代数式复习题
专题复习:代数式及整式加减运算

专题复习:代数式及整式加减运算※题型讲练【例1】用代数式表示下列数量关系:(1)比m 多1的数 ;(2)比n 少2的数 ; (3)a 与b 的平方和 . (4)a 与b 的平方的和 . (5)与6y 2的差是x +3的数 .(6)被x 除得商为m 余2和的数是 .变式训练1:1.用代数式表示下列数量关系: (1)a 与b 的倒数和 . (2)a 与b 的平方差 . (3)与2的积为a +b 的数 .2.一个两位数,个位数字是a ,十位数字是b ,如果把它的十位与个位数字交换,则新两位数与原两位数的差是 . 3.右图中阴影部分的面积为________.【例2】把下列代数式分别填入它们所属的集合中:.,π,5,41,17,,12,523222b ac ab x y x x m m ---+--- 单项式集合{ } 多项式集合{ }整式集合{ }变式训练2:1.写出下列各单项式的系数和次数:4332xyπ-的次数是 ,系数是 ; 2.5x 3-3x 4-0.1x +25是______次多项式,最高次项的系 数是_____,常数项是_____,系数最小的项是_____. 3.已知六次多项式-5x 2y m +1+xy 2-6,单项式22x 2n y 5-m的次数也是6,求m ,n 的值.【例3】下列各组中的两项,不是同类项的是( ). A .a 2b 与-6ab 2 B .-x 3y 与2yx 3 C .2πR 与π2R D .35与53变式训练3: 1.若2154b a m -与3a 3b n -m 是同类项,求m 、n 的值.2.合并同类项:(1)5ab -2ab -3ab (2)-5x n -x n -(-8x n )(3)6a 2b +5ab 2-4ab 2-7a 2b(4) 3(x -1)2-2(x -1)3-5(1-x )2+4(1-x )3【例4】先去括号,后合并同类项:(1)3-[(2x -y )+2(y -x ) ] (2)a -{[2(a +b )+3(a -4b )]-4a }(3)2x -2[5a+(7x -2a ) ] (4)x +[2(3-x )-3(4x -1) -9]变式训练4:1.当211-=a 时,求代数式15a 2-{-4a 2+[5a -8a 2-(2a 2-a )+9a 2]-3a }的值.【例5】计算下列各式:(1) (8a-7b)-(5a-4b)-(9b-a)(2) 4x2-[6x-(2x-3)+2x2]变式训练5:1.已知A=x2+2y2-z2,B=-4x2+3y2+2z2,若A+B+C=0,求多项式C.【例6】若(a+b)2+|2b-1|=0,求ab-[2ab-3(ab-1)]的值.变式训练6:1.已知(2a+b+3)2+|b-1|=0,求3a-3[2b-8+(3a-2b -1)-a]+1的值.【例7】设A=x3-2x2+4x+3,B=x2+2x-6,C=x3+2x-3.求x=-2时,A-(B+C)的值.变式训练7:1.有人说代数式(a2-3-3a+a3)-(2a3+4a2+a-8)+(a3+3a2+4a-4)的值与a无关,你说对吗?请说明你得出的结论和理由.。
中考数学专题复习代数式和因式分解

专题2:代数式和因式分解一、选择题1. (2012四川攀枝花3分)下列运算正确的是( ) A .2-B .3±C . (ab )2=ab 2D . (﹣a 2)3=a 62. (2012四川攀枝花3分)已知实数x ,y满足x 40-,则以x ,y 的值为两边长的等腰三角形的周长是( ) A . 20或16 B . 20 C .16 D .以上答案均不对3. (2012四川宜宾3分)将代数式x 2+6x+2化成(x+p )2+q 的形式为( ) A . (x ﹣3)2+11B . (x+3)2﹣7C . (x+3)2﹣11D . (x+2)2+44. (2012四川凉山4分)已知b 5a 13=,则a b a b-+的值是( )A .23B .32C .94D .495. (2012四川凉山4分)下列多项式能分解因式的是( )A .22x y +B .22x y --C .22x 2xy y -+-D . 22x xy y -+ 二、填空题1. (2012四川宜宾3分)分解因式:3m 2﹣6mn+3n 2=. 2. (2012四川广元3分)分解因式:3223m 18m n 27m n -+= 3. (2012四川内江5分)分解因式:34ab ab -=4. (2012四川凉山4分)整式A 与m 2-2mn +n 2的和是(m +n )2,则A=5. (2012四川凉山5分)对于正数x ,规定 1f (x )1x=+,例如:11f (4)145==+,114f ()14514==+,则111f (2012)f (2011)f (2)f (1)f ()f ()f ()220112012++++++++=…… 6. (2012四川巴中3分)已知a 、b 、c 是△ABC 三边的长,且满足关系式a b 0-=,则△ABC 的形状为7. (2012四川内江6分)已知三个数x, y, z,满足442,,,33x y y z z x x yy zz x=-==-+++则=++yzxz xy xyz8.已知P=3xy-8x+1,Q=x-2xy-2,当x ≠0时,3P-2Q=7恒成立,则y 的值为三、解答题1. (2012四川宜宾5分)先化简,再求值:22x 1x x +1x 1x1÷---,其中x=2tan45°.2. (2012四川广元7分)已知12a 1=-,请先化简,再求代数式的值:221a2a 1(1)a 2a4++-÷+-3. (2012四川巴中5分) 先化简,再求值:2211()xx 1(x 1)(x 1)-⋅++--其中1x 2=4. (2012四川资阳7分)先化简,再求值:2a 22a 1a 1a 1a1--⎛⎫÷-- ⎪+-⎝⎭,其中a 是方程x 2-x=6的根.专题3:方程(组)和不等式(组)1. (2012四川绵阳3分)已知a >b ,c≠0,则下列关系一定成立的是( ) A .ac >bc B .ab c c>C .c-a >c-bD .c+a >c+b2. (2012四川攀枝花3分)已知一元二次方程:x 2﹣3x ﹣1=0的两个根分别是x 1、x 2,则x 12x 2+x 1x 22的值为( ) A . ﹣3B . 3C . ﹣6D . 63. (2012四川宜宾3分)分式方程21221=x 3x +3x9---的解为( ) A . 3B . ﹣3C . 无解D . 3或﹣34. (2012四川广安3分)已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a≠lD .a <﹣2 5. (2012四川攀枝花4分)若分式方程:1k x 12+=x 22x---有增根,则k= .6. (2012四川达州3分)若关于x 、y 的二元一次方程组2x y 3k 1x 2y 2+=-⎧⎨+=-⎩的解满足x +y >1,则k 的取值范围是 .7. (2012四川绵阳4分)如果关于x 的不等式组:3x -a 02x -b 0≥⎧⎨≤⎩,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有 个。
中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。
中考复习试题2-代数式

中考复习——代数式一、填空题:1、对代数式 3a 可以解释为 。
2、比 a 的 3 倍小 2 的数是 。
3、单项式-xy 22的系数是 ,次数是 。
4、计算:(-3x 2)3= 。
=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-121211x x 。
5、因式分解:x 2-4= 。
-a +2a 2-a 3= 6、用代数式表示“a 与 b 的差的平方”为x 取值范围是_ _. 8、一个多项式减去 4m 3+m 2+5,得 3m 4-4m 3-m 2+m -8,则这个多项式为 。
9、若 4x 2+kx +1 是完全平方式,则 k = 。
10、如果3m 7x n y+7和-4m 2-4y n 2x是同类项,则x= _____ , y=______ ;这两个单项式的积是______________。
11、请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 . 12、分式-3x-2 ,当x 时分式值为正;当整数x= 时分式值为整数。
13、将连续的自然数1至36按右图的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数的中心的数为a ,用含有a 的代数式表示这9•个数的和为__________. 14、用火柴棒按下图中的方式搭图形. (1)按图示规律填空:(2)按照这种方式搭下去,搭第n 个图形需要______根火柴棒.15、在函数_________132的取值范围是中,自变量x x x y ++= 16、右边是一个有规律排列的数表,请用含n 的代数式(n •为正整数),表示数表中第n 行第n 列的数:______________. 17、若x-1x =7,则x 2+21x的值为18、已知 x 2-ax -24 在整数范围内可分解因式,则整数 a 的值是(填一个),可分解因式为 。
二、选择题(30分)1、下列运算结果正确的是( )①2x 3-x 2=x ②x 3•(x 5)2=x 13 ③(-x )6÷(-x )3=x 3 ④(0.1)-2•10-1=10 (A )①② (B )②④ (C )②③ (D )②③④2、x 2+2(m -1)x +16 是一个完全平方式,m 的值是( ) (A )-3 (B )5 (C )3或-5 (D )-3或53、实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是 ( )A .2a +bB .2aC .aD .b 4、在二次根式45, 2x 3, 11, 54,4x 中,最简二次根式个数是( )。
(易错题精选)初中数学代数式知识点总复习附解析

(易错题精选)初中数学代数式知识点总复习附解析一、选择题1.如果(x2+px+q)(x2-5x+7)的展开式中不含x2与x3项,那么p与q的值是()A.p=5,q=18 B.p=-5,q=18C.p=-5,q=-18 D.p=5,q=-18【答案】A【解析】试题解析:∵(x2+px+q)(x2-5x+7)=x4+(p-5)x3+(7-5p+q)x2+(7-5q)x+7q,又∵展开式中不含x2与x3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n=2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.4.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.5.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b = 故选B .13.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.14.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.15.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g=221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.17.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625.故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18 【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。
七年级上册第四章代数式复习试题

七年级上册第四章代数式复习试题一、选择题1、下列式子中,符合代数式的书写格式的是( )A 、n m 2315B 、2c b a ÷∙C 、xyD 、cd ·32.当a=-2时,代数式-a 2的值是( ) A. 4 B.-2 C. -4 D.23.已知a -b=-2,则代数式3(a-b)2-b+a的值为( )A.10B. 12C. -10D.-124,下列说法正确的是 ( )A .0、b 、x1都是整式 B . B .单项式a 没有系数C .没有加减运算的代数式是单项式D .x 2—2xy —y 2是由x 2、—2xy 、—y 2三项组成.5.设甲数为a ,甲数比乙数小20%,用代数式表示乙数 ( )A .a-20%B .(1-20%)aC .(1+20%)aD .20%-1a6,某校阶梯教室第一排有m 个座位,后面每排比前一排多2个座位,则第n 排的做位数是 ( ) 7,代数式33b a +的意义是( ) A 、a 与b 的立方的和 B 、a 与b 的和的立方C 、a 的立方与b 的立方D 、a 的立方与b 的立方的和8,下列各式中,正确的是( )A 、-1.2a 2b+10512=a b B 、7x+2x=9x 2C 、a-3(-b+c)=a-3b-3cD 、5m+2n-7=5m-(-2n+7)9.下列代数式的值一定是正数的是( )A 、(a+1)2B 、|x+3|C 、1+(-b)2D 、1-(-y)210.已知a 、b 互为相反数,c 、d 互为倒数,|m|=2,则代数式110(a+b)2+3cd-224)(51m cd b a +-+的值为( )A 、2B 、3C 、4D 、511,若x=3a ,y=3x ,则x-y+a 等于( )A 、aB 、10aC 、-5aD 、-a12.5x-2y 的相么数为( )A 、-5x-2yB 、5x+2yC 、2y-5xD 、-2y+5x 13.多项式2a 2b-3a 3b 2+4a 4-8的次数是( ) A .12次 B .4次C .5次D .以上都不对14.合并下列各题中的同类项,得下列结果:(1)4x+3y=7xy;(2)4xy-y=4x;(3)7a-2a+1=5a+1;(4)mn-3nm+2m=4mn;(5)p 2q-q 2p=0;(6)-2x 2+21x 2-x 2=-25x2其中结果正确的是( )A .(3)、(6)B .(5)、(6)C .(2)、(3)、(4)D .(2)、(3)、(4)、(5)15,下列说法正确的是( )A .2a 2-5的项是2a 2和5B .23ca +和3a 2+4ab+b 2都是多项式 C .2x 2y+3xy+z 二次三项式D .2x 4+41和xxy 310+都是整式 16.减去-2x 等于6x 3+3x-9的代数式是( )A .6x 2-9B .6x 2+5x-9C .-6x 2-5x+9D .6x 2+x-917,绝对值小于5的所有整数的和为( ) A.15B.10C.0D.-1018,若2ax 2-=+23x b-4x 2-x+2,则a+b 的值为( )A .-2B .-1C .0D .119,若(x-2)2+1+y +z 2=0,则x 3-y 3+z 3-3xyz=( ) A .7 B .8 C .9 D .10 A .y-x-z B .y-2x C .y+2z D .-(y+2z)21.如果2x a y+21xy 2-31x 3y-31x b y 2=35x 3y+61xy 2,则( )A .a=1,b=3B .a=3,b=1C .a=3,b=2D .a=2,b=322.75a k+m b m与 a k+2b 2为同类项,且k 为非负整数,则满足条件的k 值有( ). A.1组B.2组C.3 组D.无数组二,选择题1.设n 是整数,用n 表示下列各数:(1)偶数: (2)奇数:2.用字母表示:(1)任意一个数加上0(或减去0)等于它本身: (2)任意一个数乘以1(或除以1)等于它本身:3.说出下列各代数式的意义:(1)b a +2:(2)()b a +2:(3)22b a -:(4)()2b a -:4.某车间第一年的产值为a 万元,第二年的产值增加x%,第三年的产值又比第二年增加x%,则第三年的产值为 万元,5.已知圆的周长为6πcm ,那幺这个圆的面积为:6.小红把300元钱按活期存入银行,月利率为0.225%,则8个月后她应得到利7.已知262y x 和nm y x 331-是同类项,则代数式17592--mn m 的值为:8.把下列各代数式的序号填入相应集合的括号内①2a 2b+231ab ;②a-b1;③0 ;④323n m +;⑤-mn 52;⑥2x-3y=5;⑦2a+6abc+3k单项式集合:{ } 多项式集合:{ }二项式集合:{ }三项式集合:{ }整 式集 合:{ }9.代数式-5223bca 是______次单项式,系数为 10.27+(2a 2-6ab-3b 2)=27-( )11.已知:x=-1,y=2,则(x -y)2-x 3+x 2y 2 = . 12.已知:a=21, b=32- 则a 2-2ab+b 2= . 13多项式y-5x 2y 3-x 3+3xy 2是_____次____项式.14.如果(a+b)2+|2b-1|=0,则ab-[2ab-3(ab-1)]=__________15.已知x-xy=20,xy-y=12,则x-y=_______,-2xy+x+y=__________16.一个三位数的百位数字为a ,十位数字比百位数字大3,个位数字比十位17.甲、乙两人同时从A 、B 两地相向而行,甲步行的速度为a 千米/时,乙骑车的速度是甲的2倍还多1千米,若两人出发后6小时相遇,则A 、B 两地的相距___________千米。
中考数学代数式复习专题(附答案)

中考数学代数式复习专题(附答案)一、单选题(共12题;共24分)1.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A. 5%aB. 5%×1000aC. 1000a(1+5%)D. 502.已知,则代数式的值是()A. -1B. 2C. 1D. -73.对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A. 1B. ﹣1C. 2D. ﹣24.某厂去年产值为m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是( )A. ×100%B. ×100%C. ×100%D. ×100%5.若x1和x2为一元二次方程x2+2x-1=0的两个根。
则x12x2+x1x22值为()A. 4B. 2C. 4D. 36.买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A. 4m+7nB. 28mC. 7m+4nD. 11m7.一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A. 12+10b+aB. 12000+10b+aC. 100(12-a-b)+10b+aD. 112+10b+a8.用火柴棒按如图中的方式搭图形,则搭第7个图形所需火柴棒的根数为()A. 28B. 29C. 34D. 359.若m+n=7,2n﹣p=4,则2m+4n﹣p的值为()A. ﹣11B. ﹣3C. 3D. 1810.若a为方程x²-x-5=0的解,则-a²+a+11的值为( )A. 16B. 12C. 9D. 611.观察下列等式:,,,,,,…,根据这个规律…+的末位数字是()A. 0B. 2C. 4D. 612.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共6分)13.若x﹣y﹣1=0,则代数式(y﹣x)2﹣2x+2y+1的值是________.14.若a,b互为相反数,c,d互为倒数,m的平方等于25,则的值是________.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为________.16.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n个图形中小圆圈的个数为________.17.如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边中点得到图(3),按上面的方法继续下去,第n个图形中有________个三角形?18.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞” 那么最终掉入“黑洞”的那个数M是________.三、计算题(共3题;共30分)19. (1)已知=5,=4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值. 20.阅读材料:规定一种新的运算:=ad-bc。
代数式及整式复习

代数式及整式复习一、填空题.1、都用 把 和 连接而成的式子叫做代数式,单 独的一个 或 也是代数式.2、都是 与 的乘积,这样的代数式叫做单项式,单独的一个 或 也是代数式.3、几个 的和叫做多项式, 和 统称为整式.4、单项式中的 叫做这个单项式的系数, 叫做这个单项式的次数.5、在多项式中,每个 叫做多项式的项,一个多项式中, 的次数,叫做这个多项式的次数.6、如果x 与y 互为相反数,当5=x 时,代数式2y xy +的值为 .7、38a 可以解释为 .二、选择题.1、一个两位数的十位数字为x ,个位数字为y ,则这个两位数是( ) A xy B y x + C y x +10 D x +102、下列各式中,不是代数式的是( )A 1-B 32y x - C 957=-x D x x -2 3、下列说法正确的是( )A 1+xy 是单项式 B31+xy 是单项式 C xy 1是单项式 D 3xy 是单项式4、下列代数式中是多项式的有( )h 7,3xy ,1+x ,3-ab ,abc ,352by x -,0A 2个B 3个C 4个D 5个5、多项式522+ab 的次数和项数分别是( )A 3,2B 5,2C 3,3D 5,16、多项式23232--xy y x 的次数和项数分别是( )A 5,3B 5,2C 2,3D 3,3三、指出下列各式中的整式,单项式,多项式.(1)2-x (2)1- (3)y x-2(4)y x -2(5)ab 8 (6)3x (7)5n m + (8)()h b a +21 四、下列代数式有多少项?每一项的系数分别是多少?(1)2232c b a +(2)12222+-+xy y x(3)c a 221-五、下列代数式中,哪些是单项式?哪些是多项式?指出其中单项式的系数,多项式中哪个次数最高?次数是多少?215ab -,532a ,y x 32-,22244b ab b a +-,a -,x y x -+23 单项式: 多项式:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、字母取代数能更准确地反映事物的规律,更具一般性,如用n表示整数,任意偶数可表示成______,任意奇数可表示成______.
2、已知正方形和圆的面积均为s.求正方形的周长l1和圆的周长l2(用含s的代数式表示),并指出它们的大小.
3、某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个。
假设销售单价提高x元,那么销售300个篮球所获得的利润是____________元;这种篮球每月的销售量是___________________个。
(用含x的代数式表示)
4、如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:
(1)菜地的长a=______米,宽b=______米;(2)菜地的面积S=______平方米;
(3)求当x=1米时,菜地的面积.
5、(1)用代数式表示图中阴影部分的面积S.
(2)请你求出当a=2,b=5,h=4时,S的值.
6、已知一个长方体的长为3a,宽为2a,高为h.
(1)用含a,h的代数式来表示该长方体的体积与表面积.
(2)当a=2,h=1/2时,求相应长方体的体积和表面积。
7、如图所示,边长为a、b的两个正方形拼在一起,试写出图中阴影三角形的面积,并求出a=5cm,b=2cm时阴影部分的面积.
7、一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?
(2)如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?
8、水是生产和生活的一种重要资源,为鼓励居民节约用水,某市在生活用水的水费收取上作如下的规定:如果每户居民每月用水在10吨以内(含10吨),则每吨按2.5元的标准收费;如果每户居民的用水超过10吨,则超过部分每吨按4元的标准收费.
(1)小强家在九月份用了16吨水,请求出他家九月份应付水费.
(2)设小强家在十月份用了x吨水,请你为小强算出他家十月份应付的水费.(用含x的代数式表示)
(3)若小强家在十一月份付了39元的水费,请问他家这个月用了多少吨水?。