北师大版数学九年级上册知识点总结
北师大版数学九年级(上册)(全册)复习

北师大版九年级数学上册第四章《图形的相似》知识点总结

北师大版九年级数学上册第四章《图形的相似》知识点总结
一.比例线段:
1两条线段的比是 的比。
将“形”的问题转化为“数”的问题。
2.成比例线段:四条线段a,b,c,d 中,如果 ,那么这四条线段a,b,c,d 叫做成比例线段。
比例线段是有顺序的,即a,b,c,d 是成比例线段,则是a:b=c:d
3.如果c
b b
a ,那么
b 叫做a 和
c 的比例中项; 4.比例的性质:
(1)基本性质:如果 ,那么 。
()等比性质:如果 ,那么 5.平行线分线段成比例定理:
如图,321////l l l ,则可得比例式: DE//AB,则所得比例式:
6.黄金分割: 黄金比 二.相似三角形:
1.相似三角形的判定方法:
(1)两角对应 的两个三角形相似。
(2)两边对应 且 相等的两个三角形相似。
(3)三边 的两个三角形相似
2.相似三角形的性质:
3.位似图形:
4.位似图形有同向和 两种。
在坐标系中,图形上点的坐标都乘以k 时,得到的图形与原图形关于原点位似,且位似比是|k|.
5.判定两个三角形相似的常用步骤:
先通过已知,平行、对顶角、公共角等,看能否找到两对相等的角; 若只能找到一对相等的角,再分析夹这个角的两边是否成比例; 若找不到相等的角,就分析三边是否成比例。
5.常见的基本模型有 :
D E F
1l 3
l 2
l m n
B A C。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
北师大版《数学》(九年级上册)知识点总结(打印版)

北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一 判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
2020北师大版九年级数学上册 反比例函数知识点总结

【文库独家】北师大版九年级上册第六章 反比例函数知识点总结知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠), ③k y x =⋅(定值)(0k ≠); ⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小“,就会与事实不符的矛盾。
九年级数学上册第三章知识点总结(北师大版)

九年级数学上册第三章知识点总结(北师大版)一、有理数的概念与性质1. 有理数的定义有理数是整数和分数的统称,包括正整数、负整数、零和所有的正负分数。
2. 有理数的比较有理数的比较可以利用数轴进行,较大的数在数轴上对应的点靠右,较小的数在数轴上对应的点靠左。
3. 有理数的运算性质有理数的加法、减法、乘法、除法满足封闭性、结合律、交换律、分配律。
4. 有理数的约分与化简将有理数的分子和分母同时除以它们的最大公约数,可以得到最简形式的有理数。
二、实数的表示1. 实数的性质实数包括有理数和无理数,实数的运算满足封闭性、传递性、对称性等性质。
2. 实数的表示方法实数可以用有理数表示,也可以用无理数表示。
(1)有理数的表示有理数可以用分数的形式表示,也可以用小数表示。
(2)无理数的表示无理数无法用两个整数的比值表示,可以用无限不循环小数或根式表示。
3. 无理数的性质无理数包括无限不循环小数和无限循环小数两种。
4. 实数的区间表示法实数可以用区间表示法表示在数轴上的连续的一段。
三、实数的运算1. 实数的加法与减法实数的加法满足交换律、结合律、存在单位元、存在逆元等性质。
实数的减法即加法的逆运算。
2. 实数的乘法与除法实数的乘法满足交换律、结合律、存在单位元、存在逆元等性质。
实数的除法即乘法的逆运算。
3. 乘方运算实数的乘方运算即将一个实数连乘若干次。
4. 实数的分配律实数的乘法对于加法满足分配律。
四、实数的应用实数广泛应用于各个领域,包括自然科学、社会科学和工程技术等。
1. 数学建模实数在数学建模中起到了重要作用,通过实数的运算可以描述和解决实际问题。
2. 统计学与概率论实数在统计学和概率论中被广泛应用,例如描述数据的均值、方差以及概率的计算等。
3. 物理学与工程学实数在物理学和工程学中有着广泛的应用,例如描述物体的位置、速度、加速度等物理量。
4. 经济学与金融学实数在经济学和金融学中也有重要作用,例如描述价格、收益率、利率等。
北师大版九年级上册数学全册各章知识点汇总

最新新北师大版九年级数学(上册)知识点汇总
第一章特殊平行四边形
第二章一元二次方程
第三章概率的进一步认识
第四章图形的相似
第五章投影与视图
第六章反比例函数
第一章特殊平行四边形
1.1菱形的性质与判定
菱形的定义:一组邻边相等的平行四边形叫做菱形.
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角.
菱形是轴对称图形,每条对角线所在的直线都是对称轴.
※菱形的判别方法:一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四条边都相等的四边形是菱形.
1.2 矩形的性质与判定
※矩形的定义:有一个角是直角的平行四边形叫矩形
.矩形是特殊的平行四边形.
..
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角.(矩形是轴对称
图形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义).
对角线相等的平行四边形是矩形.
四个角都相等的四边形是矩形.
※推论:直角三角形斜边上的中线等于斜边的一半.
1.3 正方形的性质与判定
正方形的定义:一组邻边相等的矩形叫做正方形.
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质.(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:有一个内角是直角的菱形是正方形;
邻边相等的矩形是正方形;
对角线相等的菱形是正方形;
对角线互相垂直的矩形是正方形.
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形.
※
※
鹏翔教图3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学知识点总结
第一章 证明(二)
一、全等三角形的判定:SSS 、SAS 、AAS 、ASA 、HL
二、等腰三角形
1、等腰三角形“三线合一”顶角的平分线、底边上的中线、底边上的高
2、等腰三角形:等边对等角,等角对等边。
三、等边三角形
(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)“三线合一” 四、直角三角形
1、直角三角形的两个锐角互余
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半
4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2
2
2
c b a =+ 5、常用关系式:
由三角形面积公式可得:两直角边的积=斜边与斜边上的高的积
五、角的平分线及其性质与判定
1、角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
(如图1所示,AO=BO=CO )
3、角的平分线的判定定理:
在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。
六、线段垂直平分线的性质与判定
1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
2、线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
3、定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(如图2所示,OD=OE=OF)
线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
A C
B O 图1 图2 O A C
B
D E F
第二章 一元二次方程
一、一元二次方程
1. 一元二次方程定义
只含有一个未知数x 的整式方程,并且都可以化为02
=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程. 一元二次方程必须同时满足以下三点; (1)方程是整式方程. (2)它只含有一个未知数.
(3)未知数的最高次数是2,即化简为ax 2
+bx+c=0时,a ≠0. 2. 一元二次方程的一般形式
)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,
等式右边是零,其中2
ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法
1、直接开平方法
直接开平方法适用于解形如b a x =+2
)(的一元二次方程。
当0≥b 时,b a x ±=+,
b a x ±-=;当b<0时,方程没有实数根。
2、配方法
例:解方程:x 2+8x ―9=0 解:移项,得:x 2+8x=9
配方,得:x 2+8x+42=9+42 (两边同时加上一次项系数一半的平方)
即:(x+4)2=25 开平方,得:x+4=±5
即:x+4=5 ,或x+4=―5 所以:x 1=1,x 2=―9
3、公式法
一般地,对于一元二次方程ax 2+bx+c=0 (a ≠0),当b 2-4ac ≥0时,它的根是 x=-b ±b 2-4ac 2a
注意:当b 2-4ac<0时,一元二次方程无实数根。
例:解方程:x 2―7x ―18=0
解:这里a=1,b=―7,c=―18
∵b 2-4ac=(―7)2―4×1×(―18)=121>0
∴x=7±1212×1
即:x 1=9, x 2 =―2
4、因式分解法
(1) x-2=x(x-2) (2)x2+3x+2=0
解:x-2-x(x-2)=0 解:(x+1)(x+2)=0
(x-2)(1-x)=0 x+1=0或x+2=0
x-2=0或1-x=0 x1=-1或x2=-2
∴x1=2,x2=1
第三章证明(三)
二、三角形中的中位线
1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3、常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
三、有关四边形四边中点问题的知识点:
1.顺次连接任意四边形的四边中点所得的四边形是平行四边形;
2.顺次连接矩形的四边中点所得的四边形是菱形;
3.顺次连接菱形的四边中点所得的四边形是矩形;
4.顺次连接等腰梯形的四边中点所得的四边形是菱形;
5.顺次连接正方形的四边中点所得的四边形是正方形; 结论:
1.顺次连接对角线相等的四边形四边中点所得的四边形是菱形;
2.顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;
3.顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;
第四章 视图与投影
1、三视图:主视图、左视图、俯视图 长对正、高平其、宽相等 1、投影
投影:物体在光线的照射下,在地面上或墙壁上留下它的影子,这就是投影现象。
平行投影:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
中心投影:探照灯、手电筒、路灯和台灯的光线可以看成是从一点发出的,像这样的光线所形成的投影称为中心投影。
2、视点、视线、盲区
第五章 反比例函数
1、反比例函数的概念
一般地如果两个变量x ,y 之间的关系可以表示为x
k
y =(k 是常数,k ≠0)的形式,那么称y 是x 的反比例函数。
反比例函数三种重要的表达式
(1)x
k
y =
(k 为常数,k ≠0) (2)1
-=kx y (k 为常数,k ≠0) (3)k y x =⋅(k 为常数,k ≠0) 2、反比例函数中反比例系数的几何意义
如图,S 矩形OABC =k S △OAB =
2
k
反比例函数
x
k
y =
(0k ≠) k 的符号 0k > 0k <
图像
取值范围 x 的取值范围是0x ≠,
y 的取值范围是0y ≠
x 的取值范围是0x ≠,
y 的取值范围是0y ≠
经过象限 两个分支分别在第一、第三象限
两个分支分别在第二、第四象限
性质 (增减性)
在每个象限内,y 随x 的增大而减小。
在每个象限内,y 随x 的增大而增大。
4、反比例函数解析式的确定
确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数x
k
y =
中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
第六章 频率与概率
概率的求法:
1、一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=
n
m 2、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
3、树状图法
通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
) 4、频数与频率
九下第一章直角三角形边角关系一、直角三角形的边角关系
1. 中,∠C=90°
tanA= sinA = cosA=
sinA=cosB=
a
c
,cosA=sinB=
b
c
,tanA==
a
b
,tanB=
b
a
.
二、特殊角的三角函数值
三角函数
三角
函数值
角α
α
sinα
cosα
tan
30°2
1
2
3
3
3
45°
2
2
2
2
1
60°
2
3
2
1
3
三、三角函数应用题相关概念
1、坡度:坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,即i=
l
h
2、坡角:坡面与水平面的夹角叫做坡角,用字母α表示, 则tanα=i=
l
h
3、A
tan的值越大,梯子越陡。
4、仰角和俯角
5、方向角
斜边
的对边
A
∠
斜边
的邻边
A
∠
邻边
的对边
A
∠。