初中八年级数学函数与图象第一单元练习题

合集下载

(完整版)北师大版本八年级数学上一次函数的图像练习题

(完整版)北师大版本八年级数学上一次函数的图像练习题

(完整版)北师大版本八年级数学上一次函数的图像练习题北师大版本八年级数学上一次函数的图像练习题一、选择题:(每小题3分,共24分)1.下列函数中,y 是x 的一次函数的是( )A.y=2x 2+1;B.y=x -1+1C.y=-2(x+1)D.y=2(x+1)22.下列关于函数的说法中,正确的是( )A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数3.若函数y=(3m-2)x 2+(1-2m)x(m 为常数)是正比例函数,则( )A.m=23; B.m=12; C.m>23; D.m<124.下列函数:①y=-8x;②y=8x;③y=8x 2;④y=8x+1;⑤y= .其中是一次函数的有( )A.1个B.2个C.3个D.4个 5.若函数y=(m-3)1m x-+x+3是一次函数(x≠0),则m 的值为( )A.3B.1C.26.过点A(0,-2),且与直线y=5x 平行的直线是( ) A.y=5x+2 B.y=5x-2 C.y=-5x+2 D.y=-5x-27.将直线y=3x-2平移后,得到直线y=3x+6,则原直线 ( )A.沿y 轴向上平移了8个单位B.沿y 轴向下平移了8个单位C.沿x 轴向左平移了8个单位D.沿x 轴向右平移了8个单位8.汽车由天津开往相距120km 的北京,若它的平均速度是60km/h, 则汽车距北京的路程s(km)与行驶时间t(h)之间的函数关系式是 ( )A.s=60t;B.s=120-60tC.s=(120-60)tD.s=120+60t 二、填空题:(每小题3分,共27分) 1.若y=(n-2)21n n x--是正比例函数,则n 的值是________.2.函数y=x+4中,若自变量x 的取值范围是-3<x< -="" 1,="" p="" 则函数值y="" 的取值范围是_____.<="">3.当a=_____时,函数y=(a-1)x 2+ax-2是一次函数.4.长方形的长为3cm,宽为2cm,若长增加xcm,则它的面积S(cm 2)与x(cm) 之间的函数关系式是_____,它是______函数,它的图象是_______. 5.已知函数y=2121m m mxm --+-,当m=______时, 它是正比例函数, 这个正比例函数的关系式为_______;当m=________时,它是一次函数,这个一次函数的关系式为_______. 6.把函数y=2x 的图象沿着y 轴向下平移3个单位,得到的直线的解析式为_____. 7.两条直线1213:,:425a l y x+=-中,当a________,b______时,L 1∥L 2.9.一棵树现在高50cm,若每月长高2cm,x 月后这棵树的高度为ycm,则y 与x 之间的函数关系式是________.三、基础训练:(共10分)求小球速度v(米/秒)与时间t(秒)之间的函数关系式: (1)小球由静止开始从斜坡上向下滚动,速度每秒增加2米; (2)小球以3米/秒的初速度向下滚动,速度每秒增加2米;(3)小球以10米/秒的初速度从斜坡下向上滚动,若速度每秒减小2米,则2秒后速度变为多少?何时速度为零?四、提高训练:(每小题9分,共27分) 1.m 为何值时,函数y=(m+3)21m x +4x-5(x≠0)是一次函数?2.已知一次函数y=(k-2)x+1-24k : (1)k 为何值时,函数图象经过原点? (2)k 为何值时,函数图象过点A(0,3)? (3)k 为何值时,函数图象平行于直线y=2x?3.甲每小时走3千米,走了1.5小时后,乙以每小时4.5千米的速度追甲,设乙行走的时间为t(时),写出甲、乙两人所走的路程s(千米)与时间t(时)之间的关系式, 并在同一坐标系内画出函数的图象.五、中考题与竞赛题:(共12分)某机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升, 油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示,回答下列问题.(1)机动车行驶几小时后加油?(2)求加油前油箱余油量Q与行驶时间t的函数关系,并求自变量t 的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有230千米,车速为40千米/时,要到达目的地,油箱中的油是否够用?请说明理由.时)答案:一、1.C 2.B 3.A 4.C 5.D 6.B 7.A8.B二、1.-1 2.1<y一次一条直线5.-1 y=-x 2或- 1 y=2x+3或y=-x6.y=2x-37.=2 ≠-358.不平行9.y=50+2x三、(1)v=2t (2)v=3+2t.(3)解:v=10-2t,当t=2时,v=10-2t=6(米/秒),∴2秒后速度为6米/秒;当v=0时,10-2t=0,∴t=5,∴5秒后速度为零.四、1.解:当m+3=0,即m=-3时,y=4x-5是一次函数;当m+3≠0时,由2m+1=1,得m= 0,∴当m=0时,y=7x-5是一次函数;由2m+1=0,得m=-12.∴当m=-12时,y=4x-52是一次函数,综上所述,m=-3或0或-12.2.解:(1)∵原点(0,0)的坐标满足函数解析式,即1-24k=0,∴k=±2,又∵k-2≠0, ∴k=-2(2)把A(0,-3)代入解析式,得-3=1- 24k,∴k=±4.(3)∵该直线与y=2x平行,∴k-2=2,∴k=4.五、提示:(1)t=5.(2)Q=42-6t(0≤t≤5).(3)Q=24(4) ∵加油后油箱里的油可供行驶11-5=6(小时), ∴剩下的油可行驶6×40=240(千米), ∵240>230,∴油箱中的油够用.</y</x<>。

初二函数图像画图练习题

初二函数图像画图练习题

初二函数图像画图练习题函数是数学中的重要概念,它描述了数值之间的关系。

而函数图像则是将函数的数值关系以图形的方式展示出来,使我们更直观地理解函数的性质和特点。

在初二阶段学习函数图像的过程中,我们需要通过实际的练习来提高自己的画图能力。

本文将提供一些初二函数图像画图练习题,帮助读者巩固所学知识。

1. 线性函数 y = 2x - 1线性函数的图像是一条直线,可以通过绘制两个点再将它们连线来描绘这条直线。

例如,我们可以选择 x = 0 和 x = 1 作为两个点,计算对应的 y 值,并将它们标在坐标系中,再将它们用直线连起来。

2. 平方函数 y = x^2 - 4平方函数的图像是一个开口朝上或朝下的抛物线。

为了画出这个图像,我们可以首先找到其顶点,然后确定对称轴和焦点的位置。

例如,我们可以将 x 值取为 -2、-1、0、1、2,并计算对应的 y 值,再将它们标在坐标系中,最后用平滑的曲线将这些点连起来。

3. 立方函数 y = x^3立方函数的图像是一条从第三象限经过原点到第一象限的递增曲线。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中,再将它们用平滑的曲线连接起来。

4. 绝对值函数 y = |x - 2|绝对值函数的图像是一个 V 形,在 x = 2 处有一个顶点。

为了画出这个图像,我们可以选择 x 值为 0、1、2、3、4,计算对应的 y 值,并将它们标在坐标系中,再将它们用两条直线连接起来,形成一个V 形。

5. 正弦函数 y = sin(x)正弦函数的图像是一个周期性的波形。

为了画出这个图像,我们可以选择不同的 x 值,计算对应的 y 值,并将它们标在坐标系中。

由于正弦函数是周期性的,我们可以通过这个周期性来描绘出整个图像。

通过以上的练习题,我们可以巩固对初二函数图像的理解,并提高我们的画图能力。

在实际的学习中,我们还可以尝试更复杂的函数图像,并通过使用计算机软件或在线图形绘制工具来绘制函数的图像,提高我们的效率和准确性。

初二数学函数及其图象单元测试卷

初二数学函数及其图象单元测试卷

初二数学函数及其图象单元测试卷姓名: 班级: 分数一、填空题:1、点A (2,—3)关于y 轴对称的点的坐标是 。

2、若点(m ,m+2)在x 轴上,则P 点的坐标是 。

3、函数23+-=x xy 中自变量x 的取值范畴是 4、若P 点的坐标为(m ,n ),且mn<0,m>0,则P 点在第 象限 5、如图,是其双曲线的一个分支,则其解析式为 。

6、已知直线y=3x-5,则其图象不通过第 象限, 它与坐标轴围成的三角形的面积是 。

7、已知点(1,11)和(—2,7)是函数b ax y -=2图象上的点,则a= ,b= , 8、已知点P (x 1,y 1)和点Q (x 2,y 2)在函数b x y +=2的图象上,若x 1>x 2,比较大小y 1 y 2。

(填“>”、“=”、“<” )9、写出一个自变量的取值范畴是1≥x 的函数 。

10、写出一个通过二、三、四象限的一次函数的解析式: 。

11、已知函数16+-=x y ,当x= 时,函数的值为012、把直线22--=x y 向上平移3个单位的直线是 。

13、弹簧挂上物体会伸长,测得一弹簧的长度当所挂物体的质量有下面的关系那么弹簧总长y 与所挂物体质量x (千克)之间的函数关系式为二、选择题1、若直线b kx y +=通过第一、二、四象限,则k ,b 的取值范畴是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<02、下列语句叙述正确的有( )个①横坐标与纵坐标互为相反数的点在直线y= —x 上; ②点P (2,0)在y 轴上;③若点P 的坐标为(a ,b ),且ab=0,则P 点是坐标原点;④函数xy 3-=中y 随x 的增大而增大;A 、1个B 、2个C 、3个D 、4个 3、若一次函数1)1(2-+-=m x m y 的图象通过原点,则m 的值为( )A 、--1B 、1±C 、1D 、任意实数 4、当k<0,反比例函数xky =和一次函数k kx y +=的图象大致是( )ABCD5、若92)3(--=m xm y 是正比例函数,则m 的值为( )。

八年级数学函数及其图象练习题

八年级数学函数及其图象练习题

(图)[A组]1、已知AB两地相距90千米.某人骑自行车由A地去B地,他平均时速为15千米。

(1)求骑车人与终点B之间的距离y(千米)与出发时间x(小时)之间的函数关系;(2)画图象2、假设甲、乙两人在一次赛跑中,路程S与时间t的关系如图,则可知道:(1)这是一次___米赛跑。

(2)甲、乙两人中先到达终点的是__。

(3)乙在这次赛跑中的速度是___。

3、某公司印制产品宣传材料,甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费。

(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中作出它们的图象;(3)根据图象回答:印制800份宣传材料时,选择哪家印刷厂比较合算?该公司拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些?[B组]4:A市和B市各有机床12台和6台,现运往C 市10台,D市8台.若从A市运1台到C市、D 市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?(总费用y是从A市、B市运往C市和D市的费用和,现将A市、B市运往C市和D 市的费用分别表示成为含x的代数式,再求费用和)初二()班姓名:_________ 学号:____ 时间:2005年4月4日[教学目标]使学生通过画函数图象,获取变量关系信息,进一步让学生体会函数图象上点与坐标的对应关系,体会方程和函数的联系,强化数形结合的思想[教学重点]理解函数图象上点与坐标的对应关系,体会二元一次方程方程和一次函数的联系[教学过程]环节一:看看函数与方程的关系问题1:(1)小张已存有60元,从现在起每个月节存12元.试写出小张的存款数与从现在开始的月份数之间的函数关系式:(2)小王以前没有存过零用钱,听到小张在存零用钱,表示从小张存款当月起每个月存18元,争取超过小张.,试写出小张的存款数与从现在开始的月份数之间的函数关系式:(3)请你在同一平面直角坐标系中分别画出小张和小王存款和月份之间的函数关系的图象,(4)在图上找一找,小王存多少个月,他的存款与小张的存款一样多?问题2:(1)你能说出二元一次方程组y=12x+60 的解吗?跟你的组员说说你的办法?y=18x第二课时[A组] (方程)2、k取什么整数值时,直线5x+4y=2k+1和2x+3y=k的交点在第四象限内?3、已知二元一次方程4x+y=5和x-2y=8(1)把这两个方程改写成关于x的一次函数;(2)在同一坐标系中作出它们的图象;(3)利用图象,写出两条直线交点的坐标;(5)说明方程组的解与两直线交点的坐标的关系。

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案

初二数学函数概念与图像练习题及答案函数是数学中非常重要的概念,在初二数学中也是学习的重点之一。

理解函数的概念以及掌握函数图像的绘制对于学习数学非常关键。

下面将为大家提供一些初二数学函数概念与图像的练习题及答案,以帮助大家更好地掌握这一知识点。

练习题一:给出以下函数,判断它们是否为函数,并画出它们的图像。

1. 函数f(x) = 2x + 12. 函数g(x) = √x3. 函数h(x) = x^2 + 14. 函数k(x) = |x|答案一:1. 函数f(x) = 2x + 1 是函数。

它的图像为一条直线,斜率为2,截距为1.2. 函数g(x) = √x 是函数。

它的图像为一条抛物线,开口向上,过点(0,0).3. 函数h(x) = x^2 + 1 是函数。

它的图像为一条抛物线,开口向上,顶点为(0,1).4. 函数k(x) = |x| 是函数。

它的图像为以原点为对称中心的一条直线段.练习题二:给出以下函数的图像,写出它们的解析式。

1.图像描述:一条斜率为1,截距为2的直线段。

解析式:f(x) = x + 22.图像描述:一条横纵坐标均为正的对数曲线。

解析式:g(x) = ln(x)3.图像描述:一个顶点在坐标原点的开口向下的抛物线。

解析式:h(x) = -x^24.图像描述:一条横坐标为负的直线段。

解析式:k(x) = -2答案二:1. 图像描述所给出的直线的斜率为1,截距为2,因此解析式为f(x) = x +2.2. 图像描述所给出的曲线是对数曲线,横纵坐标均为正,因此解析式为g(x) = ln(x).3. 图像描述所给出的抛物线是一个顶点在坐标原点的开口向下的抛物线,因此解析式为h(x) = -x^2.4. 图像描述所给出的直线段横坐标为负,因此解析式为k(x) = -2.练习题三:根据函数的图像,判断它们的性质。

1. 以下函数图像是否为奇函数?图像描述:一条关于y轴对称的曲线。

答案:是奇函数。

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)

八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。

八年级数学一次函数图像基础练习题(含答案)

八年级数学一次函数图像基础练习题(含答案)

八年级数学一次函数图像练习题一、选择题; ③y=−2x2; ④y=2; ⑤y=2x−1.下列函数关系式: ①y=−2x; ②y=2x1,其中是一次函数的是()A. ① ⑤B. ① ④ ⑤C. ② ⑤D. ② ④ ⑤2.在y=(k+1)x+k2−1中,若y是x的正比例函数,则k值为()A. 1B. −1C. ±1D. 无法确定3.图是一次函数的图象,则该函数的解析式是()A. y=2x+2B. y=−2x−2C. y=−2x+2D. y=2x−24.函数y=(m−2)x n−1+3是关于x的一次函数,则m,n的值为()A. m≠2,n=2B. m=2,n=2C. m≠2,n=1D. m=2,n=15.下列函数中,y随x的增大而增大的是()A. y=−2x+1B. y=−x−2C. y=x+1D. y=−2x−16.一次函数y=kx+3中,当x=2时,y=−3,则当x=−2时,y的值为()A. −1B. −3C. 7D. 97.下列曲线中,表示y是x的函数的是()A. B.C. D.8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=−kx+k的图象大致是()A. B. C. D.9.将直线y=−2x−1向上平移2个单位长度,平移后的直线所对应的函数关系式为()A. y=−2x−5B. y=−2x−3C. y=−2x+1D. y=−2x+310.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<011.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=1512.点P(a,b)在函数y=3x+2的图象上,则代数式6a−2b+1的值等于()A. 5B. 3C. −3D. −113.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b≤2的解集是()A. x≤−2B. x≤−4C. x≥−2D. x≥−414.两个一次函数y=ax+b和y=bx+a在同一平面直角坐标系中的图象可能是()A. B.C. D.15.2020年年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该公司在生产能力不变的情况下,消毒液一度脱销,下面表示2020年年初到脱销期间,该公司消毒液库存量y(吨)与时间t(天)之间的函数关系的大致图象是()A. B.C. D.16.如图,三个正比例函数的图象分别对应表达式: ①y=ax, ②y=bx, ③y=cx,将a,b,c从小到大排列为()A. a<b<cB. a<c<bC. b<a<cD. c<b<a17.已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−3x+b上,则y1,y2,y3的值的大小关系是().A. y3<y2<y1B. y1<y2<y3C. y2<y1<y3D. y3<y1<y218.已知y=kx+2,当x<−1时,其图象在x轴下方;当x>−1时,其图象在x轴上方,则k的值为()A. −2B. 2C. −3D. 319.若一次函数y=kx+b(k≠0)的图象与直线y=−x+1平行,且过点(8,2),则此一次函数的解析式为()A. y=−x−2B. y=−x−6C. y=−x−1D. y=−x+1020.双胞胎兄弟小明和小亮在同一班读书,周五16:00时放学后,小明和同学走路回家,途中没有停留,小亮骑车回家,他们各自离学校的路程s(米)与用去的时间t(分)的关系如图所示,根据图象提供的有关信息,下列说法中错误的是()A. 兄弟俩的家离学校1000米B. 他们同时到家,用时30分钟C. 小明的速度为50米/分D. 小亮中间停留了一段时间后,再以80米/分的速度骑回家21.一元一次方程ax−b=0的解是x=5,则函数y=ax−b的图象与x轴的交点坐标是()A. (−5,0)B. (5,0)C. (a,0)D. (−b,0)二、填空题22.已知函数y=(k+1)x+k2−1.若它是一次函数,则k;若它是正比例函数,则k.23.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为________.24.如图,分别表示A步行与B骑车在同一道路上行驶的路程s与时间t的关系。

【练习题】初中八年级数学函数与图象第一单元练习题

【练习题】初中八年级数学函数与图象第一单元练习题

【关键字】练习题初中八年级数学《函数与图象》第一单元练习题一、填空题1.平面直角坐标系中的点和一一对应;2.平面直角坐标系中的P(3,-5),关于x轴对称的点的坐标为;关于y轴对称的点的坐标为关于原点对称的点的坐标为;3.点Q(-4,5)到x轴的距离是,到y 轴的距离是;4.描点法法画函数图象的一般步骤是;5.若点在函数的图象上,则= ;6.函数的三种表示方法分别是;7.某种灯的使用寿命为1000小时,它的可用天数y与平均每天使用的小时x之间的关系式为;8、若点H在轴上,则点H的坐标是;9.等腰三角形的周长是,底边长是xcm,一腰长为ycm,则y与x之间的函数关系式是______;自变量x的取值范围是______.10.若直线过点(2,1),则= .11、当时,点P关于轴对称的点在第四象限12、假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(1)这是一次米赛跑;(2)甲、乙两人中先到达终点的是;(3)乙在这次赛跑中的速度为;(4)甲到达终点时,乙离终点还有米。

2、选择题1.已知点(1-a,a+2)在第二象限,则a的取值范围是()A.a>-2 B. -2<a < a<-2 D a>12.函数中自变量x的取值范围是()A.全体实数 B. C D3.在平面直角坐标系中,点在第四象限内,则点在()A.第一象限B第二象限C第三象限D第四象限4.点p(-3,2)关于y轴对称点的坐标是()A.(―3,―2)B.(3,2)C.(3,—2)D.(2,—3)5.一个矩形的周长为30,则矩形的面积y与矩形一边长x的函数关系为()A.y﹦x(15-x)B.y﹦x(30-x)C.y﹦x(30-2x)D.y﹦x(15+x)6.若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是()A.(-1,) B.(-,1) C.(,-1) D.(1,-)7.下列函数中,自变量取值范围选取错误的是()A.中,x取全体实数 B.中,C.中, D.中,8.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y(元)与圆珠笔的支数x 之间的函数关系式是()A. B. C. D.9.函数的自变量x的取值范围是 ( )A. B.x≠一.x取任意实数 D.10.函数的自变量x的取值范围是 ( )A.x<2 B.x≤. x≥2 D.x>2三、解答题1.图17—4是北京市某日的气温变化图,从图中我们可以获得信息,例如:(1)这天2时的气温是;(2)这天的最高气温为;(3)这天的最低气温是;(4)这一天中,从凌晨4时到14时气温在逐渐升高.除以上4条信息外,请你从图中再写出4条信息来.答:①_______________________________________________________②___________________________________________________________③___________________________________________________________④___________________________________________________________2等腰△ABC的周长为,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)求y的取值范围(4)画出函数的图象此文档是由网络收集并进行重新排版整理.word可编辑版本!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数与图象》姓名 分数
一、填空题
1.平面直角坐标系中的点和 一一对应;
2.平面直角坐标系中的P (3,-5),关于x 轴对称的点 1P 的坐标为 ;关于y 轴
对称的点 2P 的坐标为 关于原点对称的点 3P 的坐标为 ;
3.点Q (-4,5)到x 轴的距离是 ,到y 轴的距离是 ; 4.描点法法画函数图象的一般步骤是 ; 5.若点)1,(+a a P 在函数
62--=x y 的图象上,则a = ;
6.函数的三种表示方法分别是 ;
7.某种灯的使用寿命为1000小时,它的可用天数y 与平均每天使用的小时x 之间的关系式为 ;
8、若点H )1,
23(-+a a 在x 轴上,则点H 的坐标是 ;
9.等腰三角形的周长是50cm ,底边长是x cm ,一腰长为y cm ,则y 与x 之间的函数关系式是______;自变量x 的取值范围是______.
10.若直线
b x y +=2过点(2,1),则b = .
11、当k 时,点P )12,2(--k 关于y 轴对称的点在第四象限
12、假定甲、乙两人在一次赛跑中,路程S 与时间 T 的关系在平面直角坐标系中所示,如图,请结合图形 和数据回答问题:
(1)这是一次 米赛跑;
(2)(2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 ; (4)甲到达终点时,乙离终点还有 米。

二、选择题
1.已知点(1-a,a+2)在第二象限,则a 的取值范围是( ) A .a>-2 B. -2<a <1 C a<-2 D a>1 2.函数
562+-=x x y 中自变量x 的取值范围是( )
A .全体实数 B.0≠x
C 0〉x
D 0〈x
3.在平面直角坐标系中,点),(b a Q 在第四象限内,则点),(a b P 在( ) A .第一象限 B 第二象限 C 第三象限 D 第四象限 4.点p (-3,2)关于y 轴对称点的坐标是( )
A.(―3,―2)
B.(3,2)
C.(3,—2)
D.(2,—3)
5.一个矩形的周长为30,则矩形的面积y 与矩形一边长x 的函数关系为( )
A.y ﹦x(15-x)
B.y ﹦x(30-x)
C.y ﹦x(30-2x)
D.y ﹦x(15+x) 6.若点p 在第二象限,且p 点到x 轴的距离为
3,
到y 轴的距离为1,则p 点的坐标是( )A.(-1,
3)
B.(-
3,1)
C.(
3,-1)
D.(1,-
3)
7.下列函数中,自变量取值范围选取错误的是( )
A .
中,x 取全体实数 B .
中,
C .
中,
D .
中,
8.如果每盒圆珠笔有12支,售价18元,那么圆珠笔的售价y (元)与圆珠笔的支数x 之间的
函数关系式是( )A .
B .
C .
D .
9.函数
21
3+=
x y 的自变量x 的取值范围是 ( ) A .31-≠x B .x ≠一3 C .x 取任意实数 D.3
1
->x
10.函数
x y -=2的自变量x 的取值范围是 ( )
A .x<2
B .x ≤2 C. x ≥2 D .x >2 三、解答题
1.图17—4是北京市某日的气温变化图,从图中我们可以获得信息,例如:
(1)这天2时的气温是4℃; (2)这天的最高气温为11.8℃; (3)这天的最低气温是1.8℃;
(4)这一天中,从凌晨4时到14时气温在逐渐升高. 除以上4条信息外,请你从图中再写出4条信息来.
答:①_______________________________________________________ ②___________________________________________________________ ③___________________________________________________________ ④___________________________________________________________
2.等腰△ABC 的周长为10cm ,底边BC 的长为ycm,腰AB 的长为xcm.
(1)写出y 关于x 的函数关系式 (2)求x 的取值范围 (3)求y 的取值范围 (4)画出函数的图象。

相关文档
最新文档