九年级数学下学期阶段测试试题一无答案

合集下载

湖南省长沙市立信中学2023-2024学年九年级下学期第一次月考数学试题(无答案)

湖南省长沙市立信中学2023-2024学年九年级下学期第一次月考数学试题(无答案)

长沙市立信中学2023-2024学年第二学期第一次核心素养初三数学学科试卷时量:120分钟 总分:120分注意事项:1.答题前,请先将自己的姓名、班级、考场号、座位号填写清楚;2.必须在答卷上答题,在草稿纸、试题卷上答题无效;3.请注意卷面,保持字体工整、笔迹清晰、卷面清洁;4.答卷上不准使用涂改液、涂改胶和贴纸一、单选题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10小题,每小题3分,共30分)1.春节期间,贴春联、送祝福一直是我们的优良传统,下列用篆书书写的春联中“五福临门”四个字,其中可以看成中心对称图形的是()A .B .C .D .2.下列运算结果正确的是( )A .B .C .D .3.如图的几何体,从左面看,得到的平面图是()A .B .C .D .4.在党的二十大报告中总结了新时代十年的非凡成就,包括我国建成世界上规模最大的社会保障体系,基本养老保险覆盖亿人,其中亿用科学记数法可表示为( )A .B .C .D .5.如图,直线l 1∥l 2,l 3与l 1、l 2分别相交于A 、C 两点,BC ⊥l 3交l 1于点B ,若,则∠2的度数为( )A .20°B .30°C .40°D .50°6.如图,将△ABC 绕点A 逆时针旋转角α()得到△ADE ,点B的对应点D 恰好落在BC 边上,左面正面326a a a⋅=()32628aa =()211a a a +=+()32a a a a +÷=10.410.4810.410⨯910.410⨯81.0410⨯91.0410⨯170∠=︒0180α<<︒2C BAl 3l 2l 1若DE ⊥AC ,,则旋转角α的度数是( )A .40°B .50°C .60°D .70°(第6题图)(第9题图)(第10题图)7.2023年9月5日是第八个“中华慈善日”,主题为“携手参与慈善,共创美好生活”.某校为了响应中华慈善总会的号召,举行捐款活动。

湖南省长沙市开福区青竹湖湘一外国语学校2019-2020学年初三下学期第一次月考数学试卷 解析版

湖南省长沙市开福区青竹湖湘一外国语学校2019-2020学年初三下学期第一次月考数学试卷   解析版

2019-2020学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(下)第一次段考数学试卷一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.2.不等式组的解集在数轴上表示为()A.B.C.D.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n25.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为78.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>211.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.012.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8二.填空题(共6小题)13.分解因式:x4﹣4x2=.14.在函数y=中,自变量x的取值范围是.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.参考答案与试题解析一.选择题(共12小题)1.下列实数中,是无理数的是()A.0B.﹣3C.D.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、0是有理数,故A错误;B、﹣3是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.2.不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣2≤0,得:x≤1,则不等式组的解集为﹣1<x≤1,故选:B.3.下列立体图形中,俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的上面看物体,所得到的图形,分析每个几何体,解答出即可.【解答】解:A、圆柱的俯视图是圆;故本项不符合题意;B、圆锥的俯视图是圆;故本项不符合题意;C、立方体的俯视图是正方形;故本项符合题意;D、球的俯视图是圆;故本项不符合题意.故选:C.4.若m>n,下列不等式不一定成立的是()A.m+3>n+3B.﹣3m<﹣3n C.>D.m2>n2【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加3,不等号的方向不变,故A正确,不符合题意;B、不等式的两边都乘以﹣3,不等号的方向改变,故B正确,不符合题意;C、不等式的两边都除以3,不等号的方向不变,故C正确,不符合题意;D、如m=2,n=﹣3,m>n,m2<n2;故D错误,符合题意;故选:D.5.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.6.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.7.下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【分析】事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.【解答】解:A.打开电视机,正在播放“张家界新闻”是随机事件,故A错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B错误;C.两组数据平均数相同,则方差大的更不稳定,故C错误;D,数据5,6,7,7,8的中位数与众数均为7,正确.故选:D.8.如图,在△ABC中,D,E分别是边AB,AC的中点,△ADE和四边形BCED的面积分别记为S1,S2,那么的值为()A.B.C.D.【分析】根据已知可得到△ADE∽△ABC,从而可求得其面积比,则不难求得的值.【解答】解:根据三角形的中位线定理,△ADE∽△ABC,DE:BC=1:2,所以它们的面积比是1:4,所以=,故选:C.9.如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是(A.15m B.20m C.20m D.10m【分析】在Rt△ABC中,已知了坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【解答】解:在Rt△ABC中,∵BC=10m,tan A=1:,∴AC=BC÷tan A=10m,∴AB==20(m).故选:C.10.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>2【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.11.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.0【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.12.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B 在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最小值为()A.4B.3C.7D.8【分析】连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,根据勾股定理和题意求得OP=2,则AB的最小长度为4.【解答】解:连接OC,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最小,∵C(3,4),∴OC==5,∵以点C为圆心的圆与y轴相切.∴⊙C的半径为3,∴OP=OC﹣3=2,∴OP=OA=OB=2,∵AB是直径,∴∠APB=90°,∴AB长度的最小值为4,故选:A.二.填空题(共6小题)13.分解因式:x4﹣4x2=x2(x+2)(x﹣2).【分析】先提取公因式再利用平方差公式进行分解,即x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);【解答】解:x4﹣4x2=x2(x2﹣4)=x2(x+2)(x﹣2);故答案为x2(x+2)(x﹣2);14.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.15.如图所示的电路中,当随机闭合开关S1、S2、S3中的两个时,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:因为随机闭合开关S1,S2,S3中的两个,有3种方法,其中有2种能够让灯泡发光所以P(灯泡发光)=.故本题答案为:.16.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.17.如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C 的位置,则图中阴影部分的面积为6π.【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC的面积之和减去半圆的面积.【解答】解:由图可得,图中阴影部分的面积为:=6π,故答案为:6π.18.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF 的面积为.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.三.解答题(共6小题)19.计算:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019.【分析】分别计算出(3.14﹣π)0=1,|﹣1|=﹣1,2cos45°=2×=,+(﹣1)2019=1即可求解;【解答】解:(3.14﹣π)0+|﹣1|﹣2cos45°+(﹣1)2019=1+﹣1﹣2×﹣1=﹣1;20.先化简,再求值(﹣1)÷,然后选一个你喜欢的的数代入求值.【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【解答】解:原式=(﹣)•=•=•=,当x=8时,原式==.21.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.23.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A 型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.24.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD =90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB∽△DAC,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.。

基础强化沪教版(上海)九年级数学第二学期第二十七章圆与正多边形综合测评试题(无超纲)

基础强化沪教版(上海)九年级数学第二学期第二十七章圆与正多边形综合测评试题(无超纲)

九年级数学第二学期第二十七章圆与正多边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,等边△ABC内接于⊙O,D是BC上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC CF=83.正确的个数为()A.1个B.2个C.3个D.4个2、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为()A.4.8 B.5 C.D.3、直角三角形△PAB一条边为AB,另一顶点P在直线l上,下面是三个学生做直角三角形的过程以及自认为正确的最终结论:甲:过点A作l的垂线,垂足为P1;过点B作l的垂线,垂足为P2;作AP3⊥BP3.故符合题意的点P 有三处;乙:以AB为直径作圆O,⊙O与交l于两点P1、P2,故符合题意的点P有两处;丙:过点A作P1A⊥AB,垂足为A,交l于点P1;过点B作P2B⊥AB,垂足为B,交l于点P2.故符合题意的点P有两处.下列说法正确的是()A.甲的作法和结论均正确B.乙、丙的作法和结论合在一起才正确C.甲、乙、丙的作法和结论合在一起才正确D.丙的作法和结论均正确4、如图,四边形ABCD内接于⊙O,连接BD,若AC BC,∠BDC=50°,则∠ADC的度数是()A .125°B .130°C .135°D .140°5、若O 是ABC 的内心,当80A ∠=︒时,BOC ∠=( )A .130°B .160°C .100°D .110°6、如图,CD 是ABC 的高,按以下步骤作图:(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于G 、H 两点.(2)作直线GH 交AB 于点E .(3)在直线GH 上截取EF AE =.(4)以点F 为圆心,AF 长为半径画圆交CD 于点P .则下列说法错误的是( )A .AE BE =B .GH CD ∥C .AB =D .45APB ∠=︒7、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是()A .相离B .相切C .相交D .相交或相切8、如图,在圆中半径OC ∥弦AB ,且弦AB =CO =2,则图中阴影部分面积为( )A .16π B .13π C .23π D .π9、如图,有一个弓形的暗礁区,弓形所含的圆周角50C ∠=︒,船在航行时,为保证不进入暗礁区,则船到两个灯塔A ,B 的张角ASB ∠应满足的条件是( )A .sin sin 25ASB ∠>︒B .sin sin50ASB ∠>︒C .sin sin55ASB ∠>︒D .cos cos50ASB ∠>︒10、在平面直角坐标系xOy 中,已知点A (﹣4,﹣3),以点A 为圆心,4为半径画⊙A ,则坐标原点O 与⊙A 的位置关系是( )A .点O 在⊙A 内B .点O 在⊙A 外C .点O 在⊙A 上D .以上都有可能第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在Rt ABC 中,90BAC ∠=︒,4AC AB ==,D ,E 分别是AB ,AC 的中点,若等腰Rt ADE △绕点A 逆时针旋转,得到等腰11Rt AD E ,记直线1BD 与1CE 的交点为P ,则点P 到AB 所在直线的距离的最大值为________.2、如图,PA ,PB 分别与⊙O 相切于A ,B 两点,C 是优弧AB 上的一个动点,若∠P = 50°,则∠ACB =_____________°3、龙湖实验中学的操场有4条等宽的跑道,每条跑道是由两条直跑道和两个半圆形弧道连接而成,请根据小泓与瞿老师的对话计算每条跑道的宽度是______米.4、圆锥的母线长为l,底面圆半径为r,则全面积为______.5、如图,直线l与半径为8的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于B,连接PA.设PA=x,PB=y,则(x-y)的最大值是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,PC.若AB = 6,AC的长为π,BC = PC.求证:直线PC与⊙O相切.于点D,过点C作O 2、如图,AB为O的直径,点C在O上,连接AC,BC,过点O作OD BC的切线交OD的延长线于点E.(1)求证:E B∠=∠;BC=,求AD的长.(2)连接AD.若CE=83、如图,△ABC内接于⊙O,高AD经过圆心O.=;(1)求证:AB AC(2)若8BC=,⊙O的半径为5,求△ABC的面积.4、新定义:在一个四边形中,若有一组对角都等于90°,则称这个四边形为双直角四边形.如图1,在四边形ABCD中,∠A=∠C=90°,那么四边形ABCD就是双直角四边形.(1)若四边形ABCD是双直角四边形,且AB=3,BC=4,CD=2,求AD的长;(2)已知,在图2中,四边形ABCD内接与⊙O,BC=CD且∠BAC=45°;①求证:四边形ABCD是双直角四边形;②若AB=AC,AD=1,求AB的长和四边形ABCD的面积.5、如图,在Rt ABC △中,90ACB ∠=︒,O 为AC 上一点,以点O 为圆心,OC 为半径的圆恰好与AB 相切,切点为D ,O 与AC 的另一个交点为E .(1)求证:BO 平分ABC ∠;(2)若30A ∠=︒,1AE =,求BO 的长.-参考答案-一、单选题1、C【分析】如图1,△ABC 是等边三角形,则∠ABC =60°,根据同弧所对的圆周角相等∠ADC =∠ABC =60°,所以判断①正确;如图1,可证明△DBE ∽△DAC ,则DB DE DA DC=,所以DB •DC =DE •DA ,而DB 与DC 不一定相等,所以判断②错误;如图2,作AH ⊥BD 于点H ,延长DB 到点K ,使BK =CD ,连接AK ,先证明△ABK ≌△ACD ,可证明S 四边形ABDC =S △ADK ,可以求得S △ADK 3,连接OA 、OG 、OC 、GC ,由CF 切⊙O 于点C 得CF ⊥OC ,而AF ⊥CF ,所以AF ∥OC ,由圆周角定理可得∠AOC =120°,则∠OAC =∠OCA =30°,于是∠CAG =∠OCA =30°,则∠COG =2∠CAG =60°,可证明△AOG 和△COG 都是等边三角形,则四边形OABC 是菱形,因此OA ∥CG ,推导出S 阴影=S 扇形COG ,在Rt △CFG 中根据勾股定理求出CG 的长为4,则⊙O 的半径为4,可求得S 阴影=S 扇形COG =2604360⨯π=83π,所以判断④正确,所以①③④这3个结论正确.【详解】解:如图1,∵△ABC 是等边三角形,∴∠ABC =60°,∵等边△ABC 内接于⊙O ,∴∠ADC =∠ABC =60°,故①正确;∵∠BDE =∠ACB =60°,∠ADC =∠ABC =60°,∴∠BDE =∠ADC ,又∠DBE =∠DAC ,∴△DBE ∽△DAC , ∴DB DE DA DC =, ∴DB •DC =DE •DA ,∵D 是BC 上任一点,∴DB 与DC 不一定相等,∴DB •DC 与DB 2也不一定相等,∴DB 2与DE •DA 也不一定相等,故②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,∴∠ABK=∠ACD,∴AB=AC,∴△ABK≌△ACD(SAS),∴AK=AD,S△ABK=S△ACD,DK,∴DH=KH=12∵∠AHD=90°,∠ADH=60°,∴∠DAH=30°,∵AD =2,∴DH =12AD =1,∴DK =2DH =2,AH =∴S △ADK =12AH DK ⋅=∴S 四边形ABDC =S △ABD +S △ACD =S △ABD +S △ABK =S △ADK故③正确;如图3,连接OA 、OG 、OC 、GC ,则OA =OG =OC ,∵CF 切⊙O 于点C ,∴CF ⊥OC ,∵AF ⊥CF ,∴AF ∥OC ,∵∠AOC =2∠ABC =120°,∴∠OAC =∠OCA =12×(180°﹣120°)=30°,∴∠CAG =∠OCA =30°,∴∠COG =2∠CAG =60°,∴∠AOG =60°,∴△AOG 和△COG 都是等边三角形,∴OA =OC =AG =CG =OG ,∴四边形OABC 是菱形,∴OA ∥CG ,∴S △CAG =S △COG ,∴S 阴影=S 扇形COG ,∵∠OCF =90°,∠OCG =60°,∴∠FCG =30°,∵∠F =90°,∴FG =12CG ,∵FG 2+CF 2=CG 2,CF =∴(12CG )2+(2=CG 2,∴CG =4,∴OC =CG =4,∴S 阴影=S 扇形COG =2604360⨯π=83π, 故④正确,∴①③④这3个结论正确,故选C .【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.2、B【分析】连接EO,延长EO交CD于F,连接DO,设半径为x.构建方程即可解决问题.【详解】解:设⊙O与AB相切于点E.连接EO,延长EO交CD于F,连接DO,再设⊙O的半径为x.∵AB切⊙O于E,∴EF⊥AB,∵AB ∥CD ,∴EF ⊥CD ,∴∠OFD =90°,在Rt △DOF 中,∵∠OFD =90°,OF 2+DF 2=OD 2,∴(8-x )2+42= x 2,∴x =5,∴⊙O 的半径为5.故选:B .【点睛】本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.3、B【分析】根据三个学生的作法作出图形即可判断【详解】解:甲的作图如下,12,ABP ABP 不是直角三角形,故甲的不正确乙:如图,根据直径所对的圆周角是直角可知,乙的作法正确,但不完整,丙的作法如下,丙的作法也正确,但不完整,乙、丙的作法和结论合在一起才正确故选B【点睛】本题考查了直角三角形的判定,直径所对的圆周角是直角,根据题意作出图形是解题的关键.4、B【分析】如图所示,连接AC,由圆周角定理∠BAC=∠BDC=50°,再由等弧所对的圆周角相等得到∠ABC=∠BAC=50°,再根据圆内接四边形对角互补求解即可.【详解】解:如图所示,连接AC,∴∠BAC =∠BDC =50°,∵AC BC =,∴∠ABC =∠BAC =50°,∵四边形ABCD 是圆内接四边形,∴∠ADC =180°-∠ABC =130°,故选B .【点睛】本题主要考查了圆周角定理,等弧所对的圆周角相等,圆内接四边形对角互补,熟练掌握相关知识是解题的关键.5、A【分析】由三角形内角和以及内心定义计算即可【详解】∵180A ABC ACB ∠+∠+∠=︒∴100ABC ACB ∠+∠=︒又∵O 是ABC 的内心∴OB 、OC 为ABC ACB ∠∠、角平分线,∴OBC OCB ∠+∠1()502ABC ACB =∠+∠=︒ ∴BOC ∠=180°()OBC OCB -∠+∠=180°-50°=130°故选:A .【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.6、C【分析】连接AF 、BF ,由作法可知,FE 垂直平分AB ,再根据EF AE =可得∠AFE =45°,进而得出∠AFB =90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AF 、BF ,由作法可知,FE 垂直平分AB ,∴AE BE =,故A 正确;∵CD 是ABC 的高,∴GH CD ∥,故B 正确;∵EF AE =,AE BE =,∴2AB EF =,故C 错误;∵EF AE =,∴∠AFE =45°,同理可得∠BFE =45°,∴∠AFB =90°,1452APB AFB ∠=∠=︒,故D 正确; 故选:C .【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.7、B【分析】圆的半径为,r 圆心O 到直线l 的距离为,d 当d r =时,直线与圆相切,当d r 时,直线与圆相离,当d r <时,直线与圆相交,根据原理直接作答即可.【详解】 解: ⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,∴ ⊙O 的半径等于圆心O 到直线l 的距离,∴ 直线l 与⊙O 的位置关系为相切, 故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.8、C【分析】连接OA ,OB ,根据平行线的性质确定OAB CAB S S =△△,再根据AB =CO 和圆的性质确定OAB 是等边三角形,进而得出60AOB ∠=︒,最后根据扇形面积公式即可求解.【详解】解:如下图所示,连接OA ,OB .∵OC AB ∥,∴OAB CAB S S =△△.∴S 阴=S 扇形AOB .∵AO ,BO ,CO 都是O 的半径,∴AO =BO =CO .∵AB =CO =2,∴AO =BO =AB =2.∴OAB 是等边三角形.∴60AOB ∠=︒.∴S 阴=S 扇形AOB =260223603ππ⨯=. 故选:C【点睛】本题考查平行线的性质,等边三角形的判定定理,扇形面积公式,综合应用这些知识点是解题关键.9、D【分析】本题利用了三角形外角与内角的关系和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】如图,AS交圆于点E,连接EB,由圆周角定理知,∠AEB=∠C=50°,而∠AEB是△SEB的一个外角,由∠AEB>∠S,即当∠S<50°时船不进入暗礁区.所以,两个灯塔的张角∠ASB应满足的条件是∠ASB<50°.∴cos∠ASB>cos50°,故选:D.【点睛】本题考查三角形的外角的性质,圆周角定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A(﹣4,﹣3),∴5OA=,∵⊙A的半径为4,>,∴54∴点O在⊙A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.二、填空题1、1##【分析】首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】解:如图,作PG⊥AB,交AB所在直线于点G,∵D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,∵∠CAB =90°,AC =AB =4,D ,E 分别是AB ,AC 的中点,∴AD =AE 1=AD 1=PD 1=2,则BD1=故∠ABP =30°,则PB∴PG =12PB =1,故点P 到AB 所在直线的距离的最大值为:PG =1故答案为:1+【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG 的最长时P 点的位置是解题关键.2、65连接,OA OB ,根据切线的性质以及四边形内角和定理求得130AOB ∠=︒,进而根据圆周角定理即可求得∠ACB【详解】解:连接,OA OB ,如图,PA ,PB 分别与⊙O 相切90OAP OBP ∴∠=∠=︒360130AOB OAP OBP P ∴∠=︒-∠-∠-∠=︒AB AB =1652ACB AOB ∴∠=∠=︒ 故答案为:65【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键. 3、3π设跑道的宽为x 米,根据直道长度一样,外圈与内圈的差是两个圆周长的差,列出式子求解即可.【详解】解:设跑道的宽为x 米,由对称性设内圈两个半圆形弧道拼成的圆的半径为r ,根据题意可得:1981802(3)2r x r ππ-=+-, 解得:3x π=, 故答案是:3π. 【点睛】 本题考查了圆的基本概念,一元一次方程,解题的关键是根据题意列出等式求解.4、2r rl ππ+【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为l ,扇形的弧长为2r π, 圆锥的侧面积为122S r l rl ππ=⋅⋅=侧; 圆锥的全面积为圆锥的底面积+侧面积:2S S S r rl ππ=+=+侧全底.故答案为:2r rl ππ+.【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.5、4【分析】作直径AC,连接CP,得出△APC∽△PBA,利用相似三角形的性质得出y=116x2,所以x-y=x-116x2=-1 16x2+x=-116(x-8)2+4,当x=8时,x-y有最大值是4.【详解】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴AP BP AC AP,∵PA=x,PB=y,半径为8,∴16x y x=, ∴y =116x 2,所以x -y =x -116x 2=-116x 2+x =-116(x -8)2+4, 当x =8时,x -y 有最大值是4,故答案为:4.【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定与性质,以及二次函数的性质,熟练掌握性质及定理是解本题的关键.三、解答题1、见详解【分析】连接OC ,由题意易得∠AOC =60°,则有∠B =∠OCB =30°,然后可得∠P =∠B =30°,进而可得∠OCP =90°,最后问题可求证.【详解】证明:连接OC ,如图所示:∵AC 的长为π,AB =6,∴OC =OA =3,3180AC n l ππ==, ∴60AOC ∠=︒,∵OB=OC,∴∠B=∠OCB=30°,∵BC=PC,∴∠P=∠B=30°,∴∠POC+∠P=90°,即∠OCP=90°,∵OC是圆O的半径,∴直线PC与⊙O相切.【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.2、(1)证明见解析;(2)AD=4【分析】(1)连接OC通过垂径定理和等腰三角形性质证明∠E=∠B(2)连接AD通过计算发现BC=EC,再通过证明△CED≌△ABC得到AC=DC=4.【详解】(1)证明:连接OC如图:OD⊥CB∴OB=OC,∠B=OCD又CE 为圆O 的切线∴OC ⊥CE∴∠ECD +∠DCO =∠ECD +∠E =90°∴∠E =∠DCO =∠B∴∠E =∠B(2)连接AD 如图∵△EDC 为R t△∴DE由(1)得∠E =∠B又AB 为直径∴∠BCA =90°在△CED 和△ABC 中∵B E EDC BCA ED BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△CED ≌△ABC (AAS )∴AC =DC =12BC =4【点睛】本题考查垂径定理和全等三角形的判定与性质,掌握这些是本题解题关键.3、(1)见解析;(2)32ABC S =△【分析】(1)根据垂径定理可得AD 垂直平分BC ,即可证明结论;(2)连接OB ,根据勾股定理可得3OD =,得出8AD AO OD =+=,利用三角形面积公式求解即可.【详解】证明:(1)在⊙O 中,∵ OD ⊥BC 于D ,∴ BD =CD ,∴ AD 垂直平分BC ,∴ AB =AC ;(2)连接OB ,如图所示:∵BC =8,由(1)得BD =CD , ∴ 142BD BC ==,∵ 5OA OB ==,∴ 3OD ,∴ 8AD AO OD =+=,∴ △ABC 的面积:1322ABC S BC AD =⋅=, ∴ △ABC 的面积为32.【点睛】题目主要考查垂径定理的应用,垂直平分线的性质,勾股定理等,理解题意,综合运用各个定理性质是解题关键.4、(1(2)①见解析;②32【分析】(1)连接BD ,运用勾股定理求出BD 和AD 即可;(2)①连接OB ,OC ,OD ,证明BD 是O 的直径即可;②过点D 作DE AC ⊥于点E ,设圆的半径为R ,由勾股定理求出AB ,AD ,BC ,CD 的长,再根据ABCD ABD BCD S S S ∆∆=+运用三角形面积公式求解即可.【详解】解:(1)连接BD ,如图,在Rt BCD ∆中,BC =4,CD =2,∵222=BD BC CD +∴BD ==在Rt ABD ∆中,AB =3,BD =,∵222=BD BA AD +∴AD =(2)连接OB ,OC ,OD ,如图,∵45BAC ∠=︒∴90BOC ∠=°在BOC ∆和DOC ∆中OB OD OC OC BC CD =⎧⎪=⎨⎪=⎩∴BOC ∆≌DOC ∆∴90DOC BOC ∠=∠=︒∴O 是线段BD 的中点,∴BD 为O 的直径∴90BCD BAD ∠=∠=︒∴四边形ABCD 是双直角四边形;(3)过点D 作DE AC ⊥于点E ,∵45,90BAC BAD ∠=︒∠=︒∴45EAD ∠=︒∴AED ∆是等腰直角三角形在Rt AED ∆中,AE ED =,222AE ED AD +=∵1AD =∴AE ED == 设圆的半径为R ,∵BOC ∆和DOC ∆均为等腰直角三角形,∴BC CD =在Rt ADC ∆中,EC在Rt ABD ∆中,AB =∵AB AC =,AC AE EC =+=解得,21R =∴ABCD ABD BCD S S S ∆∆=+1122AB AD BC CD =⨯+⨯12=2R =132=【点睛】本题主要考查了勾股定理,圆周角定理,三角形面积计算等知识,灵活添加辅助线是解答本题的难点.5、(1)见解析;(2)2【分析】(1)连接OD ,由O 与AB 相切得90ODB ∠=︒,由HL 定理证明Rt BDO Rt BCO ≅由全等三角形的性质得DBO CBO ∠=∠,即可得证;(2)设O 的半径为x ,则OD OE OC x ===,在Rt ADO 中,得出关系式求出x ,可得出AC 的长,在Rt ACB 中,由正切值求出BC ,在Rt BCO △中,由勾股定理求出BO 即可.【详解】(1)如图,连接OD ,∵O 与AB 相切,∴90ODB ∠=︒,在Rt BDO △与Rt BCO △中,DO CO BO BO =⎧⎨=⎩, ∴()Rt BDO Rt BCO HL ≅,∴DBO CBO ∠=∠,∴BO 平分ABC ∠;(2)设O 的半径为x ,则OD OE OC x ===,在Rt ADO 中,30A ∠=︒,1AE =,∴21x x =+,解得:1x =,∴1113AC =++=,在Rt ACB 中,tan BC A AC =,即tan 303BC AC =⋅︒==在Rt BCO △中,2BO ===.【点睛】本题考查圆与直线的位置关系,全等三角形的判定与性质、三角函数以及勾股定理,掌握相关知识点的应用是解题的关键.。

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)

中考数学专题复习二次函数试题(无答案)二次函数专题考点一:二次函数的解析式及其求解一般的,形如),0(2是常数、、c b a a c bx ax y ≠++=的函数叫做二次函数,其中,x 是自变量,c b a 、、分别为二次函数的二次项系数、一次项系数和常数项。

(1)一般式:c bx ax y ++=2。

已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2。

已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.(4)对称点式:已知图像上有两个关于y 轴对称的点()()k x k x ,,,21,那么函数的方程可以选用对称点式()()k x x x x a y +--=21,代入已知的另外的点就可以求出函数的方程来了。

例题1:根据题意,求解二次函数的解析式。

(1)求过点A(1,0),B(2,3),C(3,1)的抛物线的方程(2)已知抛物线与x 轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式.(3)已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4,求二次函数的解析式。

(4)已知二次方程32=++c bx ax 的两个根是-1和2,而且函数c bx ax y ++=2过点(3,4),求函数c bx ax y ++=2的解析式。

(5)已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.(6)已知二次函数当x =2时有最大值3,且它的图象与x 轴两交点间的距离为6,求这个二次函数的解析式。

变式1:(1)、已知二次函数的图像经过点A(2,1),B(3,4),且与y 轴交点为(0,7),则求函数的解析式(2)已知过点(2,0),(3,5)的抛物线c bx ax y ++=2与直线33+=x y 相交与x 轴上,求二次函数的解析式(3)已知二次函数c bx ax y ++=2,其顶点为(2,2),图象在x 轴截得的线段长为2,求这个二次函数的解析式。

2020年九年级数学一题多问--一道二次函数经典题的50种问法(PDF版无答案)

2020年九年级数学一题多问--一道二次函数经典题的50种问法(PDF版无答案)

一道二次函数经典50问已知:如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,OA =OC =3,顶点为D 。

(1)求此抛物线的解析式;(2)判断△ACD 的形状,并说明理由;(3)求四边形ABCD 的面积;(4)在对称轴上找一点P ,使△BCP 的周长最小,求出点P 的坐标及△BPC 的周长。

XXXX(5)在直线AC 下方的抛物线有一点N ,过点N 作直线//l y 轴,交AC 于点M ,当点N 的坐标是多少时,线段MN 的长度最大?最大值是多少?(6)在直线AC 下方的抛物线上,是否存在一点N ,使△CAN 的面积最大?最大面积是多少?(7)在直线AC 下方的抛物线上,是否存在一点N ,使四边形ABCN 的面积最大?最大面积是多少?(8)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,求出点E 的坐标,若不存在,请说明理由。

XXXX(10)在抛物线上是否存在一点N ,使ABN ABC =S S △△,若存在,求出点N 的坐标,若不存在,请说明理由。

(11)在抛物线上是否存在一点H ,使BCH ABC =S S △△,若存在,求出点H 的坐标,若不存在,请说明理由。

(12)在抛物线上是否存在一点Q ,使AOQ COQ =S S △△,若存在,求出点Q 的坐标,若不存在,请说明理由。

XXXX(14)在抛物线上找一点F ,作FM ⊥x 轴,交AC 于点H ,使AC 平分△AFM(15)在抛物线的对称轴上有一点K ,在抛物线上有一点L ,若使A 、B 、K 、L 为顶点的四边形是平行四边形,求出K 、L 两点的坐标。

(16)作垂直于x 轴的直线x =-1,交直线AC 于点M ,交抛物线于点N ,若以A 、M 、N 、E 为顶点的四边形是平行四边形,求点E的坐标。

XXXX(17)在抛物线上是否存在一点P ,使∠POC =∠PCO ?若存在,求出点P 的坐标,若不存在,请说明理由。

吉林省长春市东北师大附中明珠学校2021-2022学年九年级下学期3月月考数学试题(一模)(无答案)

吉林省长春市东北师大附中明珠学校2021-2022学年九年级下学期3月月考数学试题(一模)(无答案)

吉林省长春市东北师大附中明珠学校2021-2022学年九年级下学期3月月考数学试题(一模)(wd无答案)一、单选题(★) 1. 的相反数是().A.2022B.C.D.(★) 2. 2022年北京冬奥会期间通过实施30余项低碳措施,减少二氧化碳排放量接近1030000吨.其中1030000这个数用科学记数法表示为()A.B.C.D.(★★) 3. 如图是由 6 个相同的正方体堆成的物体,它的俯视图是()A.B.C.D.(★) 4. 下列运算正确的是()A.B.C.D.(★★★) 5. 如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°(★★) 6. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D,连结BD,若∠B=32°,则∠C 的大小为()A.32°B.64°C.26°D.36°(★★★) 7. 如图,已知在中,,是边上的中线.按下列步骤作图:①分别以点为圆心,大于线段长度一半的长为半径作弧,相交于点;②过点作直线,分别交,于点;③连结.则下列结论错误的是()A.B.C.D.(★★★) 8. 如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,的面积为1,则k的值为()A.B.C.2D.3二、填空题(★) 9. 分解因式: __________ .(★★★) 10. 不等式组的解集为 _________ .(★★★) 11. 关于x的一元二次方程有两个不相等的实数根,则m的取值范围是__________ .(★★★) 12. 如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,则∠AFD的大小为 ___________ 度.(★★★) 13. 如图,在Rt ABC中,∠ACB=90°,AB=,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为 ___ .(★★★★) 14. 在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a 时,y 有最大值 7,最小值 3,则a 的取值范围是 _____ .三、解答题(★★★) 15. 计算:(★★★) 16. 现有甲、乙两个不透明的袋子,甲袋里装有 2 个红球,1 个黄球;乙袋里装有 1 个红球, 1 个白球.这些球除颜色外其余完全相同.(1)从甲袋里随机摸出一个球,则摸到红球的概率为________.(2)从甲袋里随机摸出一个球,再从乙袋里随机摸出一个球,请用画树状图或列表的方法,求摸出的两个球颜色相同的概率.(★★★) 17. 2022年冬奥会吉祥物冰墩墩一夜之间火遍全球,各种冰墩墩的玩偶、挂件、灯饰等应运而生.某超市决定购进玩偶和挂件两种冰墩墩饰品.已知玩偶比挂件每件进价多20元,预算资金为2600元,其中1400元购买玩偶,其余资金全部购买挂件,且购买到的挂件的数量是玩偶数量的2倍.求每件玩偶的进价为多少元?(★★★) 18. 本学期开学初,某校初三年级进行了数学学科假期作业验收测试(满分为120分),随机抽取了甲、乙两班各46名同学的成绩,并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息:a.甲、乙两班各46名同学测试成绩的频数分布统计表如下:b.乙班成绩在80≤x<100这一组的数据是:81,84,85,86,89,91,92,93,95,97,99,99c.甲、乙两班成绩的平均分、中位数、众数如下:根据以上信息,回答下列问题:(1)表中n的值为________.(2)在此次测试中,某学生的成绩是93分,在他所属班级排在前23名,由表中数据可知该学生是_________班的学生(填“甲”或“乙”),理由是__________.(3)若成绩100分及以上为优秀,按上述统计结果,估计该校初三年级1150名学生成绩优秀的学生人数.(★★) 19. 图①、图②、图③均是 6×6 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留适当的画图痕迹.(1)在图①中画出AC 边上的中线BD.(2)在图②中画出AC 边上的高线BE.(3)在图③中,若点P、Q 分别为线段AB、AC 上的动点,连结PC、PQ,当PC+ PQ 取得最小值时,画出点P、点Q 的位置.(★★★★) 20. 已知一辆快车与一辆慢车同时由A 地沿一条笔直的公路向B 地匀速行驶,慢车的速度为80 千米/时.两车之间的距离y(千米)与慢车行驶时间/小时之间的函数关系如图所示.请根据图象回答下列问题:(1)快车的速度为___千米/时,两地之间的距离____千米.(2)求当快车到达B 地后,y 与x 之间的函数关系式(写出自变量x 的取值范围).(3)若快车到达B 地休息 15 分钟后,以原路原速返回A 地.直接写出慢车在行驶过程中,与快车相距 20 千米时行驶的时间.(★★★★) 21.【问题原型】如图①,在△ABC中,CD是AB边的中线,CD=,求证:.【结论应用】如图②,△ABC中,点D是AB的中点,将△ACD沿CD翻折得到△A′CD,连结A′B.求证:A′B∥CD.【应用拓展】如图③,在▱ABCD中,∠A<90°,点E是边AB的中点,将△ADE沿DE翻折得到△A′DE,连结BA′并延长,交CD于点F.若AB=5,AD=3,,则A′F的长_____.(★★★★★) 22. 如图,在△ABC 中,BA=BC=10,sin B=点D 为边BC 的中点.动点P 从点B出发,沿折线BA —AC 向点C 运动,在BA、AC 上的速度分别为每秒 5 个单位长度和每秒个单位长度.当点P 不与点A 重合时,连接PD,以P A、PD 为邻边作▱APDE.设点P 的运动时间为t 秒(t>0).(1)①线段AC 的长为_____.②用含t 的代数式表示线段AP 的长.(2)当点E 在△ABC 内部时,求t 的取值范围.(3)当是菱形时,求t 的值.(4)作点B 关于直线PD 的对称点B′,连接B′D,当B′D⊥BC 时,直接写出t 的值.(★★★★★) 23. 在平面直角坐标系中,抛物线(,m 为常数)的图象记为G.(1)当时,求图象G 最低点的坐标.(2)当图象G 与x 轴有且只有一个公共点时,求m 的取值范围.(3)当图象G 的最低点到直线的距离为3 时,求m 的值.(4)图象G 上点A 的横坐标为2 m,点C 的坐标为,当AC 不与坐标轴平行时,以AC 为对角线作矩形ABCD,使矩形的边与坐标轴平行,当图象G 与矩形ABCD 的边有两个公共点时,直接写出m 的取值范围。

山东省青岛第五十九中学2024-2025学年九年级上学期期中考试数学试卷(无答案)

山东省青岛第五十九中学2024-2025学年九年级上学期期中考试数学试卷(无答案)

2024-2025学年度第一学期期中阶段性质量检测九年级数学试题(考试时间:120分钟:满分:120分)温馨提示:1.答卷前,考生务必将自已的姓名、准考证号等信息填写在答题卡和答题纸上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

或写在答题纸上.如需改动,用橡皮擦干净后,再选涂其他标号。

写在本试卷上无效。

3.回答第II卷时,将答案写在答题纸上.写在本试卷上无效。

第I卷(共54分)一、选择题(每小题3分,每题只有一个正确选项,共30分)1.下列方程中是一元二次方程的是()A.B.C.D.2.下列各组中的四条线段(单位:)成比例的是()A.3,6,5,4 B.3,4,6,9 C.1,5,2,3 D.2,4,5,103.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.4.下列说法正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.一组邻边相等的平行四边形是矩形C.菱形有四条对称轴D.对角线相等且互相垂直平分的四边形是正方形5.为执行“均衡教育”政策,某区2022年投入教育经费2500万元,预计到2024年底三年累计投入1.2亿元.若投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.B.C.D.6.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中相似的是()A.B.C.D.7.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作,点F,G为垂足,若,则FG的长为()22(1)3(1)x x+=+2340ax x++=21440x x+-=2(2)5x x x+=-cm1413123422500(1) 1.2x+=225002500(1)2500(1)12000x x++++=22500(1)12000x+=25002500(1)2500(12)12000x x++++=ABC△EF BD EG AC⊥⊥,1024AC BD==,A .5B .6.5C .10D .128.如图,张老汉想用长为75米的棚栏,再借助房屋的外墙(外墙足够长)围成一个面积为720平方米的矩形羊圈ABCD ,并在边CD 上留一个5米宽的门(门用其他材料),设AB 的长为x 米,则下面所列方程正确的是( )A .B .C .D .9.如图所示,E 、F 分别是正方形ABCD 的边CD ,AD 上的点,且,AE ,BF 相交于点O ,下列结论①;②;③;④中,错误的有( )A .1个B .2个C .3个D .4个10.如图,在正方形ABCD 中有一个小正方形EFGH ,其中点E ,F 分别在边AB ,BC 上,点G 在线段DF 上.若正方形ABCD 的面积为16,,则正方形EFGH 的面积为( )A.B .C .5D .25二、填空题(每小题3分,每题只有一个正确选项,共24分)11.一元二次方程的二次项系数是________,一次项系数是________,常数项是________.12.在一个不透明的口袋中,装有若干个红球和8个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.4,则估计盒子中大约(75)720x x -=(802)720x x -=(752)720x x -=(80)720x x -=CE DF =AE BF =AE BF ⊥AO OE =AOB DEOF S S =△四边形1BE =52543(2)5x x -=有红球________个.13.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若,则四边形ABOM 的周长为________.14.一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现在站在A 处,则他应至少再走________米才最理想.15.某学习小组同学在元旦互相赠贺年卡一张,全组共赠贺年卡90张,设这个小组共有同学x 个,根据题中的条件,列出关于x 的方程为:________________.16.小亮希望测量出电线杆AB 的高度,他在电线杆旁的点D 处立一标杆,标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得米.则电线杆AB 的高为________米.17.如图,矩形ABCD 中,,F 为对角线AC 的中点,交BC 于E .则线段EF 的长为________________.18.如图,在平面直角坐标系中,点的坐标为,以为直角边作,并使,再以为直角边作,并使,再以为直角边作,并使…按此规律进行下去,则点的坐标为________.第II 卷(共6分)19.(本小题满分4分)513AB AC ==,215DB ED CD ==,.48AB BC ==,EF AC ⊥1A (1,0)1OA 12Rt OA A △1260A OA ∠=︒2OA 23Rt OA A △2360A OA ∠=︒3OA 34Rt OA A △3460A OA ∠=︒2024A用圆规、直尺作图,不写作法,但要保留作图痕迹,如图,是一块三角形余料,工人师傅要把它加工成一个菱形零件,使点A 为菱形的一个顶点,一组邻边分别在BA 、AC 上,另一个顶点在BC 上,试协助工人师傅用尺规画出这个菱形.结论:20.(本小题满分12分,每小题3分)解方程(1)(公式法)(2)(配方法)(3)(4)21.(本小题满分6分)随着《黑神话:悟空》这款融合了中国传统文化精髓与现代游戏技术的力作横空出世,不仅激发了玩家对神话故事的无限遐想,更意外地点燃了公众对山西这片古老士地的热情.游戏中精心选取的27处山西实景,如同一幅幅生动的历史画卷,引领我们穿越时空,感受五千年文明的深厚底蕴.某旅游公司推出“跟着悟空游山西”二日游路线.小明家、小米家利用双休日出去旅游.每次出游只能选一条路线.“跟着悟空游山西”二日游推荐路线A 、临汾线:小西天、广胜寺、铁佛寺B 、长治线:观音堂、紫庆寺C 、朔州线:尝福寺、应县木塔D 、晋中线:平遥镇国寺、平遥双林寺(1)小米家这周想选A 路线,小明家选不到A 路线的概率是多少?(2)如果小明家相约小米家一起出去旅游,两个家庭都从上面四条路线中选一条路线去游玩,请用树状图或列表的方法求出两家选取同一条路线的概率.22.(本小题满分6分)已知关于x 的一元二次方程有两个实数根.(1)求k 的取值范围:(2)若,求k 的值.23.(本小题满分8分)已知:如图,的对角线AC ,BD 交于点O ,分别过点A ,B 作连接CE 交BD 于点F .ABC △21683x x +=22450x x --=223(1)1x x -=-2750x -=24280x x k --+=12,x x 22121124x x x x +=-ABCD Y AE BD BE AC ∥,∥(1)求证:;(2)当满足什么条件时,四边形OAEB 为菱形?请说明理由.24.(本小题满分8分)2023年亚运会在杭州顺利举行,亚运会吉祥物“江南忆”公仔爆红.据统计“江南忆”公仔在某电商平台8月份的销售量是5万件,10月份的销售量是7.2万件.(1)若该平台8月份到10月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某一间店铺“江南忆”公仔的进价为每件40元,若售价为每件80元,每天能销售20件,售价每降价2元,每天可多售出8件,为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售该公仔每天获利1400元,则每件售价应降低多少元?25.(本小题满分10分)(1)【问题呈现】如图1,和都是等边三角形,连接BD ,CE .请直接写出BD 和CE 的数量关系.(2)【类比探究】如图2,和都是等腰直角三角形,.连接BD ,CE .请直接写出的值.(3)【拓展提升】如图3,和都是直角三角形,,且,连接BD ,CE .图1图2 图3①求的值;②延长CE 交BD 于点F ,交AB 于点G .若,求B P 的长.26.(本小题满分12分)已知:如图,在中,.点P 从点B 出发,沿BC 向点C 匀速运动,速度为;过点P 作,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,BEF OCF ≌△△ABC ∠ABC △ADE △ABC △ADE △90ABC ADE ∠=∠=︒BD CEABC △ADE △90ABC ADB ∠=∠=︒34AB AD BC DE ==BD CE1,64BG AB CG ==Rt ABC △903cm 4cm C AC BC ∠=︒==,,1cm/s PD AB ∥速度为;当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)当t 为何值时,;(3)在运动过程中,是否存在某一时刻t ,使?若不存在,请说明理由,若存在,求出t 的值;(4)当t 为何值时,为等腰三角形?请直接写出答案.2cm/s 025t <<.PQ PD ⊥:1:10PQB ABC S S =△△PBQ △。

湖北省武汉市七一华源中学2018-2019学年度下学期六月检测九年级数学试题%28word版 无答案%29

湖北省武汉市七一华源中学2018-2019学年度下学期六月检测九年级数学试题%28word版  无答案%29

七一华源中学2018~2019学年度下学期九年级数学六月检测试题一、选择题:(共10小题,每小题3分,共30分) 1.有理数3的相反数是( ) A .-3B .3C .31-D .312.式子2+x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥0B .x ≥-2C .x ≥2D .x ≤-23.下列事件中,是随机事件的是( )A .通常温度降到0℃以下,纯净的水结冰B .明天太阳从东方升起C .购买1张彩票,中奖D .任意画一个三角形,其内角和是360°4.下列四组图形变换中,属于轴对称变换的是( )5.某几何体的三视图如图所示,则该几何体是( ) A .圆柱 B .三棱柱 C .长方体D .四棱锥6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A .41B .21C .43D .817.某班体育委员对本班40名学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( ) A .10 B .10.5C .11D .11.58.栖树一群鸦,鸦树不知数;三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何? 歌谣大意是:一群乌鸦落在一片树上,如果三个乌鸦落在一棵树上,那么就有五个乌鸦没有树可落;如果五个乌鸦落在一棵树上,那么就有一棵树没有落乌鸦,请问乌鸦和树各多少?若设乌鸦有x 只,树有y 棵,由题意可列方程组( ) A .⎩⎨⎧=-=+x y x y 1553B .⎩⎨⎧-==-1553x y xyC .⎪⎩⎪⎨⎧-==+5553x y y xD .⎪⎪⎩⎪⎪⎨⎧-==-1535y y y x9.如图,在△ABC 中,℃C =90°,AB =10 cm ,BC =8 cm .点P 从点A 沿AC 向点C 以1 cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2 cm /s 的速度运 动(当点Q 运动到点B 时P 、Q 均停止运动),在运动过程中,四边形P ABQ 的 面积的最小值为( ) A .19cm 2B .16 cm 2C .12 cm 2D .15 cm 210.如图,在平面直角坐标系中,函数y =x 和x y 21-=的图象分别为直线l 1、l 2,过点A 1(1,21-)xyCBAO作x轴的垂线交l1于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,……依次进行下去,则点A2019的横坐标为()A.21008B.-21008C.-21009D.21006二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:4的结果是__________12.如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠BAC=50°,∠ABC=60°,则∠EAD =___________°13.化简yxyxx4116222---的结果是___________14.边长为10、10、12的三角形的外接圆半径为R,内切圆半径为r,则R+r=___________ 15.如图,△ABC的三个顶点为A(-1,-1)、B(-1,3)、C(-3,-3).将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数xy3=(x>0)的图象上,则m 的值为___________16.如图,正方形ABCD的对角线AC℃AE,射线EB交射线DC于点F,连结AF.若AF=2 BF,AE=4,则BE的长为___________三、解答题(共8题,共72分)17.(本题8分)计算:x3·x-3x5÷x+(-2x2)218.(本题8分)如图,GM∥HN,EF分别交AB、CD于点G、H,∠BGH、∠DHF的平分线分别为GM、HN,求证:AB∥CD19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图:各部门人数及每人所创年利润统计表各部门人数分布扇形图部门员工人数每人所创的年利润/万元A510B b8C c5(1) ①在扇形图中,C部门所对应的圆心角的度数为___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)如图,在下列5×5的网格中,横、纵坐标均为整点的数叫做格点,例如A (0,1)、B (2,1)、C (3,3)都是格点,仅用无刻度的直尺在网格中做如下操作: (1) 直接写出点A 关于点B 旋转180°后对应点M 的坐标___________(2) 画出线段BE ,使BE ⊥AC ,其中E 是格点,并写出点E 的坐标___________ (3) 找格点F ,使∠EAF =∠CAB ,画出△EAF ,并写出点F 的坐标___________(4) 找格点D (D 与B 不重合),使S △ABC =S △ACD ,直接写出格点D 的坐标__________________21.(本题8分)如图1,在四边形ABCD 中,AB ⊥AD ,AB ⊥BC ,以AB 为直径的⊙O 与CD 相切于点E ,连接OC 、OD (1) 求证:OC ⊥OD(2) 如图2,连接AC 交OE 于点M .若AB =4,BC =1,求AMCM的值22.(本题10分)A 城有某种农机30台,B 城有该农机40台.现要将这些农机全部运往C 、D 两乡,调运任务承包给某运输公司.已知C 乡需要农机34台,D 乡需要农机36台,从A 城往C 、D 两乡运送农机的费用分别为250元/台和200元/台,从B 城往C 、D 两乡运送农机的费用分别为150元/台和240元/台(1) 设A 城运往C 乡该农机x 台,运送全部农机的总费用为W 元,求W 关于x 的函数关系式,并直接写出自变量x 的取值范围(2) 现该运输公司童威要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来(3) 现该运输公司决定对A 城运往C 乡的农机,从运输费中每台减免a 元(100<a <250)作为优惠,其他费用不变.在(2)的条件下,若总费用最小值为10740元,直接写出a 的值23.(本题10分)在矩形ABCD 中,AB =6,AD =8,点E 是对角线BD 上一动点 (1) 如图1,当CE ℃BD 时,求DE 的长(2) 如图2,作EM ℃EN 分别交边BC 于M ,交边CD 于N ,连MN ℃ 若13=DE BE ,求tan ℃ENM ℃ 若E 运动到矩形中心O ,连CO .当CO 将△OMN 分成两部分面积比为1℃2时,直接写出CN 的长24.(本题12分)抛物线C 1:2232+-=x ax y (a >0)与x 轴交于A 、B (点A 在点B 左侧),与y 轴交于点C(1) 如图1,若A (2,0),连AC 、BC ① 直接写出C 1的解析式及△ABC 的面积② 将△AOC 绕某一点逆时针旋转90°至△A ′O ′C ′(其中A 、O 、C 的对应点分别为A ′、O ′、C ′).若旋转后的△A ′O ′C ′恰有一边的两个端点落在抛物线C 1的图象上,求点A ′的坐标 (2) 如图2,平移抛物线C 1使平移后的新抛物线C 2顶点在原点,P (021,a)是x 轴正半轴上一点,过P 作直线交C 2的图象于A 、B ,过A 的直线y =x +b 交C 2于点C ,过P 作x 轴的垂线交BC 于点M ,设点M 的纵坐标为n ,试判断an 是否为定值?若是,求这个定值,若不是,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆南开中学初2017届九年级(下)阶段测试(一)数学试题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2bx a =-。

一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。

1、在2,1,0,1--这四个数中,最小的数是( ) A 、2- B 、1- C 、0 D 、1 2、下列图形中,是轴对称图形的是()A B C D 3、计算()3xy 的结果是( ) A 、3xyB 、3x yC 、33x yD 、3xy4、下列调查中,适宜采用抽样调查方式的是( )A 、调查札幌亚冬会女子越野滑雪1.4公里决赛参赛运动员兴奋剂的使用情况;B 、调查中国民众对美国在韩部署萨德系统持反对态度的比例;C 、调查中国国产航母各零部件的质量;D 、调查某班学生对感动中国2016年度人物我校高2004级校友秦珇飞的知晓率。

5、已知:如图,点,A B 在直线CD 上,//AE BF ,若CAE ∠=110°,则D B F ∠的度数为( ) A 、80 B 、70 C 、60D 、506、若4,2x y =-=,则222x xy y ++的值为( ) A 、9B 、6C 、4D 、17、在函数y =中,自变量x 的取值范围是( ) A 、1x ≥ B 、10x x ≤≠且 C 、01x x ≥≠且 D 、01x x ≠≠且8、已知ABC ∆∽DEF ∆,若ABC ∆与DEF ∆的相似比为2:3,则ABC ∆与DEF ∆对应边上的中线的比为( ) A 、2:3B 、4:16C 、3:2D 、16:49、如图,半圆O 的直径8AE =,点,,B C D 均在半圆上,若AB BC =,CD DE =,连接OB ,OD ,则图中阴影部分的面积为( ) A 、2πB 、4πC 、8πD 、16π10、下列图形都是由相同的小木棍按一定的规律组成,其中,第①个图形一共有4根小木棍,第②个图形一共有12根小木棍,第③个图形一共有24根小木棍,……,则第⑥个图形中小木棍的根数为( )A 、72B 、76C 、80D 、8411、如图,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 约为( )(精确到0.1米)(sin 350.57≈ ,cos350.82≈ ,tan 350.70≈ ;sin 520.79≈ ,cos520.62≈ ,tan 52 1.28≈ )A 、3.4米B 、3.5米C 、9.7米D 、5.5米12、如果关于x 的分式方程1311a xx x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( )A 、3-B 、0C 、3D 、9二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上。

13、引发春季传染病的某种病毒的直径是0.000000027米,将0.000000027用科学记数法表示为 。

14、计算:()22017013512-⎛⎫-+-÷+-= ⎪⎝⎭。

15、如图,A 、B 、C 是O 上三点,65OAB ∠= ,则A C B ∠的度数是 。

16、已知8AB =,从12,10两个数中任取一个数作为AC 的长,从10,8,6,4中任取一个数作为BD 的长,经过恰当摆放,总会摆出四边形ABCD ,如果对角线分别相同的四边形算作同一种四边形,那么四边形ABCD 是平行四边形的概率是 。

17、已知,甲地到乙地的路程为260千米,一辆大货车从甲地前往乙地运送送物资,行驶2小时在途中某地出现故障,立即通知技术人员乘小汽车从甲地赶来维修(通知时间忽略不计),小汽车到达该地后经过20分钟修好大货车后以原速原路返回甲地,同时大货车以原来1.5倍的速度前往乙地,如图是两车距甲地的路程y (千米)与大货车所用时间x (小时)之间的函数图象,则大货车到达乙地比小汽车返回甲地晚 小时。

18、如图,在ABE ∆中,90,AEB AB ∠= AB 为边在ABE ∆的同侧作正方形ABCD ,点O 是正方形对角线的交点,连接OE ,OE P 为AB 上一动点,将APE ∆沿直线PE 翻折得到'A PE ∆,当'A P BE ⊥于点F 时,BF 的长度是 。

三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...中对应的位置上。

19、如图,AC AE =,12∠=∠,AB AD =。

求证:B D ∠=∠。

20、中考体考临近,某校计划让九年级10个班的480名学生在“立定跳远”、“掷实心球”、“跳绳”三个项目中选择一项进行针对性强化训练。

为了提前了解全年级总体情况,小明从每个班中随机抽取5名学生进行问卷调查,并将统计结果制成如下两幅不完整的统计表和统计图。

(1)请将统计表、统计图补充完整;(2)请以小明的统计结果来估算该校九年级480名学生参加“跳绳”训练的人数。

针对性训练统计表针对训练统计图四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...中对应的位置上。

21、计算:(1)()()22112x x x x +---(2)222444142x x x x x x ⎛⎫---÷ ⎪-+⎝⎭22、已知:如图,在平面直角坐标系中,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象交于一、三象限内的A 、B 两点,与x 轴交于点C ,与y 轴交于点D ,1OC =,5BC =,4cos 5BCO ∠=。

(1)求该反比例函数和一次函数的解析式;(2)在y 轴上有一点E (O 点除外),使得BDE ∆与BDO ∆的面积相等,求出点E 的坐标。

23、1月份,A 型汽油均价为5.7元/升,B 型汽油均价为6元/升,某汽车租赁公司购买这两种型号的汽油共支付40800元;2月份,这两种型号的汽油均价都上调了0.6元/升,该公司要购买与1月份A 型汽油和B 型汽油数量都相同的汽油就需多支付费用。

(1)若多支付的费用不超过4200元,那么该公司1月或2月最多可购买A 型汽油多少升? (2)3月份,该公司A 型汽油的购买量在(1)小题中2月份最多购买量的基础上减少了%m ,但A 型汽油的均价在2月份的基础上上调了10m元,因此3月份支付A 种型号汽油的费用与(1)小题中2月份支付最多数量A 型汽油的费用相同,求m 的值。

24、已知,在□ABCD 中,连接对角线AC ,CAD ∠平分线AF 交CD 于点F ,ACD ∠平分线CG 交AD 于点G ,AF 、CG 交于点O ,点E 为BC 上一点,且BAE GCD ∠=∠。

(1)如图1,若ACD ∆是等边三角形,2OC =,求□ABCD 的面积;(2)如图2,若ACD ∆是等腰直角三角形,90CAD ∠= ,求证:2CE OF AC +=。

五、解答题:(本大题共2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡...中对应的位置上。

25、阅读下列材料,解决问题:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算时往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明。

材料1:将分式231x x x -++拆分成一个整式与一个分式(分子为整数)的和的形式。

解:()()()()212151213552111111x x x x x x x x x x x x x x x +-++++-+==-+=-+++++++这样,分式231x x x -++就拆分成一个整式2x -与一个分式51x +的和的形式。

材料2:已知一个能被11整除的个位与百位相同的三位整数10010x y x ++,且14x ≤≤,求y x 与的函数关系式。

解:101109911229111111x y x y x y x y x y +++--==++, 又14,09,728x y x y ≤≤≤≤∴-≤-≤ ,还要使211x y-为整数, 20x y ∴-=,即2y x =。

(1)将分式2631x x x +--拆分成一个整式与一个分子为整数的分式的和的形式,则结果为 ;(2)已知整数x 使分式225203x x x +--的值为整数,则满足条件的整数x = ;(3)已知一个六位整数2017xy 能被33整除,求满足条件的,x y 的值。

26、如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(4,0),将直线y kx =沿y 轴向上平移4个单位长度后恰好经过,B C 两点。

(1)求直线BC及抛物线的解析式;(2)将直线BC沿y轴向上平移5个单位长度后与抛物线交于,D E两点,若点P是抛物线位于直线BC下方的一个动点,连接PD,交直线BC于点Q,连接PE和PQ。

设PEQ的面积为S,当S取得最大值时,求出此时点P的坐标及S的最大值;(3)如图2,记(2)问中直线DE与y轴交于M点,现有一点N从M点出发,先沿y轴到达K点,再沿KB到达B点,已知N点在y轴上运动的速度是每秒2个单位长度,它在直线KB上运动速度是1个单位长度。

现要使N点按照上述要求到达B点所用的时间最短,请简述确定K点位置的过程,求出点K的坐标,不要求证明。

注:1.为排下4页(原卷6页),第26题稍显拥挤,请谅解2.选择题第10题,原卷为:10、下列图形都是由相同的火柴棒按一定的规律组成,其中,第①个图形一共有4根火柴棒,第②个图形一共有12根火柴棒,第③个图形一共有24根火柴棒,……,则第⑥个图形中火柴棍的根数为()A、72B、76C、80D、84在审图过程中发现该题可能出现一些误会。

图①确实为4根火柴棒,图②确有12个边,但是只有9个火柴头,(火柴头重叠的情况在图片上的确无法表现),图③也是同样的道理,为避免学生误会,故将本题“火柴棒”改为“小木棍”,并将图形更改。

相关文档
最新文档