕,共重斤(等于两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀的重量为两,每只燕的重量为两,则列方程组为()A.B.C.D.【答案】B【分析】五只雀、六只燕,共重斤(等于两),设每只雀的重量为两,每只燕的重量为两,互换其中一只,恰好一样重,由此可确定等量关系列方程.【详解】解:设每只雀的重量为两,每只燕的重量为两,五只雀、六只燕,共重斤(等于两),∴,互换其中一只,恰好一样重,∴,即,联立方程组得,,故选:.【点睛】本题主要考查二元一次方程组的运用,理解题意,找出数量关系,根据等量关系列方程是解题的关键.7.(本题4分)已知,,则()A.-6B.6C.12D.24【答案】B【分析】先将式子利用完全平方公式展开,两式相减,即可得出答案.【详解】解:∵,,∴,,两式相减:,∴,故选:B.【点睛】本题考查完全平方公式,正确变形计算是解题的关键.8.(本题4分)已知,,,,则a、b、c、d的大小关系是()A.B.C.D.【答案】A【分析】先变形化简,,,,比较11次幂的底数大小即可.【详解】因为,,,,因为,所以,所以,故即;同理可证所以,故选A.【点睛】本题考查了幂的乘方的逆运算,熟练掌握幂的乘方及其逆运算是解题的关键.9.(本题4分)已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是()A.B.C.D.【答案】C【分析】先将关于的方程组变形为,再根据关于的方程组的解可得,由此即可得出答案.【详解】解:关于的方程组可变形为,由题意得:,解得,故选:C.【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键.10.(本题4分)某校数学兴趣小组设置了一个数字游戏:第一步:取一个自然数,计算得到;第二步:算出的各位数字之和得到,计算得到;第三步:算出的各位数字之和得到,再计算得到;…;依此类推,则的值是()A.63B.80C.99D.120【答案】A【分析】先根据题意分别求出,,,,,可得出从第3个数开始,每2个数一循环,进而求解即可.【详解】解:根据题意,,,,,,,,,,,∴从第三个数开始,每2个数一循环,∵,∴是第个循环的第1个数,∴的值为63,故选:A.【点睛】本题考查数字类规律探究、平方差公式,理解题意,观察出数字变化规律是解答的关键.二、填空题(共32分)11.(本题4分)计算__.【答案】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式.故答案为:.【点睛】本题考查同底数幂的乘法,解题关键是熟知同底数幂的乘法的计算法则.12.(本题4分)若,则的值为_____.【答案】108【分析】先将变形为,再代入进行计算.【详解】解:∵,∴,故答案为:108.【点睛】此题考查了同底数幂相乘运算的逆运用能力,关键是能准确理解并运用以上知识.13.(本题4分)如果,,那么的值等于______.【答案】【分析】通过完全平方公式变形再整体代入求值即可.【详解】解:∵,,∴,故答案为:.【点睛】本题考查完全平方公式变形求值,熟记完全平方公式是解题的关键.14.(本题4分)如果,那么___;当时,则___.【答案】 6 16【分析】将整体代入即可求解,将转化为,把代入即可求解.【详解】解:∵,∴;∵,,∴.故答案为:6;16.【点睛】本题主要考查了幂的乘方与积的乘方,解题的关键是熟练掌握幂乘方的逆运算,整体代入思想.15.(本题4分)已知方程组的解为则的值为______.【答案】8【分析】把代入,即可求解.【详解】解:把代入得:,得:,∴,故答案为:8.【点睛】本题考查了二元一次方程组的解,解题的关键是正确将方程组的解代入原方程组.16.(本题4分)《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x人,小和尚有y人,那么根据题意可列方程组为_____.【答案】【分析】设大和尚有x人,小和尚有y人,根据“有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完”列出方程组,即可求解.【详解】解:设大和尚有x人,小和尚有y人,根据题意得:,故答案为:.【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确列出方程组是解题的关键.17.(本题4分)若,那么代数式______.【答案】【分析】根据方程组的特点由,得,进而即可求解.【详解】根据题意,得由,得∴,故答案为:.【点睛】本题考查了解三元一次方程组,掌握加减消元法是解题的关键.18.(本题4分)若对任意自然数都成立,先求出.然后计算_______________.【答案】【分析】根据题意,分别令,得出方程组,解方程得出的值,进而得出,利用规律即可求解.【详解】解:∵由于对任何自然数n都成立,因此可知:当n=1时,;当n=2时,;联立方程组为,解得:∴∴,故答案为:【点睛】本题考查了解二元一次方程组,有理数的混合运算,找到规律是解题的关键.三、解答题(共78分)19.(本题8分)计算:(1);(2).【答案】(1)(2)【分析】(1)根据多项式乘多项式法则计算即可;(2)先计算积的乘方,再按单项式乘单项式法则计算.【详解】(1)解:原式(2)解:原式【点睛】本题考查了整式的混合计算,熟练掌握积的乘方法则和整数乘法法则是解题的关键.20.(本题8分)解方程组(1)(2).【答案】(1)(2)【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】(1)解:,把①代入②得:,解得:,把代入①得:,则方程组的解为;(2)解:,①②得:,解得,把代入①得:,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(本题8分)先化简,再求值:,其中a、b满足【答案】,【分析】根据整式的运算法则及绝对值和偶次方的非负性即可求出答案.【详解】解:原式,∵,∴,,∴,,当,时,原式.【点睛】本题考查整式的运算及绝对值和偶次方的非负性,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.(本题10分)已知方程组与方程组的解相等,试求、的值.【答案】【分析】两个方程组的解相同,也就是有一组、的值是这四个方程的公共解,当然也是其中任意两个方程的公共解,所以可以把原来的方程组打乱,重新组合起来求解.【详解】解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得.故、的值为.【点睛】本题考查了同解方程组,解答此题的关键是熟知方程组有公共解得含义.23.(本题10分)(1)已知,,求的值;(2)已知,求的值.【答案】(1)45 (2)23【分析】(1)根据完全平方公式的变形求值即可;(2)根据完全平方公式的变形求值即可.【详解】解(1)∵,∴;(2)∵,∴.【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键.24.(本题10分)某商场用相同的价格分两次购进A型和B型两种型号的电脑,前两次购进情况如下表.A型(台)B型(台)总进价(元)第一次2030210000第二次1020130000(1)求该商场购进A型和B型电脑的单价各为多少元?(2)已知商场A型电脑的标价为每台4000元,B型电脑的标价为每台6000元,两种电脑销售一半后,为了促销,剩余的A型电脑打九折,B型电脑打八折全部销售完,问两种电脑商场获利多少元?【答案】(1)A型电脑单价为3000元,B型电脑的单价为5000元(2)两种电脑商场获利44000元【分析】(1)设A型电脑单价为x元,B型电脑的单价为y元,根据题意,列出方程组求解即可;(2)分别计算出A型电脑的获利和B型电脑的获利,再相加即可.【详解】(1)解:设A型电脑单价为x元,B型电脑的单价为y元,,解得:,答:A型电脑单价为3000元,B型电脑的单价为5000元.(2)A型电脑获利:(元),B型电脑获利:(元),两种电脑总获利:(元),答:两种电脑商场获利44000元.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键是正确理解题意,根据题意找出等量关系,列出方程组求解.25.(本题12分)如图,图1是长为,宽为的长方形,沿图中虚线(对称轴)剪开,用得到的四个全等的小长方形,拼成如图2所示的大正方形(无重叠无缝隙),设图2中小正方形(阴影部分)面积为.(1)用两种不同方法求;(用含、的式子表示)(2)请直接写出、、这三个代数式之间的数量关系;(3)利用(2)中结论,完成下列计算:①若,,求的值;②已知,,求的值.【答案】(1)方法①:;方法②:;(2);(3)①;②.【分析】(1)根据长方形正方形面积的公式即可求出结果;(2)根据完全平方和、完全平方差公式记得结论;(3)根据完全平方和、完全平方差公式之间的关系即可求出结果.【详解】(1)解:①∵大正方形的边长为,∴大正方形的面积为:,∵组成大正方形的四个长方形的长宽是,∴四个长方形的面积:;∴阴影部分的面积为:,②∵阴影部分的边长为:,∴阴影部分的面积为:.(2)解:∵,,∴,∴.(3)解:①∵,,∴,∴.②∵,,∴.【点睛】本题考查了完全平方公式的几何意义和代数意义,理解完全平方公式是解题的关键.26.(本题12分)已知.(1)根据以上式子计算:①;②(n为正整数);③.(2)通过以上计算,请你进行下面的探索:①_______;②_______;③________.【答案】(1)①;②;③;(2)①;②;③.【分析】(1)①直接利用题中的结论代入数值计算;②缺少(项,从而可以凑配易得,同理即可解答;③中,按降亘进行排列,然后套用规律进行解答;(2)仿照所给等式的规律即可直接写出答案.【详解】(1)①;②;③;(2)①;②;③.故答案为∶①;②;③.【点睛】本题考查平方差公式,正确理解平方差公式及展开形式是解决本题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1
F E
D
C
B A
三明四中2012——2013第二学期第一次月考
七年级数学试卷
总分:100分 时间:100分钟 命题:温伟荣
一、选择题(每小题3分,共30分) 1.下列计算正确的是
A .2
4
6
x x x += B .235x y xy += C .6
3
2
x x x ÷= D .326()x x = 2.如果( )×2
3
2
62b a b a -=,则( )内应填的代数式是 A. 2
3ab -
B. ab 3-
C. ab 3
D. 2
3ab
3.下列计算正确的是
A .
B .
C .
D . 4.下列算式能用平方差公式计算的是
A .(2a +b )(2b -a )
B .(1)(1)x x +--
C .(3x -y )(-3x +y )
D .(-a -b )(-a +b ) 5.下列四个图中,∠1和∠2是对顶角的图的个数是
A .0个
B .1个
C .2个
D .3个
6.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示是( )。

A 、0.43×10-
4 B 、4.3×10-
5 C 、43×10-
3 D 、4.3×105
7.若多项式mx x +2
+16是完全平方式,则m 的值是
A.8
B. 4
C. ±8 D±4 8.已知:如图,∠1=∠2,则有
A.AB ∥CD
B.AE ∥DF
C. AB ∥CD 且AE ∥DF ;
D.以上都不对
9、下列各式中,计算结果是x 2-3x -28的是( )。

1
2
1 2
1
2
1
2
()2
2
2
x y x y +=+()
2
2
2
2x y x xy y -=--()()22222x y x y x y
+-=-()2
222x y x xy y -+=-+
O
E D
C B A
A 、(x +7)(x +4)
B 、(x -2)(x +14)
C 、(x +4)(x -7)
D 、(x +7)(x -4)
10.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为
A.()2
222a b a ab b -=-+ B.()2
22
2a b a ab b +=++
C.22()()a b a b a b -=+-
D.无法确定 二、填空题(每小题3分,共18分) 11.计算:8xy 2÷(-4xy )=___________ . 12.计算:3
2
a a
∙= ___________.
13.若α∠=36°,则∠α的补角为______度.
14.如图:AB 、CD 相交于点O ,OB 平分∠DOE ,若∠DOE =64°,
则∠AOC 的度数是 度. 15.若32n
=,53
=m
,则23n m -= .
16.若31=+
x x , 则=+441
x
x . 三、解答题(17、18、19、20题5分,21、22、23、24题6分,25题8分) 17.计算:(-1)0+2
2
--(-1)2012
18.化简:()()()5
4
4
2
2
2462y x xy y x ÷-∙
19. 用整式的乘法公式计算:2
2000-20011999⨯
F
H
G E
D
C
B
A
20.化简: ()()()2
232321x x x -+--
21.先化简,再求值:[]2(2)(3)a b a a b b +-+÷,其中2
1,1=
-=b a
22.操作题:如图方格纸中直线AB ,(1)过点D 画出直线AB 的平行线;(2)过点C 画出直线AB 的垂线.
23.已知:如图, EF 分别交于AB 、CD 于E 、F ,∠AEF =∠EFD ,EG 平分∠AEF ,FH 平分∠EFD 。

试说明EG ∥FH 成立的理由
下面是某同学进行的推理,请你将他的推理过程补充完整。

证明: ∵ EG 平分∠AEF ,FH 平分∠EFD (______),
∴∠______=
21∠AEF ,∠______=2
1
∠EFD (角平分线定义)。

∵∠AEF =∠EFD (已知)
∴ ∠______=∠______(等量代换) ∴ EG ∥FH (______)。

24、计算下图阴影部分面积(单位:cm )
25.已知:A =()2
1x + ,B =()()211x x -+. (1)计算:3A -B -1
(2)如果:()()2130x x x +--=,求3A -B -1的值.
附加题:(每题5分共20分) 1、若
()b x x a x +-=+822,则a 值是 。

2、多项式3
2
422x x x k --+能被2x 整除,则常数项为 。

3、若1020a
=,5
1
10
=b
,则293a b ÷的值为 。

4、222221111111111234910⎛⎫⎛⎫⎛⎫
⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭。

相关文档
最新文档