化工原理设计说明书
化工原理课程设计,甲醇和水的分离精馏塔的设计

郑州轻工业学院——化工原理课程设计说明书课题:甲醇和水的分离学院:材料与化学工程学院班级:姓名:学号:指导老师:目录第一章流程确定和说明 (2)1.1.加料方式 (2)1.2.进料状况 (2)1.3.塔型的选择 (2)1.4.塔顶的冷凝方式 (2)1.5.回流方式 (3)1.6.加热方式 (3)第二章板式精馏塔的工艺计算 (3)2.1物料衡算 (3)2.3 塔板数的确定及实际塔板数的求取 (5)2.3.1理论板数的计算 (5)2.3.2求塔的气液相负荷 (5)2.3.3温度组成图与液体平均粘度的计算 (6)2.3.4 实际板数 (7)2.3.5试差法求塔顶、塔底、进料板温度 (7)第三章精馏塔的工艺条件及物性参数的计算 (9)3.1 平均分子量的确定 (9)3.2平均密度的确定 (10)3.3. 液体平均比表面积张力的计算 (11)第四章精馏塔的工艺尺寸计算 (12)4.1气液相体积流率 (12)4.1.1 精馏段气液相体积流率: (12)4.1.2提馏段的气液相体积流率: (13)第五章塔板主要工艺尺寸的计算 (14)5.1 溢流装置的计算 (14)5.1.1 堰长 (14)5.1.2溢流堰高度: (15)5.1.3弓形降液管宽度 (15)5.1.4 降液管底隙高度 (16)5.1.5 塔板位置及浮阀数目与排列 (16)第六章板式塔得结构与附属设备 (24)6.1附件的计算 (24)6.1.1接管 (24)6.1.2 冷凝器 (27)6.1.3再沸器 (28)第七章参考书录 (28)第八章设计心得体会 (29)第一章流程确定和说明1.1.加料方式加料方式有两种:高位槽加料和泵直接加料。
采用高位槽加料,通过控制液位高度,可以得到稳定的流速和流量,通过重力加料,可以节省一笔动力费用,但由于多了高位槽,建设费用相应增加;采用泵加料,受泵的影响,流量不太稳定,流速不太稳定,流速不太稳定,从而影响了传质效率,但结构简单,安装方便。
化工原理课程设计苯氯苯填料塔设计说明书

一、设计题目苯—氯苯填料精馏塔设计二、设计数据及条件原料:苯和氯苯混合溶液,年处理能力为(7)万吨(开工率8000 小时/年),原料中苯的质量分数(0.34学号后两位);进料热状态:自选。
分离要求:馏出液中苯的质量分率不低于95%釜残液中苯的质量分率不大于0.3%(1-10号)操作压力:常压建厂地址:家乡地区单板压降:≤0.7kpa。
全塔效率:E T≥58%。
三、设计要求(一)编制一份设计说明书,主要内容包括:1.前言;2.流程与方案的选择说明与论证(附流程简图)3.精馏塔主要工艺结构尺寸设计计算(包括塔径、填料层高度、塔高的计算等)4.附属设备的选型和计算(包括冷凝器、再沸器、塔内构件:接管管径、除沫器、液体分布器、液体再分布器、支撑板、手孔、裙座等)5.填料塔流体力学计算(压力降、泛点率、气体动能因子等)6.设计结果列表7.设计评价8.主要符号和单位表9.参考文献10.致谢(二)绘制带控制点的工艺流程图(3号图纸,CAD绘图)绘制精馏塔的工艺条件图(2号图前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)目录前言 (8)符号说明 (8)1 概述与设计方案简介 (10)1.1 操作条件的确定 (10)1.1.1 操作压力 (10)1.1.2 进料状态 (10)1.1.3 加热方式 (10)1.1.4 冷却剂与出口温度 (10)1.1.5 热能的利用 (11)1.2 确定设计方案的原则 (11)1.2.1 满足工艺和操作的要求 (11)1.2.2 满足经济上的要求 (12)1.2.3 保证安全生产 (12)1.3 流程的确定和说明 (13)2.1 物料衡算 (13)2.1.1 原料液及塔顶、塔底产品的摩尔分率 (13)2.1.2 全塔物料衡算 (13)2.2 理论塔板数估算 (14)2.2.2 气液平衡线 (16)2.2.3 进料热状况参数 (17)2.2.4 求最小回流比Rmin (17)2.2.5 最佳回流比 (18)2.2.6 精馏段提馏段操作线 (20)2.2.7 图解法求理论板数 (21)2.3 各种操作条件及相关的物性估算 (22)2.3.1 操作温度估算 (22)2.3.2 平均摩尔质量估算 (23)2.3.3 液相平均粘度估算 (24)2.3.4 相对挥发度估算 (26)2.3.5 操作压力估算 (26)2.3.6 平均密度估算 (27)2.4 气液相负荷估算 (29)2.4.1 精馏段气液相负荷 (29)2.4.2 提馏段气液相负荷 (30)3 设备设计 (30)3.1 填料的选择 (30)3.2 塔径的设计 (31)3.2.1 精馏段塔径 (31)3.2.2 提馏段塔径 (32)3.3 填料层高度计算 (33)3.3.1 精馏段的填料层高度 (33)3.3.2 提馏段的填料层高度 (33)3.3.3 精馏塔的填料层总高度 (33)3.4 填料层压降的计算 (34)4 辅助设备的计算及选型 (35)4.1 接管设计 (35)4.1.1 进料管 (35)4.1.2 回流管 (36)4.1.3 塔底出料管 (36)4.1.4 塔顶蒸汽出料管 (36)4.1.5 塔底进气管 (37)4.2 法兰 (37)4.3 筒体与封头 (38)4.3.1 筒体 (38)4.3.2 封头 (38)4.4 其他塔附件 (38)4.4.1 裙座 (38)4.4.2 吊柱 (38)4.4.3 人孔手孔 (38)4.5 塔总体高度设计 (39)4.5.1 塔的顶部空间 (39)4.5.2 塔的底部空间 (39)4.5.3 塔的立体高度 (39)4.6 附属设备 (39)4.6.1 塔顶冷凝器 (39)4.6.2 原料预热器 (41)4.6.3 再沸器 (41)4.6.4 进料泵 (42)4.6.5 回流泵 (43)5 设计结果明细表 (43)5.1 物料衡算计算结果 (43)5.2 精馏塔工艺条件及有关物性数据计算结果 (44)5.3 精馏塔工艺设计结果 (44)5.4 接管尺寸计算结果 (44)设计评述 (45)参考文献 (45)前言在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一,在炼油、化工、石油化工等工业中得到广泛应用。
化工原理课程设计说明书(换热器的设计)

中南大学化工原理课程设计2010年01月22日目录一、设计题目及原始数据(任务书) (3)二、设计要求 (3)三、列环式换热器形式及特点的简述 (3)四、论述列管式换热器形式的选择及流体流动空间的选择 (8)五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热面积、压强降等等) (10)①物性数据的确定 (14)②总传热系数的计算 (14)③传热面积的计算 (16)④工艺结构尺寸的计算 (16)⑤换热器的核算 (18)六、设计结果概要表(主要设备尺寸、衡算结果等等) (22)七、主体设备计算及其说明 (22)八、主体设备装置图的绘制 (33)九、课程设计的收获及感想 (33)十、附表及设计过程中主要符号说明 (37)十一、参考文献 (40)一、设计题目及原始数据(任务书)1、生产能力:17×104吨/年煤油2、设备形式:列管式换热器3、设计条件:煤油:入口温度140o C,出口温度40 o C冷却介质:自来水,入口温度30o C,出口温度40 o C允许压强降:不大于105Pa每年按330天计,每天24小时连续运行二、设计要求1、选择适宜的列管式换热器并进行核算2、要进行工艺计算3、要进行主体设备的设计(主要设备尺寸、横算结果等)4、编写设计任务书5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。
一剖面图,两个局部放大图。
设备技术要求、主要参数、接管表、部件明细表、标题栏。
)三、列环式换热器形式及特点的简述换热器概述换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。
换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。
在工程实践中有时也会存在两种以上的流体参加换热,但它的基本原理与前一种情形并无本质上的区别。
化工原理课程设计丙酮的回收换热器设计说明书

化工原理课程设计丙酮的回收换热器设计说明书标题:丙酮回收换热器设计说明书一、引言本报告详细描述了我们为丙酮回收过程设计的换热器。
在化工生产中,丙酮是一种重要的有机溶剂,其回收利用不仅可以节约成本,而且有利于环保。
因此,一个高效的换热器是丙酮回收过程的关键设备。
二、设计参数1. 工作流体:丙酮2. 进口温度:50℃3. 出口温度:90℃4. 平均温差:20℃5. 换热量:10000kW6. 流量:100m³/h7. 压力降:≤0.1MPa三、换热器类型选择根据丙酮的物理性质和工艺要求,我们选择了管壳式换热器。
管壳式换热器结构简单,制造方便,适应性强,适合于高温、高压和腐蚀性较强的场合。
四、换热器设计计算根据传热学理论和经验值,进行了以下设计计算:1. 确定换热面积:根据所需的换热量和平均温差,计算得到所需换热面积。
2. 选择换热管尺寸:根据流量、压力降和允许的流速,选择合适的换热管尺寸。
3. 计算壳程和管程的压降:根据雷诺数和阻力系数,计算壳程和管程的压降。
五、换热器结构设计考虑到丙酮的化学性质和操作条件,换热器采用碳钢材料制造,并进行防腐处理。
此外,为了便于清洗和维修,换热器设计成可拆卸式的。
六、结论通过以上设计,我们得到了一款能满足丙酮回收过程需求的换热器。
该换热器具有良好的传热性能和稳定的工作状态,可以有效地提高丙酮的回收效率。
七、附录本报告的附录部分包含了所有的设计计算过程和相关数据,供读者参考。
八、致谢感谢所有参与此次设计工作的人员,他们的专业知识和努力工作使这个项目得以顺利完成。
注:此文档仅为示例,具体的设计参数和计算过程需要根据实际情况进行调整。
化工原理课程设计说明书

化工原理课程设计任务书一、设计题目设计一台换热器二、操作条件①油:入口温度130℃,出口温度70℃②冷却介质:循环水,入口温度30℃,出口温度40℃③允许压强降:管侧允许压力损失为5MPa,壳侧允许压力损失为10MPa④生产任务:油的流速为10000kg/h三、设备类型列管式换热器四、设计要求(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作、和维修;(4)经济上合理。
化工原理课程设计说明书1.设计概述换热是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
在化工装置中换热设备占设备数量的40%左右,占总投资的35%~46%。
在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。
换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。
在三类换热器中,间壁式换热器应用最多。
目前,在换热设备中,使用量最大的是管壳(列管)式换热器,尤其在高温、高压和大型换热设备中占有绝对优势。
一般来讲,管壳式换热器具有易于加工制造、成本低、可靠性高,且能适应高温高压的特点。
数据显示2010年中国换热器产业市场规模在500亿元左右,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。
其中,石油化工领域仍然是换热器产业最大的市场,其市场规模为150亿元;电力冶金领域换热器市场规模在80亿元左右;船舶工业换热器市场规模在40亿元以上;机械工业换热器市场规模约为40亿元;集中供暖行业换热器市场规模超过30亿元,食品工业也有近30亿元的市场。
化工原理课程设计说明书模板

化工原理课程设计说明书模板一、课程背景化工原理是化学工程专业的一门基础课程,是学生打下化工理论基础的重要课程之一。
本课程旨在系统地介绍化工原理的基本理论和应用,帮助学生建立化工原理的相关知识体系,为日后的专业学习和工作打下坚实的理论基础。
二、课程目标1.理解化工原理的基本概念和原理;2.掌握化工原理的基本计算方法和理论模型;3.能够应用化工原理的知识解决实际工程问题;4.培养学生的创新能力和实践能力。
三、课程内容1.化工原理的基本概念a.化工原理的定义和基本概念b.化工原理的基本原理和规律c.化工原理的相关学科和领域2.物质的结构与性质a.物质的基本结构和性质b.物质的相态变化与热力学c.物质的组成与性质的关系3.热力学基础a.热力学基本定律和概念b.热力学过程的基本方程和计算方法c.热力学的应用和工程实践4.化工原理的传质与分离a.传质的基本概念和理论b.分离过程的基本原理和方法c.分离设备的设计和应用5.反应工程基础a.化学反应的基本原理和动力学b.反应器的类型和设计原则c.反应工艺的应用和优化6.流体力学基础a.流体的基本性质和流动规律b.流体的流动类型和应用c.流体力学在化工领域的应用四、教学方法1.理论讲授:通过讲授化工原理的基本概念、理论和计算方法,帮助学生建立起扎实的理论基础。
2.课堂互动:鼓励学生积极参与课堂讨论和提问,促进学生对化工原理的深入理解。
3.实践教学:引导学生参与化工实验和工程设计,培养学生的实践能力和创新意识。
的综合分析和表达能力。
五、课程评估1.平时表现:包括课堂参与情况、作业完成情况等。
2.中期考试:包括对化工原理基本概念和计算方法的考核。
3.期末考试:总结对整门课程的掌握情况,包括理论知识和应用能力的考核。
六、教材1. 《化工原理导论》,作者:王明华,出版社:化学工业出版社2. 《化工原理》,作者:张三,出版社:化学出版社七、课程作业1.每周布置相关的课后习题,加强学生对专业知识的理解和掌握。
化工原理课程设计说明书模板

化工原理课程设计说明书模板化工原理课程设计说明书模板一、设计目的与意义本次化工原理课程设计旨在通过实践操作,加深学生对于化工原理的理解与应用,培养学生的动手能力以及解决实际问题的能力。
通过本次设计,学生将能够熟悉常见的化工流程图、能够进行物质平衡计算,并能够运用化工原理解决实际问题。
二、设计内容与要求1.设计名称:某化工厂生产甲醇的流程设计。
2.设计要求:根据给定的原料、产物及反应条件,确定该化工厂甲醇生产的最佳流程,并进行流程图绘制、物质平衡计算及能量平衡计算。
三、设计步骤1.确定反应方程式:根据给定的原料及产物,确定甲醇的生产反应方程式。
2.绘制流程图:根据甲醇生产的反应方程式,绘制甲醇生产过程的流程图,并标注每个单元操作的名称、输入输出物流等。
3.进行物质平衡计算:根据给定的原料及产物的摩尔数或质量数,以及反应方程式,进行物质平衡计算,并验证总摩尔数或质量数是否平衡。
4.进行能量平衡计算:根据每个单元操作的能量输入输出情况,以及反应热等热力学参数,进行能量平衡计算,并验证能量是否平衡。
5.进行流程改进:根据物质平衡和能量平衡的结果,对流程进行改进,并分析改进后的流程对产品质量和产量的影响。
四、设计要点1.反应方程式的确定:需要根据甲醇的生产原料及产物,确定合适的反应方程式,并考虑到反应的热力学条件,如反应热、反应速度等。
2.流程图的绘制:应该清晰明了,标注每个单元操作的名称、输入输出物流及流程中存在的能量交换。
3.物质平衡计算:在计算过程中,需要准确、细致地考虑每个单元操作中输入物流和输出物流的变化情况,确保物质平衡的准确性。
4.能量平衡计算:要考虑到每个单元操作中的能量输入输出情况,以及反应热等热力学参数的影响,确保能量平衡的准确性。
5.流程改进分析:需要根据物质平衡和能量平衡的结果,对流程进行改进,并分析改进后的流程对产品质量和产量的影响,提出相应的优化建议。
五、设计结果与总结通过本次化工原理课程设计,可以得到甲醇生产的最佳流程,并得到相应的物质平衡计算和能量平衡计算结果。
化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书题目:煤油冷却器的设计学院: 化学化工学院班级:化工0802学号: 1505080802姓名: ******指导教师:邱运仁时间: 2010年9月目录§一。
任务书 (2)1。
1.题目1.2.任务及操作条件1。
3.列管式换热器的选择与核算§二.概述………………………………………………………………………………………………….。
-3-2。
1.换热器概述2.2。
固定管板式换热器2.3。
设计背景及设计要求§三。
热量设计 (5)3.1.初选换热器的类型3。
2。
管程安排(流动空间的选择)及流速确定3。
3.确定物性数据3。
4。
计算总传热系数3。
5.计算传热面积§四。
机械结构设计 (9)4。
1。
管径和管内流速4。
2.管程数和传热管数4。
3.平均传热温差校正及壳程数4。
4.壳程内径及换热管选型汇总4。
4。
折流板4。
6.接管4。
7.壁厚的确定、封头4.8。
管板4。
9.换热管4。
10。
分程隔板4。
11拉杆4。
12.换热管与管板的连接4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型)4。
14。
膨胀节的设定讨论§五.换热器核算 (21)5.1。
热量核算5.2.压力降核算§六。
管束振动.................................................................................................。
(25)6.1。
换热器的振动6。
2。
流体诱发换热器管束振动机理6.3.换热器管束振动的计算6。
4.振动的防止与有效利用§七。
设计结果表汇................................................................................................。
(28)§八.参考文献.........................................................................................................。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、中文摘要列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。
其中以热力设计最为重要。
不仅在涉及一台新的换热器时需要进行热力计算,而且对于已经生产出来的,甚至已经投入使用的换热器在检验它是否满足使用要求时,均需进行这方面的工作。
在某些情况下还需兑换热气的主要零部件—特别是受压部件做应力计算,并校核其强度。
这是保证安全生产的前提。
在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算和校核。
列管式换热器的工艺设计主要包括以下内容:(1)根据换热任务和有关要求确定设计方案(2)初步确定换热器的规格和尺寸(3)核算换热器的传热面积和流体阻力(4)确定换热器的工艺结构二、绪论课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初次尝试。
通过化工原理课程设计,要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。
通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。
同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度负责的科学作风。
换热器是化学工业,石油工业及其它行业中广泛使用的热量交换设备。
而运用得最为广泛的是列管式换热器。
列管式换热器的结构简单、牢固,操作弹性大,应用材料广。
虽然在传热效率、紧凑性和金属耗量等方面不及某些新型换热设备,但其应用历史悠久,设计资料完善,并已有系列化标准,加之其独特的优点,在近代层出不穷的新型换热器设备中,仍不失其重要地位,特别是在高温、高压和大型换热设备中仍占绝对优势。
三、设计方案的选择和论证1、设计任务处理能力:15吨/小时设备型式:固定管板式换热器2、操作条件(1)煤油:入口温度145℃出口温度42℃(2)冷却介质:循环水入口温度32℃出口温度40℃(3)允许压降:不大于100000Pa列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。
本次设计中煤油的定性温度是93.5℃,冷却水的定性温度是36℃,两流体温差是57.5℃,因两流体温差大于50℃,故选用带补偿圈的固定管板式换热器。
此类换热器适用于两流体温差低于70℃和壳程流体压强不高于600kPa 的情况。
四、主要设备的工艺设计计算1、试算并初选换热器的规格 (1)确定流体通入的空间两流体均不发生相变的传热过程,因水的对流传热系数一般较大,且易结垢,故选择冷却水走换热器的管程,煤油走壳程。
(2)确定流体的定性温度、物性数据,并选择列管换热器的形式冷却介质为水,取入口温度为32℃,出口温度为40℃。
煤油的定性温度 1(14542)93.52m T =+=℃ 水的定性温度 1(3240)362m T =+=℃两流体温差 93.53657.5m m T t -=-=℃由于两流体温差大于50℃,故选用带有补偿圈的固定管板式换热器。
两流体在定性温度下的物性数据(3)计算热负荷Q 和冷却水流量c W43312151010() 2.2210(14542)1202967330243600h ph Q W c T T W ⨯⨯=-=⨯⨯-=⨯⨯若忽略换热器的热损失,水的流量可由热量衡算求得,即 321120296736.03/() 4.17410(4032)c pc Q W kg s c t t ===-⨯⨯-(4)计算平均温差,并确定壳程数。
逆流温差 '(14540)(4232)40.414540ln4232m t ---∆==--℃12211454212.94032T T R t t --===-- 211140320.07114532t t P T t --===-- 由R 和P 查图得0.9t ϕ∆=,所以'0.940.436.36m t mt t ϕ∆∆=∆=⨯=℃ 又因0.9>0.8,故可选用单壳程的列管式换热器。
(5)初选换热器的规格 根据管内为水,管外为煤油,K 值范围为290~7002/(W m ⋅℃),初选20400/(K W m =⋅℃),2120296782.740036.36m Q S m K t ===∆⨯ 在决定管数和管长时,首先要选定管内流速u i ,冷却水走管程的流速为1—3.5 m/s ,取流速为u i =1.8m/s ,设所需单管程数为n ,选用¢ 25mmX2传热管(碳钢)的内径为0.021m ,从管内体积流量V i =6.99303.368.1021.042=⨯⨯πn计算求得n=59根按单程计算,所需传热管长度为 L=)(9.1759025.014.37.820m d n A s =⨯⨯=π 选用4.5m 长的管,4管程,则一台换热器的总管数为4×59=236根初选换热器规格尺寸如下:壳径D 600 mm 公称直径S 82.72m 管程数p N 4 管数n 236 管长L 4.5m管子直径 252m m m m φ⨯管子排列方式 正三角形 换热器的实际传热面积200(0.1)236 3.140.025(4.50.1)81.51S n d L m π=-=⨯⨯⨯-= 该换热器要求的总传热系数为: 2001202967406/(81.5136.36m Q K W m S t ===⋅∆⨯℃) 2、核算总传热系数0K (1)计算管程对流系数i α36.03/c W k g s = 336.030.0363/993.6cs W V m s ρ=== 管路流通面积 222236(0.021)0.0204444i i p n A d m N ππ==⨯⨯= 0.03631.78/0.0204s i i V u m s A === 30.021 1.78993.6Re 520250.713910i i i d u ρμ-⨯⨯===⨯(湍流) 334.174100.713910Pr 4.750.627p i c μλ-⨯⨯⨯===0.80.40.80.420.6270.023Re Pr 0.023(52025)(4.75)7593/(0.021i i i iW m d λα=⋅⋅⋅=⋅⋅⋅=⋅℃) (2)计算壳程对流传热系数0α换热器中心附近管排中流体流通面积为2000.025(1)0.150.6(1)0.019690.032d A h Dm t =-=⨯⨯-= 式中 h —折流挡板间距,取150 mm;t —管中心距,对252mm mm φ⨯的管子,t=32 mm43001510100.3239/3302436008250.01969h V u m s A ⨯⨯===⨯⨯⨯⨯由正三角形排列,得2222003.144()4(0.0320.025)24240.020193.140.025e d d m d ππ--⨯===⨯ 0030.020190.3239825R e 81740.6610e d u ρμ-⨯⨯===⨯ 330 2.22100.6610Pr 10.470.14p c μλ-⨯⨯⨯=== 壳程中煤油被冷却,取0.14()0.95wμμ=。
所以 110.550.140.550.14203300.140.36()()()()0.36(8174)(10.47)(0.95)769.12/(0.02019p e e w c d u W m d μρλμαμλμ==⨯⨯=⋅℃)(3)确定污垢热阻-423.4410si R m =⨯⋅℃/W-42210so R m =⨯⋅℃/W(4)总传热系数0K 管壁热阻忽略时20-4-400011490/(10.0250.02511.719710 3.4410769.120.02175930.021so sii i iK W m d d R R d d αα===⋅+⨯+⨯⨯++++⨯ ℃)选用该换热器时,要求过程的总传热系数为2406/(W m ⋅℃),在传热任务所规定的流动条件下,计算出的20490/(K W m =⋅℃),所选择的换热器的安全系数为:490406406-⨯100%=20.7% 则该换热器传热面积的裕度符合要求。
3、计算压强降 (1)计算管程压强降12()i t p s p p p F N N ∑∆=∆+∆⋅⋅前已算出: 1.78/i u m s = R e 52025i =(湍流) 设管壁粗糙度0.1mm ε=0.10.004821id ε== 由摩擦系数图查得0.034λ= 所以 221 4.5993.6 1.780.03411468.1620.0212i i u L p P ad ρλ⨯∆=⋅⋅=⨯⨯= 222993.6 1.7833472222i u p Pa ρ⨯∆==⨯= 对于252mm mm φ⨯的管子 1.45t F =,且4p N =,1s N =,所以 (11468.164722) 1.4541i p P a∑∆=+⨯⨯⨯= (2)计算壳程的压强降''012()s s p p p F N ∑∆=∆+∆⋅其中 1.15s F =,1s N = 2'10(1)2c B u p Ff n N ρ∆=+⋅管长为正三角形排列,取F=0.5 11221.1()1.1(236)17c n n ==⋅=取折流挡板间距 h=0.15m 4.511290.15B L N h =-=-= 壳程流通面积 300()0.15(0.6170.025)0.0263c A h D n d m =-=-⨯=43001510100.242/3302436008250.0263h V u m s A ⨯⨯===⨯⨯⨯⨯00030.0250.242825Re 75630.6610d u ρμ-⨯⨯===⨯﹥500 0.2280.228005Re 5(7563)0.6526f --==⨯= 所以2'18250.2420.50.652617(291)4019.52p P a ⨯∆=⨯⨯⨯+⨯=22'02220.158250.242(3.5)29(3.5)2101.720.62B u h p N P a D ρ⨯⨯∆=-=⨯-⨯=0(4019.52101.7) 1.157039p Pa ∑∆=+⨯=从上面计算可知,该换热器管程与壳程的压强降均满足题设要求,故所选换热器合适。
五、典型辅助设备的选型由于水的流量为3129.71/m h ,煤油的流量为323/m h ,所以根据泵规格,选择IS125—100—200和65Y —100的泵。
六、设计结果总汇七、主要符号说明八、总结化工原理课程设计是培养个人综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练,也起着培养学生独立工作能力的重要作用。