Segmented information dispersal (SID) for efficient reconstruction in fault-tolerant video

合集下载

联邦信息处理标准 -回复

联邦信息处理标准 -回复

联邦信息处理标准-回复联邦信息处理标准(FIPS)是美国政府机构国家标准与技术研究院(NIST)制定的一系列标准,旨在确保政府机构和合同商在处理信息时的安全性和一致性。

这些标准涵盖了信息安全、密码学、数据加密、网络安全等多个方面,是保护信息系统和数据安全的重要准则。

下面将一步一步回答有关FIPS的问题,并对其在信息处理中的重要性进行探讨。

第一步:FIPS的概述FIPS标准是由美国国家标准与技术研究院制定的一系列标准,最初于1977年发布。

随着技术的不断发展和信息安全威胁的不断增加,FIPS标准不断更新和修订,以适应当前的需求。

该标准的主要目的是确保联邦政府的信息系统和数据得到保护,同时还可以为私营部门等其他机构提供一个安全的框架。

第二步:FIPS的主要内容FIPS涵盖了众多领域的标准,其中包括:密码学算法和技术、数据加密标准、电子认证、访问控制、网络安全等。

其中,密码学算法和技术是FIPS 的核心内容之一,它涉及到了数据的机密性、完整性和可用性,以及对数据进行传输和存储时的保护。

另外,FIPS还包括了一些与硬件和软件相关的标准,旨在确保信息系统的安全性和一致性。

第三步:FIPS的重要性FIPS标准对于信息处理的重要性不言而喻。

首先,FIPS标准提供了一套安全性要求,可供政府机构和合同商使用,以确保他们的信息系统和数据得到充分的保护。

这些要求不仅可以提高数据的安全性,还可以帮助机构遵守相关的法律和法规,降低信息泄露和数据损坏的风险。

其次,FIPS标准可以为私营部门等其他机构提供一个参考框架,以确保他们的信息系统和数据得到良好的安全保护。

在当今数字化的时代,信息安全对于任何一个组织来说都是至关重要的。

通过遵守FIPS标准,组织可以建立起一个安全的信息处理环境,保护其核心业务和客户数据。

第四步:FIPS的影响FIPS标准对于信息处理的影响是持久的。

首先,FIPS标准的制定和修订是一个持续的过程,随着技术和威胁的变化,标准需要不断更新和适应。

中心化差分隐私定义

中心化差分隐私定义

中心化差分隐私定义1.引言1.1 概述概述部分的内容可以从以下几个方面展开:中心化差分隐私是一种隐私保护方法,旨在平衡数据的有效利用和个人隐私的保护。

在现代社会中,大量的个人数据被不同组织和机构收集和使用,为了保护个人隐私,中心化差分隐私被提出并得到广泛关注。

中心化差分隐私的定义是指在数据处理过程中,通过添加噪声或修改个体数据的方法,使得在数据收集者或数据处理者进行统计分析时,无法准确得到个体的具体信息,从而达到保护个人隐私的目的。

中心化差分隐私的核心思想是通过在数据处理过程中引入噪声,打破数据的准确性和关联性,从而模糊敏感个人信息,防止数据收集者或数据处理者推断出个体的隐私信息。

中心化差分隐私的应用范围广泛,适用于各种数据分析场景,包括但不限于医疗健康数据、金融交易数据、社交网络数据等。

通过采用中心化差分隐私技术,个体的隐私信息可以得到一定程度的保护,同时数据的有效利用和分析也能够得到保证。

本文将对中心化差分隐私的定义、要点以及相关算法进行详细介绍和分析,并探讨中心化差分隐私方法的优势、局限性及未来的发展方向。

希望通过阐述中心化差分隐私的概念和原理,可以增加人们对隐私保护的认识,并促进隐私保护技术在实际应用中的推广和发展。

1.2 文章结构文章结构的目的是为了让读者能清晰地了解整篇文章的布局和内容安排。

通过明确的结构,读者可以更好地理解作者的思路和逻辑,同时也能更方便地查找所需要的信息。

本篇文章的结构主要包括引言、正文和结论三个部分。

引言部分将在文章开始时对中心化差分隐私进行概述,并解释本文的目的和意义。

通过引言的铺垫,读者可以获得一定的背景信息,并对中心化差分隐私有一个初步的了解。

正文部分是本文的重点部分,将详细介绍中心化差分隐私的定义和要点。

其中,2.1节将对中心化差分隐私的定义进行详细解释,包括其基本概念、核心原理和相关概念的定义等内容。

2.2节将重点介绍中心化差分隐私的要点,包括其优势、应用场景、限制条件以及与其他隐私保护方法的比较等方面的内容。

基于矩阵机制的差分隐私连续数据发布方法

基于矩阵机制的差分隐私连续数据发布方法

基于矩阵机制的差分隐私连续数据发布方法
隐私保护和数据发布一直是当今社会关注的焦点问题。

随着网络
信息技术的发展,用户的数据越来越多,这些数据发布也成为当前研
究中的热点话题。

现实世界中,大多数文本数据都是连续性数据,如
位置信息、身份信息和病历等。

考虑到连续数据的特殊性,我们在研
究中提出了一种基于矩阵机制的差分隐私连续数据发布方法,旨在在
连续数据发布的同时保护用户的隐私和数据安全。

首先,将原始数据进行划分并建立矩阵,然后在矩阵的每个单元
格中清洗连续数据,计算矩阵中每个单元格中的差分隐私量,根据差
分隐私量决定矩阵中每个单元格的发布级别,即对连续数据添加噪声,使发布的数据更加模糊,从而保护用户的隐私。

在发布数据之前,我
们需要先确定矩阵维度的范围,即确定每个单元格的大小、每个矩阵
的大小等。

此外,我们还需要确定不同类型的数据的不同发布级别,
以保证发布的数据能够满足用户对隐私保护和数据安全的需求。

通过以上方法,可以有效地发布数据,同时保护用户的隐私。


方法可以用于许多领域,包括位置信息、健康信息、社交网络等,从
而使应用更加灵活,为用户提供更高分辨率的数据发布服务。

总之,本文提出的基于矩阵机制的差分隐私连续数据发布方法可
以有效地发布数据,同时保护用户的隐私,以满足不同应用场景和用
户需求,为社会科学研究提供更有价值的数据。

IEC-61854架空线.隔离层的要求和检验

IEC-61854架空线.隔离层的要求和检验

NORMEINTERNATIONALECEI IEC INTERNATIONALSTANDARD 61854Première éditionFirst edition1998-09Lignes aériennes –Exigences et essais applicables aux entretoisesOverhead lines –Requirements and tests for spacersCommission Electrotechnique InternationaleInternational Electrotechnical Commission Pour prix, voir catalogue en vigueurFor price, see current catalogue© IEC 1998 Droits de reproduction réservés Copyright - all rights reservedAucune partie de cette publication ne peut être reproduite niutilisée sous quelque forme que ce soit et par aucunprocédé, électronique ou mécanique, y compris la photo-copie et les microfilms, sans l'accord écrit de l'éditeur.No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical,including photocopying and microfilm, without permission in writing from the publisher.International Electrotechnical Commission 3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.ch IEC web site http: //www.iec.chCODE PRIX PRICE CODE X– 2 –61854 © CEI:1998SOMMAIREPages AVANT-PROPOS (6)Articles1Domaine d'application (8)2Références normatives (8)3Définitions (12)4Exigences générales (12)4.1Conception (12)4.2Matériaux (14)4.2.1Généralités (14)4.2.2Matériaux non métalliques (14)4.3Masse, dimensions et tolérances (14)4.4Protection contre la corrosion (14)4.5Aspect et finition de fabrication (14)4.6Marquage (14)4.7Consignes d'installation (14)5Assurance de la qualité (16)6Classification des essais (16)6.1Essais de type (16)6.1.1Généralités (16)6.1.2Application (16)6.2Essais sur échantillon (16)6.2.1Généralités (16)6.2.2Application (16)6.2.3Echantillonnage et critères de réception (18)6.3Essais individuels de série (18)6.3.1Généralités (18)6.3.2Application et critères de réception (18)6.4Tableau des essais à effectuer (18)7Méthodes d'essai (22)7.1Contrôle visuel (22)7.2Vérification des dimensions, des matériaux et de la masse (22)7.3Essai de protection contre la corrosion (22)7.3.1Composants revêtus par galvanisation à chaud (autres queles fils d'acier galvanisés toronnés) (22)7.3.2Produits en fer protégés contre la corrosion par des méthodes autresque la galvanisation à chaud (24)7.3.3Fils d'acier galvanisé toronnés (24)7.3.4Corrosion causée par des composants non métalliques (24)7.4Essais non destructifs (24)61854 © IEC:1998– 3 –CONTENTSPage FOREWORD (7)Clause1Scope (9)2Normative references (9)3Definitions (13)4General requirements (13)4.1Design (13)4.2Materials (15)4.2.1General (15)4.2.2Non-metallic materials (15)4.3Mass, dimensions and tolerances (15)4.4Protection against corrosion (15)4.5Manufacturing appearance and finish (15)4.6Marking (15)4.7Installation instructions (15)5Quality assurance (17)6Classification of tests (17)6.1Type tests (17)6.1.1General (17)6.1.2Application (17)6.2Sample tests (17)6.2.1General (17)6.2.2Application (17)6.2.3Sampling and acceptance criteria (19)6.3Routine tests (19)6.3.1General (19)6.3.2Application and acceptance criteria (19)6.4Table of tests to be applied (19)7Test methods (23)7.1Visual examination (23)7.2Verification of dimensions, materials and mass (23)7.3Corrosion protection test (23)7.3.1Hot dip galvanized components (other than stranded galvanizedsteel wires) (23)7.3.2Ferrous components protected from corrosion by methods other thanhot dip galvanizing (25)7.3.3Stranded galvanized steel wires (25)7.3.4Corrosion caused by non-metallic components (25)7.4Non-destructive tests (25)– 4 –61854 © CEI:1998 Articles Pages7.5Essais mécaniques (26)7.5.1Essais de glissement des pinces (26)7.5.1.1Essai de glissement longitudinal (26)7.5.1.2Essai de glissement en torsion (28)7.5.2Essai de boulon fusible (28)7.5.3Essai de serrage des boulons de pince (30)7.5.4Essais de courant de court-circuit simulé et essais de compressionet de traction (30)7.5.4.1Essai de courant de court-circuit simulé (30)7.5.4.2Essai de compression et de traction (32)7.5.5Caractérisation des propriétés élastiques et d'amortissement (32)7.5.6Essais de flexibilité (38)7.5.7Essais de fatigue (38)7.5.7.1Généralités (38)7.5.7.2Oscillation de sous-portée (40)7.5.7.3Vibrations éoliennes (40)7.6Essais de caractérisation des élastomères (42)7.6.1Généralités (42)7.6.2Essais (42)7.6.3Essai de résistance à l'ozone (46)7.7Essais électriques (46)7.7.1Essais d'effet couronne et de tension de perturbations radioélectriques..467.7.2Essai de résistance électrique (46)7.8Vérification du comportement vibratoire du système faisceau/entretoise (48)Annexe A (normative) Informations techniques minimales à convenirentre acheteur et fournisseur (64)Annexe B (informative) Forces de compression dans l'essai de courantde court-circuit simulé (66)Annexe C (informative) Caractérisation des propriétés élastiques et d'amortissementMéthode de détermination de la rigidité et de l'amortissement (70)Annexe D (informative) Contrôle du comportement vibratoire du systèmefaisceau/entretoise (74)Bibliographie (80)Figures (50)Tableau 1 – Essais sur les entretoises (20)Tableau 2 – Essais sur les élastomères (44)61854 © IEC:1998– 5 –Clause Page7.5Mechanical tests (27)7.5.1Clamp slip tests (27)7.5.1.1Longitudinal slip test (27)7.5.1.2Torsional slip test (29)7.5.2Breakaway bolt test (29)7.5.3Clamp bolt tightening test (31)7.5.4Simulated short-circuit current test and compression and tension tests (31)7.5.4.1Simulated short-circuit current test (31)7.5.4.2Compression and tension test (33)7.5.5Characterisation of the elastic and damping properties (33)7.5.6Flexibility tests (39)7.5.7Fatigue tests (39)7.5.7.1General (39)7.5.7.2Subspan oscillation (41)7.5.7.3Aeolian vibration (41)7.6Tests to characterise elastomers (43)7.6.1General (43)7.6.2Tests (43)7.6.3Ozone resistance test (47)7.7Electrical tests (47)7.7.1Corona and radio interference voltage (RIV) tests (47)7.7.2Electrical resistance test (47)7.8Verification of vibration behaviour of the bundle-spacer system (49)Annex A (normative) Minimum technical details to be agreed betweenpurchaser and supplier (65)Annex B (informative) Compressive forces in the simulated short-circuit current test (67)Annex C (informative) Characterisation of the elastic and damping propertiesStiffness-Damping Method (71)Annex D (informative) Verification of vibration behaviour of the bundle/spacer system (75)Bibliography (81)Figures (51)Table 1 – Tests on spacers (21)Table 2 – Tests on elastomers (45)– 6 –61854 © CEI:1998 COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE––––––––––LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISESAVANT-PROPOS1)La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composéede l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.2)Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesuredu possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d’études.3)Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiéscomme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.4)Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer defaçon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.5)La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilitén’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent fairel’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.La Norme internationale CEI 61854 a été établie par le comité d'études 11 de la CEI: Lignes aériennes.Le texte de cette norme est issu des documents suivants:FDIS Rapport de vote11/141/FDIS11/143/RVDLe rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.L’annexe A fait partie intégrante de cette norme.Les annexes B, C et D sont données uniquement à titre d’information.61854 © IEC:1998– 7 –INTERNATIONAL ELECTROTECHNICAL COMMISSION––––––––––OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERSFOREWORD1)The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprisingall national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.2)The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, aninternational consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.3)The documents produced have the form of recommendations for international use and are published in the formof standards, technical reports or guides and they are accepted by the National Committees in that sense.4)In order to promote international unification, IEC National Committees undertake to apply IEC InternationalStandards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.5)The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for anyequipment declared to be in conformity with one of its standards.6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subjectof patent rights. The IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61854 has been prepared by IEC technical committee 11: Overhead lines.The text of this standard is based on the following documents:FDIS Report on voting11/141/FDIS11/143/RVDFull information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.Annex A forms an integral part of this standard.Annexes B, C and D are for information only.– 8 –61854 © CEI:1998LIGNES AÉRIENNES –EXIGENCES ET ESSAIS APPLICABLES AUX ENTRETOISES1 Domaine d'applicationLa présente Norme internationale s'applique aux entretoises destinées aux faisceaux de conducteurs de lignes aériennes. Elle recouvre les entretoises rigides, les entretoises flexibles et les entretoises amortissantes.Elle ne s'applique pas aux espaceurs, aux écarteurs à anneaux et aux entretoises de mise à la terre.NOTE – La présente norme est applicable aux pratiques de conception de lignes et aux entretoises les plus couramment utilisées au moment de sa rédaction. Il peut exister d'autres entretoises auxquelles les essais spécifiques décrits dans la présente norme ne s'appliquent pas.Dans de nombreux cas, les procédures d'essai et les valeurs d'essai sont convenues entre l'acheteur et le fournisseur et sont énoncées dans le contrat d'approvisionnement. L'acheteur est le mieux à même d'évaluer les conditions de service prévues, qu'il convient d'utiliser comme base à la définition de la sévérité des essais.La liste des informations techniques minimales à convenir entre acheteur et fournisseur est fournie en annexe A.2 Références normativesLes documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.CEI 60050(466):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 466: Lignes aériennesCEI 61284:1997, Lignes aériennes – Exigences et essais pour le matériel d'équipementCEI 60888:1987, Fils en acier zingué pour conducteurs câblésISO 34-1:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 1: Eprouvettes pantalon, angulaire et croissantISO 34-2:1996, Caoutchouc vulcanisé ou thermoplastique – Détermination de la résistance au déchirement – Partie 2: Petites éprouvettes (éprouvettes de Delft)ISO 37:1994, Caoutchouc vulcanisé ou thermoplastique – Détermination des caractéristiques de contrainte-déformation en traction61854 © IEC:1998– 9 –OVERHEAD LINES –REQUIREMENTS AND TESTS FOR SPACERS1 ScopeThis International Standard applies to spacers for conductor bundles of overhead lines. It covers rigid spacers, flexible spacers and spacer dampers.It does not apply to interphase spacers, hoop spacers and bonding spacers.NOTE – This standard is written to cover the line design practices and spacers most commonly used at the time of writing. There may be other spacers available for which the specific tests reported in this standard may not be applicable.In many cases, test procedures and test values are left to agreement between purchaser and supplier and are stated in the procurement contract. The purchaser is best able to evaluate the intended service conditions, which should be the basis for establishing the test severity.In annex A, the minimum technical details to be agreed between purchaser and supplier are listed.2 Normative referencesThe following normative documents contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication of this standard, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.IEC 60050(466):1990, International Electrotechnical vocabulary (IEV) – Chapter 466: Overhead linesIEC 61284:1997, Overhead lines – Requirements and tests for fittingsIEC 60888:1987, Zinc-coated steel wires for stranded conductorsISO 34-1:1994, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 1: Trouser, angle and crescent test piecesISO 34-2:1996, Rubber, vulcanized or thermoplastic – Determination of tear strength – Part 2: Small (Delft) test piecesISO 37:1994, Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties– 10 –61854 © CEI:1998 ISO 188:1982, Caoutchouc vulcanisé – Essais de résistance au vieillissement accéléré ou à la chaleurISO 812:1991, Caoutchouc vulcanisé – Détermination de la fragilité à basse températureISO 815:1991, Caoutchouc vulcanisé ou thermoplastique – Détermination de la déformation rémanente après compression aux températures ambiantes, élevées ou bassesISO 868:1985, Plastiques et ébonite – Détermination de la dureté par pénétration au moyen d'un duromètre (dureté Shore)ISO 1183:1987, Plastiques – Méthodes pour déterminer la masse volumique et la densitérelative des plastiques non alvéolairesISO 1431-1:1989, Caoutchouc vulcanisé ou thermoplastique – Résistance au craquelage par l'ozone – Partie 1: Essai sous allongement statiqueISO 1461,— Revêtements de galvanisation à chaud sur produits finis ferreux – Spécifications1) ISO 1817:1985, Caoutchouc vulcanisé – Détermination de l'action des liquidesISO 2781:1988, Caoutchouc vulcanisé – Détermination de la masse volumiqueISO 2859-1:1989, Règles d'échantillonnage pour les contrôles par attributs – Partie 1: Plans d'échantillonnage pour les contrôles lot par lot, indexés d'après le niveau de qualité acceptable (NQA)ISO 2859-2:1985, Règles d'échantillonnage pour les contrôles par attributs – Partie 2: Plans d'échantillonnage pour les contrôles de lots isolés, indexés d'après la qualité limite (QL)ISO 2921:1982, Caoutchouc vulcanisé – Détermination des caractéristiques à basse température – Méthode température-retrait (essai TR)ISO 3417:1991, Caoutchouc – Détermination des caractéristiques de vulcanisation à l'aide du rhéomètre à disque oscillantISO 3951:1989, Règles et tables d'échantillonnage pour les contrôles par mesures des pourcentages de non conformesISO 4649:1985, Caoutchouc – Détermination de la résistance à l'abrasion à l'aide d'un dispositif à tambour tournantISO 4662:1986, Caoutchouc – Détermination de la résilience de rebondissement des vulcanisats––––––––––1) A publierThis is a preview - click here to buy the full publication61854 © IEC:1998– 11 –ISO 188:1982, Rubber, vulcanized – Accelerated ageing or heat-resistance testsISO 812:1991, Rubber, vulcanized – Determination of low temperature brittlenessISO 815:1991, Rubber, vulcanized or thermoplastic – Determination of compression set at ambient, elevated or low temperaturesISO 868:1985, Plastics and ebonite – Determination of indentation hardness by means of a durometer (Shore hardness)ISO 1183:1987, Plastics – Methods for determining the density and relative density of non-cellular plasticsISO 1431-1:1989, Rubber, vulcanized or thermoplastic – Resistance to ozone cracking –Part 1: static strain testISO 1461, — Hot dip galvanized coatings on fabricated ferrous products – Specifications1)ISO 1817:1985, Rubber, vulcanized – Determination of the effect of liquidsISO 2781:1988, Rubber, vulcanized – Determination of densityISO 2859-1:1989, Sampling procedures for inspection by attributes – Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspectionISO 2859-2:1985, Sampling procedures for inspection by attributes – Part 2: Sampling plans indexed by limiting quality level (LQ) for isolated lot inspectionISO 2921:1982, Rubber, vulcanized – Determination of low temperature characteristics –Temperature-retraction procedure (TR test)ISO 3417:1991, Rubber – Measurement of vulcanization characteristics with the oscillating disc curemeterISO 3951:1989, Sampling procedures and charts for inspection by variables for percent nonconformingISO 4649:1985, Rubber – Determination of abrasion resistance using a rotating cylindrical drum deviceISO 4662:1986, Rubber – Determination of rebound resilience of vulcanizates–––––––––1) To be published.。

d-s 法 -回复

d-s 法 -回复

d-s 法-回复数据科学在当今社会中扮演着越来越重要的角色。

它的应用涉及到各个领域,从医疗保健到金融,甚至到社交媒体和流行趋势预测。

在本篇文章中,我将详细介绍数据科学的概念、其在现实生活中的应用以及如何步步为营的进行数据科学工作。

首先,让我们明确数据科学的概念。

数据科学是一门综合性学科,结合了数学、统计学、计算机科学和领域知识,旨在通过对大数据集的分析和解释,发现其中的规律和模式。

数据科学家使用各种工具和技术,包括机器学习、人工智能和数据可视化,来理解和解释大数据中隐藏的信息。

数据科学的应用范围广泛,无处不在。

举例来说,在医疗保健领域,数据科学可以帮助医生和研究人员识别潜在的疾病风险因素,通过对大量病人数据的分析,推断出潜在的症状和病情变化的趋势。

这有助于改善诊断和治疗方法,提高病人的生活质量。

在金融领域,数据科学可以帮助银行和金融机构识别欺诈行为,通过分析海量的交易记录和个人资料,发现潜在的犯罪模式。

这种分析有助于及早发现欺诈行为,并采取相应的措施来防范和减少金融欺诈的发生。

此外,数据科学还可以用于社交媒体分析和流行趋势预测。

通过对社交媒体平台上的大数据进行分析,我们可以了解人们关注的话题和兴趣,并推断出潜在的流行趋势和消费者行为模式。

这对于企业制定市场营销策略和消费者行为研究非常有用。

那么,数据科学家如何步步为营地进行数据科学工作呢?首先,一个数据科学家需要具备数学、统计学和计算机科学方面的扎实基础。

这些基础知识是进行数据分析和建模的基础。

其次,数据科学家需要具备编程技能,能够使用编程语言如Python或R来处理和分析大数据集。

编程技能对于数据清洗和数据可视化非常关键。

在进行数据科学项目时,数据科学家需要遵循一套系统的方法。

这包括定义问题、收集数据、数据清洗和转换、建立模型、评估模型性能和解释结果。

数据科学家应该灵活运用不同的分析工具和技术,根据特定问题的要求选择合适的方法。

此外,一个成功的数据科学家还应该具备沟通和解释复杂信息的能力。

非线性薛定谔方程的五种差分格式

非线性薛定谔方程的五种差分格式

非线性薛定谔方程的五种差分格式非线性薛定谔方程(NLSE)是一类非常重要的和高度发达的信息传输研究的重要模型。

它的出现为很多无线通信的技术发展提供了重要的基础和参照。

目前,非线性薛定谔方程的差分格式已有五种。

它们是恒定折回差分格式(CFD),动态折回差分格式(DRFD),步进步函数差分格式(SDF),连续步函数差分格式(CDF)和多阶进步函数差分格式(MSDF)。

恒定折回差分格式(CFD)是用于解决非线性薛定谔方程的最简单的一种差分格式。

它最初由Lyons发明,是一种非标准的三点迭代形式,但比一般三点迭代形式更有效。

它的优点在于最大限度地减少了计算量,但它的准确性不高,偏离正确的解。

动态折回差分格式(DRFD)是用于解决非线性薛定谔方程的一种改进的差分格式。

它使用了非标准的五点迭代形式,比三点迭代形式更高效,可以很好地跟踪参数变化并准确地加以反映。

它在计算量上比CFD稍大,但其计算结果更加准确,离正确解更近。

步进函数差分格式(SDF)是用于解决非线性薛定谔方程的一种改进的五点迭代格式。

它在数值处理上有更低的计算量,而且能够比动态折回差分格式更准确地产生数值解。

连续步函数差分格式(CDF)是用于解决非线性薛定谔方程的一种七点迭代格式,它可以更准确地模拟无线信号传输状况。

它有较低的运算量,可以获得较高精度的解。

多阶步函数差分格式(MSDF)是用于解决非线性薛定谔方程的一种变阶函数形式,它可以更准确地模拟信号的非线性传输过程,同时具有低的运行复杂性和高的计算精度,减小了计算时间。

总之,非线性薛定谔方程的不同差分格式均有不同的特征,决定了它们之间的特点和性能差异,旨在满足不同信号处理需求。

segment anything 提示的用法 -回复

segment anything 提示的用法 -回复

segment anything 提示的用法-回复Segment Anything 提示的用法Segment Anything 是一种用于分割和划分数据的工具,在数据处理和分析领域中被广泛使用。

它具有强大的功能和灵活的应用方式,可以帮助用户轻松地对各种类型的数据进行切割、过滤和分组。

本文将以Segment Anything 提示的用法为主题,逐步解释其使用方法和实际应用。

首先,我们需要明确一些基本概念和术语。

Segment Anything 的核心概念是“segment”,即一组互相关联的数据。

这些数据可以是同一类别的,也可以是根据某种特定条件所划分的。

一个segment 可以包含一个或多个数据点,每个数据点可以包含多个属性。

在使用Segment Anything 的过程中,我们需要确定segment 的划分依据,并给出相应的过滤条件。

Segment Anything 提供了多种划分方法和过滤条件,以适应不同的应用需求。

其中最常用的方法之一是基于时间的划分。

我们可以根据数据的时间戳将其划分为不同的时间段,例如按天、按周或按月。

这一划分方式适用于时间序列数据的分析和预测。

另外,我们还可以根据其他属性,如地理位置、用户类型等,将数据进行分组和切割。

在使用Segment Anything 进行数据处理时,我们可以先定义一个segment 的模板。

模板是用来描述segment 的属性和过滤条件的规则集合。

通过定义模板,我们可以实现对数据的精确分类和筛选。

例如,假设我们有一个包含销售数据的数据库,我们可以定义一个模板,指定销售额大于1000的数据为一个segment,指定销售渠道为线上的数据为另一个segment。

这样,我们就可以轻松地对数据进行切割和分析,以获得更准确的结果。

Segment Anything 还支持对segment 进行聚合和汇总操作,以便更好地理解数据。

我们可以将多个segment 合并成一个更大的segment,或者在segment 中汇总各个属性的数据。

2024年电信5G基站建设理论考试题库(附答案)

2024年电信5G基站建设理论考试题库(附答案)

2024年电信5G基站建设理论考试题库(附答案)一、单选题1.在赛事保障值守过程中,出现网络突发故障,需要启用红黄蓝应急预案进行应急保障,确保快速处理和恢复。

红黄蓝应急预案的应急逻辑顺序为()A、网络安全->用户感知->网络性能B、网络性能->用户感知->网络安全C、用户感知->网络安全->网络性能D、用户感知->网络性能->网络安全参考答案:D2.2.1G规划,通过制定三步走共享实施方案,降配置,省TCO不包含哪项工作?A、低业务小区并网B、低业务小区关小区C、低业务小区拆小区D、高业务小区覆盖增强参考答案:D3.Type2-PDCCHmonsearchspaceset是用于()。

A、A)OthersysteminformationB、B)PagingC、C)RARD、D)RMSI参考答案:B4.SRIOV与OVS谁的转发性能高A、OVSB、SRIOVC、一样D、分场景,不一定参考答案:B5.用NR覆盖高层楼宇时,NR广播波束场景化建议配置成以下哪项?A、SCENARTO_1B、SCENARIO_0C、SCENARIO_13D、SCENARIO_6参考答案:C6.NR的频域资源分配使用哪种方式?A、仅在低层配置(非RRC)B、使用k0、k1和k2参数以实现分配灵活性C、使用SLIV控制符号级别的分配D、使用与LTE非常相似的RIV或bitmap分配参考答案:D7.SDN控制器可以使用下列哪种协议来发现SDN交换机之间的链路?A、HTTPB、BGPC、OSPFD、LLDP参考答案:D8.NR协议规定,采用Min-slot调度时,支持符号长度不包括哪种A、2B、4C、7D、9参考答案:D9.5G控制信道采用预定义的权值会生成以下那种波束?A、动态波束B、静态波束C、半静态波束D、宽波束参考答案:B10.TS38.211ONNR是下面哪个协议()A、PhysicalchannelsandmodulationB、NRandNG-RANOverallDescriptionC、RadioResourceControl(RRC)ProtocolD、BaseStation(BS)radiotransmissionandreception参考答案:A11.在NFV架构中,哪个组件完成网络服务(NS)的生命周期管理?A、NFV-OB、VNF-MC、VIMD、PIM参考答案:A12.5G需要满足1000倍的传输容量,则需要在多个维度进行提升,不包括下面哪个()A、更高的频谱效率B、更多的站点C、更多的频谱资源D、更低的传输时延参考答案:D13.GW-C和GW-U之间采用Sx接口,采用下列哪种协议A、GTP-CB、HTTPC、DiameterD、PFCP参考答案:D14.NR的频域资源分配使用哪种方式?A、仅在低层配置(非RRC)B、使用k0、k1和k2参数以实现分配灵活性C、使用SLIV控制符号级别的分配D、使用与LTE非常相似的RIV或bitmap分配参考答案:D15.下列哪个开源项目旨在将电信中心机房改造为下一代数据中心?A、OPNFVB、ONFC、CORDD、OpenDaylight参考答案:C16.NR中LongTruncated/LongBSR的MACCE包含几个bit()A、4B、8C、2D、6参考答案:B17.对于SCS120kHz,一个子帧内包含几个SlotA、1B、2C、4D、8参考答案:D18.SA组网中,UE做小区搜索的第一步是以下哪项?A、获取小区其他信息B、获取小区信号质量C、帧同步,获取PCI组编号D、半帧同步,获取PCI组内ID参考答案:D19.SA组网时,5G终端接入时需要选择融合网关,融合网关在DNS域名的'app-protocol'name添加什么后缀?A、+nc-nrB、+nr-ncC、+nr-nrD、+nc-nc参考答案:A20.NSAOption3x组网时,语音业务适合承载以下哪个承载上A、MCGBearB、SCGBearC、MCGSplitBearD、SCGSplitBear参考答案:A21.5G需要满足1000倍的传输容量,则需要在多个维度进行提升,不包括下面哪个()A、更高的频谱效率B、更多的站点C、更多的频谱资源D、更低的传输时延参考答案:D22.以SCS30KHz,子帧配比7:3为例,1s内调度次数多少次,其中下行多少次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Segmented Information Dispersal(SID)for Efficient Reconstruction in Fault-Tolerant Video ServersAriel Cohen Walter A.BurkhardGemini Storage Systems LaboratoryDepartment of Computer Science&EngineeringUniversity of California,San DiegoLa Jolla,CA92093-0114acohen@ burkhard@ABSTRACTThis paper presents a new data organization for disk arrays—Segmented Information Dispersal(SID).SID provides pro-tection against disk failures while ensuring that the recon-struction of the missing data requires only relatively small contiguous accesses to the available disks.SID has a num-ber of properties that make it an attractive solution for fault-tolerant video servers.Under fault-free conditions,SID per-forms as well as RAID5and organizations based on bal-anced incomplete block designs(BIBD).Under failure,SID performs much better than RAID5since it significantly re-duces the size of the disk accesses performed by the recon-struction process.SID also performs much better than BIBD by ensuring the contiguity of the reconstruction accesses. This contiguity property is a very significant factor for video retrieval workloads,as we demonstrate in this paper.We present SID data organizations with a concise representation which enables the reconstruction process to locate efficiently the needed video and check data.KEYWORDS:video server,fault-tolerance,segmented in-formation dispersalINTRODUCTIONAchieving fault-tolerance in disk arrays for video retrieval workloads is one of the challenging problems which need to be addressed by the designer of a large-scale video server. In this paper,we describe a novel data organization which provides an attractive solution for this problem.A storage server for digital video retrieval consists of an array of high-performance disks which is connected to display sta-tions(e.g.personal computers or set-top boxes)over a high-bandwidth network.The disk array may be attached to a tertiary storage device containing additional movies,a copy of the movies on the disk array,and possibly a copy of the check data(i.e.the data used for fault-tolerance purposes). The system uses memory either at the server or at the display stations(or both)for buffering.Naturally,the goal is to serve as many concurrent users as possible given the available re-sources.The workload experienced by the video server is essentially a read-only workload in which the task of the server is to retrieve movies from the disk array for consumption by the display units.Occasionally,a new movie may be copied from the tertiary storage device(or another server)to the disk array,and an existing movie may be erased.The main re-quirement for the server is to replenish the buffers in such a way that buffer starvation or overflow never occur for any of the streams which are being serviced.The buffers typically drain at a rate of1.5–40Mb/s(depending on the compression scheme and parameters used).Our goal is to devise a data organization for the disk array which achieves the following:a large number of concurrent streams,low buffering requirements,load balancing,fault-tolerance without adverse effects on fault-free perfor-mance,andreasonable performance under disk failure;this includes continued service when a disk fails(degraded mode)as well as reconstruction on a spare disk(rebuild mode).During degraded mode operation,data from surviving disks is used to reconstruct the data that is being requested from the failed disk;tertiary storage devices cannot assume responsi-bility for this real-time retrieval task.However,a disk rebuild may be performed by reading the data from a tertiary storage device,thus avoiding the need to increase the load on the surviving disks for the rebuild operation.BASIC PRINCIPLESData LayoutsThe disk array is devoted to video data and check data;sys-temfiles and metadata are stored separately.Movies are di-vided into equal size slices which serve as the basic unit ofaccess to the data;each slice is stored contiguously.The slice size is typically a few hundred KBs.A simple data organization without check data is shown inFigure 1.denotes slice of movie .This round-robin assignment of slices to disks achieves load balancing.If this scheme is used,a disk failure results in a complete loss of service.........................M1.1M1.5M1.6M1.7M1.8M1.2M1.3M1.4M2.1M2.5M2.2M2.6M2.3M2.7M2.4M2.8Figure 1:Slice striping for load balancingFigure 2shows a RAID 3organization [8].denotes fragment of slice of movie ,and denotes the par-ity of the fragments of slice of movie (e.g.).In this example,the disks are dividedinto two parity groups.The data within rectangles is read in parallel by all disks in the group.Note that each group can sustain up to one disk failure.Moreover,no degrada-tion of performance occurs if the parity can be computed fast enough.However,this organization suffers from poor fault-free performance due to the dedicated parity disks which are not utilized under fault-free operation,and the effects of the fine-grained striping (see [3]for a study of this).Figure 3shows a RAID 5organization [8].denotes slice of movie ,and denotes the parity of the slices that appear in the same row.Each of the two parity groups in this example can sustain up to one disk failure.This organiza-tion has good fault-free performance (see [3]),but it suffers from poor performance under failure since an affected par-ity group becomes a bottleneck:the load on the surviving disks doubles because of the need to perform the reconstruc-tion reads in addition to the normal workload.Our proposed organization (SID)addresses this issue.Read SchedulingIn this section we describe one possible read scheduling ap-proach which is based on reading cycles.Other approaches are possible with SID as well.Time during playback is divided into reading cycles during which exactly one slice is read for each stream from some disk (or group in the case of a RAID 3organization).A read-ing cycle concurrently serves a number of groups of streams which we call cohorts .Each stream is a member of exactly one cohort in each reading cycle.We can think of cohorts as tasks to be performed by a circular pipeline.During a read-ing cycle,each disk serves one cohort,and then the cohorts move to the next disk where they will be served during the next reading cycle.The maximum number of streams in a cohort is fixed to per-mit a certain fixed maximum number of streams to be ser-viced.When the number of streams in a cohort is lower thanthis maximum number,we say that the cohort contains one or more free slots .When the display of a new stream needs to be initiated,the system waits until a cohort with a free slot is about to be served by the group where the first slice of the requested movie resides;the new stream is then incorporated into this cohort.When a stream ends,it is dropped from its cohort;this results in a free slot which can be used to initi-ate a new stream.Note that once a stream is assigned to a cohort,it remains a member of that cohort until its display is finished.Figure 4shows examples of reading cycles along with their cohorts in a server with two disks.In this example,a cohort may contain up to 4streams.Cohort 0is served by disk 0during reading cycle ,disk 1during the reading cycle,and disk 0again during reading cycle.Cohort 1is served by disk 1during reading cycle ,disk 0during readingcycle,and disk 1during reading cycle .A new stream ()is incorporated into cohort 1during reading cycle.Note that the order of reads may vary from reading cycle to reading cycle;this flexibility enables us to use seek optimization algorithms.SSS567SSSSSSS7SSSSSSS142376556SS884321SSSS4213Disk 0Disk 1reading cycle reading cycle reading cycle Cohort 0Cohort 1Cohort 0Cohort 1Cohort 0Cohort 1tt+1t+2Figure 4:Reading cyclesDuring each reading cycle,for each stream,the system reads the next slice from the group serving the stream’s cohort into the buffer while consuming the slice which was read in the previous reading cycle.Let the slice display time be (sec-onds);if the reading cycle takes less than seconds,the sys-tem waits until seconds are over before starting the next reading cycle.The maximum amount of time between the retrievals of suc-cessive slices for a stream is called the replenishment latency .Figure 5illustrates this latency.The replenishment latency determines the amount of data that needs to be buffered per stream;hence,reducing this latency is the way to reduce the buffering requirements or increase the number of supportable streams for a give amount of buffering.The replenishment latency is determined by the number of streams in a cohort,seek times,rotational latencies,and slice transfer times.RELATED WORKParity-based schemes for fault-tolerant video servers were studied by Berson,Golubchik and Muntz [1].They stud-ied an approach which is similar under fault-free conditions to the RAID 5approach described above.Under failure,a....................................M1.2.1M1.2.2P1.2M2.4.1M2.4.2P2.4M1.4.1M1.4.2P1.4M2.2.1M2.2.2P2.2M1.2M1.4M2.2M2.4M1.1.1M1.1.2P1.1M2.3.1M2.3.2P2.3M1.3.1M1.3.2P1.3M2.1.1M2.1.2P2.1M1.1M1.3M2.1M2.3Figure 2:RAID 3..................P P P P P PM1.3M1.4M1.7M1.8M1.12M1.11M2.3M2.4M2.7M2.8M2.12M2.11P P P P P PM1.1M1.2M1.5M1.6M1.9M1.10M2.1M2.2M2.5M2.6M2.9M2.10Figure 3:RAID 5reading cycle reading cycle replenishment latency12343241S S S S S S S S Figure 5:Replenishment latencydifferent read scheduling policy is employed for affected par-ity groups:data from all surviving disks in the parity group(i.e.an entire parity stripe which contains a number of video slices and parity data)is read for a stream during a single reading cycle,and this data is consumed during a number of reading cycles.This obviates the need to perform sep-arate reconstruction reads since the data needed to perform the reconstruction is already stored in the buffer.Hence,the load increase incurred by the surviving disks is minimized by exploiting the sequentiality of video playback.However,significant additional buffering for degraded mode operation is required.A disadvantage of this scheme is that there is a transition phase as the parity group switches to degraded mode;during this phase,some of the data is not delivered and consequently “hiccups”occur.The scheme proposed in this paper (SID)provides a smooth transition to degraded mode.Vin,Shenoy and Rao [11]proposed a method which does not rely on error-correcting codes such as parity,but on prop-erties of the video data itself.Their technique is a combi-nation of a compression algorithm and a disk array layout.The compression algorithm partitions the data in such a way that an acceptable (but not perfect)reconstruction of an im-age can be performed when some of the data is not avail-able.The disk array layout ensures that the recovery pro-cess does not impose any additional load on the surviving disks.This method is based on a non-standard compressionscheme which is an adaptation of the JPEG image compres-sion technique which does not exploit the temporal redun-dancy of motion video,and thus it results in poor compres-sion ratios when compared to standard motion video com-pression schemes such as MPEG (note that motion prediction accounts for most of MPEG’s ability to achieve good quality at a low bit-rate.)Such lower compression ratios result in a need to maintain a higher bit-rate which has a detrimental effect on the performance of the server and the number of movies that can be stored.The technique proposed in this paper is oblivious to the nature of the data stored in the disk array,so it works well with MPEG and other standard motion video compression schemes.Parity declustering [5]is a redundancy scheme for reducing the additional load on the surviving disks during the recon-struction of the content of a failed disk.This scheme is tar-geted at transaction processing environments;it is not well-suited for video retrieval workloads.This issue is discussed further in another section below (SID vs.Balanced Incom-plete Block Designs).GOALSOur goals in developing a new data organization for fault-tolerant disk arrays for video are as follows:we desire to obtain RAID 5-like performance under fault-free conditions,reduce the reconstruction load under disk failure while main-taining the access contiguity of the read operations,and pro-vide optimized reconstruction of video data rather than obliv-ious video and check data reconstruction.The last goal is motivated by the fact that only the video data is needed for continued service under failure,and the effi-cient delivery of this data is critical to maintaining reason-able performance under failure.The check data,on the otherhand,is less time-critical—it is needed only for the rebuild process.Since the video retrieval workload is essentially a read-only workload,the rebuild process may even be per-formed by copying the data which existed on the failed disk from tertiary storage without engaging any of the surviving disks.SID achieves the goal of load reduction by reducing the size of the reconstruction reads;this reduces the transfer time which is the dominant component of the replenishment la-tency.The load reduction is illustrated in Figure 6.In thisexample,there are three streams per cohort.,,and denote the three slices read for a cohort during a reading cy-cle.denotes a read performed for reconstruction purposes.When a RAID 5organization is used,the size of the recon-struction reads is the same as the size of the slice reads (re-constructing a slice of bytes requires reading bytes from each of the surviving disks in the parity group.)Hence,a reading cycle under failure is approximately twice as long as a reading cycle under fault-free conditions.With SID,the size of the reconstruction reads will be smaller than the size of the slice reads;this will result in shorter reading cycles.SID under failure:3S RAID 5 under failure:RAID 5/SID fault-free:S 3S 1reading cycle reading cyclereplenishment latencyS 2S 2S 3S 11S S reading cycle S 322S 1S reading cycle replenishment latencyS S 3S 12S S S 231replenishment latencyreading cyclereading cycle RRRRRRR R R R R R Figure 6:Load reduction through smaller reconstruc-tion readsWe can state the problem that we wish to address as fol-lows (see Figure 7):we are given disks containing video data,and we wish to add some check data to each disk (the check data will occupy contiguous spare tracks at the begin-ning or end of the disks)such that the following holds:the data (video and check)is protected against a single disk fail-ure,and the recovery of a slice of bytes of video data (is known in advance)from a failed disk requires reading atmostcontiguous bytes from any surviving disk (we call this property the limited contiguous access length (LCAL)property.)is called the dispersal factor of the data orga-nization.The ratio of the amount of check data to the total amount of data (check and video)is called the redundancy rate of the solution.. . .DataD D D 12n. . .12nC 1C 2C nDataCheckD D D Figure 7:We wish to add check data to the data con-tent of the disks such that protection against a single disk failure is obtained and the LCAL property holds.The goal of SID is to allow reconstruction while requiring only small accesses to the disks.Thus,we wish to maximize the dispersal factor ;on the other hand,we wish to min-imize the redundancy rate.The latter goal runs counter to the former goal,of course.Hence,the problem that needs to be addressed is that of finding a solution which strikes a good balance between the obtained dispersal factor and the required level of redundancy.An obvious upper bound on is.In fact,it is very easy to construct solutions that achieve this upper bound.Fig-ure 8shows an example of such a solution.In this example,each of the disks is divided into four equal size logical seg-ments (the figure only illustrates the segments for disk ;the data belonging to the four segments of disk is de-noted by four different shades of gray.)The segments are -interleaved where is the slice size (-interleaving is used in the general case.)The check portion of each disk contains one segment from each of the other disks (the figureonly shows the locations of the data of disk;the data of the other disks is distributed similarly.)If a slice of bytes on a failed disk needs to be reconstructed,its content can be found in the check portions of the other disks.Each of these disks will provide one fourth of the data,and the recon-struction reads will be contiguous;hence,the LCAL property holds.The disadvantage of this construction is the amount of redundancy that it requires:one half of the storage space is devoted to check data.RAID 5organizations are on the other extreme of the range of solutions.The obtained dispersal factor is 1,while the redundancy rate is ,which is the minimum required for single erasure correction.SEGMENTED INFORMATION DISPERSAL (SID)SID provides a middle ground between the two extremes of duplication and RAID 5.Figure 9shows an example of a SID solution for 5disks which achieves a dispersal factorof 2with a redundancy rate of.In this example,each of the disks is divided into two equal size logical segments(e.g.is divided into and ).The segments are -interleaved where is the slice size (e.g.the first bytes of are in ,the second set of bytes is inDataCheckD D D D D 12354(r bytes)video sliceFigure 8:Highest dispersal by duplication:,,redundancy=1/2,the third set is in ,the fourth is in ,etc.)Note that the sole purpose of the segments is data labeling;no datais rearranged.The-interleaving ensures that a contiguous video slice of bytes will contain equal amounts of data from the two segments of the disk (recall that the disk array is dedicated to video data and check data).2-interleaved)r(=====C 1S 5,1S 2,2S 3,2S 1,1C 2C 32,1S S 4,2S 3,1C 4C 5S 4,11,2S S 5,2D D D D D 12345DataCheckFigure 9:SID layout:,,redundancy=1/3In Figure 9,the content of the check portions of the disks was chosen in such a way that when a video slice from any failed disk needs to be reconstructed,the two halves of the data will be reconstructed from two disjoint pairs of disks.Hence,a dispersal factor of 2is obtained.The size of thecheck portion of each disk in this example is the same as the size of a segment (which is half the size of the data on thedisk);therefore the obtained redundancy rate is.The general problem is illustrated in Figure 10.We are given the video data content of disks,a video slice size ,and a dispersal factor (the set of feasible values for depends on ,of course;we return to this issue below.)Each disk con-tains a number of contiguous video slices.The data on eachdisk is labeled by dividing each disk into-interleaved logical segments (we assume that divides .)For example,in Figure 9each disk contains three video slices of size bytes,and each disk is divided into two -interleaved log-ical segments of size bytes.The goal is to add a check portion to each disk such that contains the XOR of data segments that belong to other disks.The pur-pose of the check data is to enable the recovery of the datain a single failed disk;that is,all the video data in should be recoverable as long as all other disks are available.In addition,the recovery process must have the following special property:during the recovery of any videoslice which belongs to a failed disk,no more thanbytes must be read from any of the surviving disks,and these bytes must be contiguous.This property of the recovery process is the limited contiguous access length (LCAL)property.Theratiois called the redundancy rate of the layout.Note that the LCAL property applies only to the reconstruc-tion of the data portion of a missing fragment.It is possibleto impose a stronger condition and require the recovery pro-cess to satisfy the LCAL property when both the data and the check area of a missing fragment are reconstructed.This problem is discussed in [2].The problem of SID layouts for multiple failures is also discussed in [2].Figure 11shows a larger example with 10disks and a disper-sal factor of 3.When a video slice of bytes from any disk needs to be reconstructed,its three equal size parts (the ones belonging to the three segments of the failed disk)will be reconstructed from three disjoint triples of surviving disks.Hence,each surviving disk will be required to read only bytes.Given a certain number of disks ,we naturally wish to ob-tain a SID data organization with the highest possible disper-sal factor .This maximizes the load reduction and mini-mizes the redundancy rate (recall that the redundancy rate is).It is easy to see that .This is a result ofthe LCAL property:when a slice of size bytes needs to be reconstructed,bytes are read from the check portion of disks,and bytes are read from the data portion ofother disks;all these disks must be different to maintain the LCAL property,so we get a total ofdisks.Therefore,an upper bound on is.In [2]we show that this upper bound can be obtained only for...............qrqr 1D 2D n D . . .n S S S S S S S S S 1,12,1n,11,22,2n,21,q 2,q n,q12q-interleaved . . .12qData Check-interleaved )(D 1D 2D Figure 10:SID layout:=XOR ofdata segments that belong to otherdisksD D D Figure 11:SID layout:,,redundancy=very few values of (,and possibly 57).However,using construction methods which are described in [2],it is possible to construct SID solutions withTable1:SID solutions forsolution solution solution 25725725725(6)72582(3)573673673673683683683683(4)6(7)8468468468468468468478468469478478578578578579578(9)578578the parity group size is 3.By interleaving the parity groups on the disks in a manner similar to that of SID’s segments,we obtain a dispersal factor of.For example,if a video slice of bytes from disk C needs to be reconstructed,onlybytes will be read from each of the otherdisks.Data + Check123124234314D 4D D D 123Figure 12:BIBD layout:dispersal factor=,redundancy=Note that although a dispersal factor of is obtained by the layout of Figure 12,the LCAL property does not hold since the reconstruction reads are not contiguous!Contigu-ous reconstruction accesses cannot be obtained by layouts based on this block design no matter how the parity groups are permuted within the disks.There are few block designs that result in a layout which enables contiguous reconstruc-tion (these are block designs with and a few block designs with ;see [4]for a definition of balanced in-complete block designs and .)There are even fewer block designs that enable contiguous reconstruction while provid-ing acceptable redundancy rates and dispersal factors.SID,on the other hand,provides good solutions for any reasonable number of disks (see Table 1).In the next section,we will see that the inability to provide contiguous reconstruction accesses is a serious deficiency of BIBD layouts for video workloads.This problem is of lesser concern in transaction processing environments since the crit-ical issue for those workloads is the aggregate load increase over many transactions.In the example of Figure 12,one quarter of the transactions would be reconstructed from each of the parity groups;hence,each surviving disk would par-ticipate in the reconstruction of only two thirds of the trans-actions.For video workloads,on the other hand,the most important measure is the length of a reading cycle which is determined by the time it takes to retrieve a few video slices;hence,we need to minimize the reconstruction time per slice.PERFORMANCE RESULTSWe conducted an analytical study which compares the per-formance of various possible data organizations.The diskparameters were based on the performance characteristics of Seagate Elite 9disks.A description of the model and the parameters used can be found in [2].Figure 13shows how the buffering requirement per stream varies with the total number of concurrent streams for a disk array with 12disks and a video consumption rate of 4Mb/s.The figure compares the performance of three data organiza-outs has SID ure,per ure Total Number of StreamsB u f f e r S i z e p e r S t r e a m (K B )Figure 13:SID vs.RAID 3&5:,,redundancy=,video consumption=4Mb/sNote,however,that both RAID 3and RAID 5provide a higher degree of fault-tolerance in this case since they protect against one disk failure per parity group while SID protects against one failure in the entire disk array.For a fixed level of fault-tolerance,SID requires a higher redundancy rate than RAID 3or RAID 5,but it provides a significantly higher level of performance under failure.The same level of fault-tolerance as that of RAID 3or RAID 5can be achieved by dividing the disk array into SID groups in the same man-ner that RAID 3and RAID 5arrays are divided into parity groups.Since a large number of disks is desirable for perfor-mance reasons regardless of the data organization used,and since current and future disks offer a very high capacity,trad-ing some amount of storage space for a significantly higher level of performance under disk failure is very acceptable.Total Number of StreamsBufferSizeperStream(KB)RAID 5 with failureRAID 3 with/without failureSID with failureRAID 5/SID without failureFigure14:SID vs.RAID3&5:,,redundancy=,video consumption=4Mb/sFigure14shows the performance of a disk array with90disks.The redundancy rate for all data organizations is(i.e.the RAID3and RAID5layouts consist of10paritygroups of size9,and the SID layout has a dispersal factorof8.)The impact of using SID in this case is considerablylarger than in the previous case because of the higher disper-sal factor.For example,if we limit the buffer size per streamto1MB,SID can support540streams under failure,whileRAID5can only support360streams.The impact of the dispersal factor is illustrated in Figure15.We see,as expected,that performance improves as the dis-persal factor increases,but diminishing returns are obtainedonce the dispersal factor is high enough to make latenciesother than the transfer time dominate.As mentioned in the SID vs.Balanced Incomplete BlockDesigns section,the most important advantage of SID whencompared to BIBD layouts is the guarantee of contiguousreconstruction reads.Figure16shows the impact of discon-tiguity on the performance.The different curves correspondto different numbers of accesses performed during the recon-struction of a video slice.With SID,only one access is per-formed,but we studied the performance for larger numbersof accesses in order to determine the impact of the disconti-guity exhibited by BIBD layouts.We see that even a smallamount of discontiguity seriously affects the performance.Once the number of accesses increases beyond4,the per-formance becomes even worse than that of RAID5(whichrequires reading larger,but contiguous,pieces ofdata).Number of Streams per DiskRAID 5 with failureSID (q=2)SID (q=4)SID (q=8)SID (q=16)SID (q=256)RAID 5/SID without failureFigure15:Dispersal factor impact:video consump-tion=4Mb/sCONCLUSIONSSID achieves a significant reduction in the size of the recon-struction accesses while maintaining the contiguity of theseaccesses.It strikes a good balance between the obtained dis-persal factor and the required level of redundancy.RAID5organizations require reconstruction accesses which are aslarge as the size of the data to be reconstructed.BIBD or-ganizations achieve a size reduction,but do not generallymaintain contiguity.SID is an attractive data organizationfor fault-tolerant disk arrays when the reconstruction pro-ceeds in units of a predeterminedfixed size.Video workloadshave this property(the reconstruction unit is a video slice.)Our performance study shows the significantly higher levelof performance under failure obtained by SID when com-pared to RAID5or BIBD.Under fault-free conditions,SIDperforms as well as RAID5or BIBD.ACKNOWLEDGEMENTSThis work was supported in part by grants from SymbiosLogic,Wichita,Kansas,and the University of California MI-CRO program.REFERENCES1.Berson,S.,L.Golubchik,and R.R.Muntz.Fault Tol-erant Design of Multimedia Servers.SIGMOD Record,24(2),pp.364–375,1995.2.Cohen, A.Segmented Information Dispersal.Ph.D.Dissertation,Department of Computer Science&En-。

相关文档
最新文档