北师大版-数学-九年级上册-文本-对角线互相垂直的四边形的面积

合集下载

北师大版九年级数学上册第一章四边形1矩形及其性质

北师大版九年级数学上册第一章四边形1矩形及其性质

③矩形的四个角都是直角;
④矩形的对角线相等.
教师讲评
注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过对称中心
的任意直线可将矩形分成全等的两部分.
(2)矩形也是轴对称图形,有两条对称轴(通过对边中点的直线).对
称轴的交点就是对角线的交点(即对称中心).
(3)矩形具有平行四边形的所有性质.矩形的性质可以从三个方面看:
点O.点 E,F 分别是AO,AD的中点,连接EF,则△AEF的周长为(
)
A.12
B.18
C.20
D.16
典例精讲
【题型一】利用矩形的性质求线段的长度
例 2: 如图,在矩形 ABCD中,对角线 AC,BD 相交于点O,已知
∠AOB=120°,AB=1,则BC 的长为

.
典例精讲
【题型二】利用矩形的性质求角度
九年级北师上册
2 矩形的性质与判定
第1课时 矩形及其性质
1、通过自主探究掌握矩形的概念和矩形的性质定理,会用
矩形的性质定理进行推导证明,发展学生的分析能力.
2.了解矩形既是中心对称图形又是轴对称图形,经历探索矩形
的概念和性质的过程,发展学生合情推理的意识.
3.在观察、测量、猜想、归纳、推理的过程中,体验数学活动充
(2)已学过的直角三角形性质有①直角三角形两个锐角互余;②直角三角
形两条直角边的平方和等于斜边的平方;③在直角三角形中,如果一个
锐角等于30°,那么它所对的直角边等于斜边的一半.
(3)直角三角形斜边上的中线性质可以用来解决有关线段倍分的问题.
典例精讲
【题型一】利用矩形的性质求线段的长度
例 1: 如图,在矩形ABCD中,AB=12,BC=16,对角线AC,BD相交于

北师大版九年级数学上册第一章特殊平行四边形单元测试

北师大版九年级数学上册第一章特殊平行四边形单元测试

北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。

对角线互相垂直的四边形的面积---例题

对角线互相垂直的四边形的面积---例题

对角线互相垂直的四边形的面积
对角线互相垂直的四边形的面积等于它的两条对角线长的积的一半。

下面我们证明这个结论。

已知:四边形ABCD 中,对角线AC BD ⊥于E ,如图1。

求证:S AC BD ABCD 四边形=⋅12
图1
证明:在四边形ABCD 中,于E
所以S ABCD 四边形
=+=⋅+⋅=+=⋅S S AC BE AC ED AC BE ED AC BD ABC ACD
∆∆1212
12
12()
对于对角线互相垂直的四边形的面积求解问题,这是一个十分方便的公式。

例1. 菱形ABCD 的对角线AC 、BD 相交于O ,∆AOB 的周长为3360+∠=︒,ABC ,求菱形ABCD 的面积。

(如图2)
图2
例2. 等腰梯形ABCD的两条对角线互相垂直,垂足为O,梯形的高为a,求梯形ABCD的面积。

图3
例3. 如图4,已知:在∆ABC中,BD和CE分别是两边上的中线,并且812,求∆ABC的面积。

,,
BD CE BD CE
⊥==
图4
例4. 如图5,已知:在边长为4cm的正方形ABCD中,取CD的中点E,G在BC上,F在AD 上,GF AE
⊥,求四边形AGEF的面积。

图5
例5. 已知梯形ABCD中,AD BC AD BC AC BD
//,,,,
====
1434,如图6,求
S
A B C D
梯形。

图6。

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

北师大版九年级数学上册第一章特殊平行四边形

北师大版九年级数学上册第一章特殊平行四边形

为什么?
A
D
证明:矩形ABCD中
∵AB∥CD
O
∴∠OAB=∠OCD,
B
C
∠OBA=∠ODC △ABO与△DCO中
∵ ∠OAB=∠OCD,AB=CD,∠OBA=∠ODC
∴ △ABO ≌△DCO, ∴AO=OD,BO=CO
∴AO+OC=BO+OD,即:AC=BD
如图:矩形的对角线 A
D
相交于点E,你可以找
3、进一步体会证明的必要性以及计算与证明在 解决问题中的作用。
4、体会证明过程中所运用的归纳、概括以及转 化等数学思想方法。
5、培养学生实事求是的辩证唯物主义思想及积 极探究的思想意识。
三、教学指导:
本节课共分为三课时内容,教 学过程中可分为三大步完成,即: 理论、方法积累、思路梳理——合 作交流,互助探索学习——自主探 索,拓展延伸,归纳新知。这充分 体现了螺旋上升的原则。
首先,我们应培养学生很好地掌握已熟悉 的逻辑方法,包括证明的思路和证明过程的 准确表达。
其次,对不同证明方法的探索可以提高学 生的逻辑思维水平。因此,在证明了一个命 题以后,同学们还应该思考是否还有其他的 证明方法,如辅助线的添加方法唯一吗?还 可以从什么角度解决问题……。
五、评价建议:
1、关注学生探索结论、分析思路和方法的 过程。

角形斜边上的 中线等于斜边 的一半。
B
D
具有平行四边形 所有边的性质
矩形 四个角都是直角 性质:
对角线相等且 互相平分
证明:过程
解答过程 :
特殊平行四边形(二)
在认真学习第一课时的基础上,本节课的教学 可按以下环节逐步展开:
1.知识回顾——回想知识,加强记忆、理解。 2.新课引入——动手实践,发现新知。 3.新课讲解——互助合作,探索性质,判别。 4.训练应用——强化训练,加深应用。 5.拓展延伸——类比菱形,探索正方形。 6.小 结——综合思想,归纳思路。 7.作 业——综合知识,强化训练。 下面就每个环节,逐层分析。

099.北师大版九年级数学上册2.3 第2课时 利用一元二次方程解决面积问题1-教案

099.北师大版九年级数学上册2.3 第2课时 利用一元二次方程解决面积问题1-教案

第2课时 利用一元二次方程解决面积问题1.能够建立一元二次方程模型解决有关面积的问题;(重点、难点)2.能根据具体问题的实际意义检验结果的合理性.(难点)一、情景导入如图,在宽为20m ,长为32m 的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m 2,道路的宽为多少?二、合作探究探究点:利用一元二次方程解决面积问题如图所示,某幼儿园有一道长为16m 的墙,计划用32m 长的围栏靠墙围成一个面积为120m 2的矩形草坪ABCD ,求该矩形草坪BC 边的长.解析:若设BC 长为x m ,则宽AB 可表示为32-x 2m ,由矩形的面积公式“面积=长×宽”可列方程求解.解:设矩形草坪BC 边的长为x m ,则宽AB 为32-x 2m. 根据题意,得x ·32-x 2=120. 解得x 1=12,x 2=20.又由题意知BC ≤16,∴x =20不符合题意,应该舍去.∴该矩形草坪BC 边的长为12m.方法总结:(1)结合图形分析数量关系是解决面积等几何问题时的关键;(2)注意检验一元二次方程的根是否符合题意.将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不能,请说明理由.解析:做成的是两个正方形,且已知两个正方形的面积之和,只需设出正方形的边长或用未知数表示出边长,列方程解答即可.解:设一个正方形的周长为x cm ,则另一个正方形的周长为(20-x )cm.(1)由题意可列方程(x 4)2+(20-x 4)2=17.解此方程,得x 1=16,x 2=4. 所以两段铁丝的长度分别为16cm 和4cm ;(2)由题意可列方程(x 4)2+(20-x 4)2=12, 此方程化为一般形式为x 2-20x +104=0.∵b 2-4ac =(-20)2-4×1×104=-16<0,∴此方程无解.∴两个正方形的面积之和不可能等于12cm 2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

北师大版数学九年级上册第一章特殊平行四边形小结与复习课件

北师大版数学九年级上册第一章特殊平行四边形小结与复习课件

O
又∵△ABO是等边三角形,
B
C
∴OA= OB=AB= 4,∠BAC=60°.
∴AC= BD= 2OA = 2×4 = 8.
考点讲练
∴□ABCD是矩形 (对角线相等的平行四边形是矩形).
∴∠ABC=90°(矩形的四个角都是直角) .
A
D
在Rt△ABC中,由勾股定理,得
AB2 + BC2 =AC2 ,
A
D
(矩形的四个角都是直角)
O
B
C
∴BD = 2AB = 2 ×2.5 = 5.
考点讲练
例3 如图,在矩形ABCD中,对角线AC与BD相交于
点O,过点A作AE∥BD,过点D作ED∥AC,两线相
交于点E. 求证:四边形AODE是菱形;
证明:∵AE∥BD,ED∥AC,
∴四边形AODE是平行四边形.
∵四边形ABCD是矩形,
∴AC=BD,OA=OC= OB=OD= 1 BD,
1 2
AC,
∴OA=OC=O2D,
∴四边形AODE是菱形.
考点讲练
【变式题】如图,O是菱形ABCD对角线的交点,作
BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO
是矩形吗?说出你的理由.
解:四边形CEBO是矩形. 理由如下:已知四边形ABCD是菱形. A
∵DE∥AC,CE∥BD,
A D
B
O
E
C
∴四边形CEBO是平行四边形.
∴四边形CEBO是矩形(有一个角是直角的平行
四边形是矩形).
考点讲练 核心知识点三 正方形的性质和判定
例4 如图,已知在四边形ABFC中,∠ACB=90°,BC 的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;

北师大版初中数学九年级上册知识讲解,巩固练习题:第1讲 菱形

北师大版初中数学九年级上册知识讲解,巩固练习题:第1讲 菱形

菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、(2018•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2018春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2018春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(2018•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. (2018•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()二.填空题7. (2018•江西三模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______ 2cm.10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (2018•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.(2018•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.【答案与解析】一.选择题1.【答案】B ;2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示:∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴,∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P ,∴PA=PD ,∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.5.【答案】A.【解析】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.6.【答案】A;【解析】阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积==.二.填空题7.【答案】.;【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等.9.【答案】【解析】由题意∠A =60°,DE10.【答案】5;;2;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为152⨯⨯=. 11.【答案】512; 【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题13.【解析】证明:(1)∵△ACF 是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF ,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,∴四边形AMCF是平行四边形,∵AM∥FC,∠ACB=∠ACF=60°,∴∠AMC=60°,又∵∠ACB=60°,∴△AMC是等边三角形,∴AM=MC,∴四边形AMCF是菱形;(2)∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中∵,∴△ABC≌△MEC(SAS).14.【解析】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF .∴△ABE ≌△CDF .(2)解:∵四边形AECF 为菱形时,∴AE=EC .又∵点E 是边BC 的中点,∴BE=EC ,即BE=AE .又BC=2AB=4,∴AB=BC=BE ,∴AB=BE=AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高可由勾股定理算得为,∴菱形AECF 的面积为2.15.【解析】解:(1)∵AE +CF =2=CD =DF +CF∴AE =DF ,DE =CF ,∵AB =BD∴∠A =∠ADB =60°在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<2∴2244S ≤<S ≤<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中-数学-打印版
初中-数学-打印版 对角线互相垂直的四边形的面积
如果仅知道菱形两条对角线的长,你能求出菱形的面积吗?
画画图,想想菱形的对角线有什么性质呢?
不难发现,菱形对角线将菱形分成了四个直角三角形,这四个直角三角形还是全等的呢!(你能证明吗?) 于是菱形面积就等于四个三角形面积之和,
即ABCD 菱形S =ADO △S +ABO △S +CDO △S +BCO △S =4ADO △S =4(DO AO ⋅⋅21)=4(BD AC 212121⋅⋅)=BD AC 21⋅.
原来菱形的面积还可以由对角线求出呢!
回顾一下解决问题过程吧。

我们解决问题的切入点是利用菱形对角线互相垂直平分的特点,那么如果我们弱化条件,例如将条件改为“对角线相互垂直”或者“对角线相互平分”,此时的四边形的面积还能利用对角线乘积的一半表示吗?
先看看“对角线相互垂直”的情况吧。

这时和菱形情况类似,四边形也被对角线分成了四个直角
三角形,那么ABCD 四边形S =ADO △S +ABO △S +CDO △S +BCO
△S =21AO×OD +21AO×BO +21OC×OD +21BO×OC =21
AO×(OD +
OB)+21OC(OD +OB)=21(AO+OC)×BD =21
AC×BD.
于是我们得出的结论是:对角线互相垂直的任意四边形的面积等于对角线乘积的一半。

“对角线相互平分”的情况又如何呢?此时的四边形是什么四边形?还有“面积等于对角线乘积的一半”的结论吗?这个小问题就留给你思考吧。

相关文档
最新文档