第一章--有理数教案

合集下载

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

数学人教版(2024)7年级上册 1.2.1 有理数的概念 教案02

第一章有理数1.2.1 有理数的概念0.3…负分数:如-52,-23,-17, -0.5, -150.5,… 引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

指出:正分数、负分数统称为分数。

想一想:整数能化成分数吗?预设:2=21, 3=31,…正整数可以写成正分数的形式-2=−21, -3=−31,…负整数可以写成负分数的形式0=01,0也可以写成分数的形式 整数可以写成分数的形式指出:可以写成分数形式的数称为有理数。

可以写成正分数形式的数为正有理数,可以写成负分数形式的数为负有理数。

思考:你能试着对有理数进行分类吗?预设:有理数的分类(整分性):有理数的分类(正负性):例1:指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:13,4.3,−38,8.5%,-30,-12%, 19 ,-7.5,20,-60,1.2解:正有理数:13,4.3, 8.5%, 19 ,20,1.2;其中正整数有13,20。

负有理数: −38, -30,-12%, -7.5,-60 ; 其中负整数有-30,-60。

例2:下列说法中,正确的是( ). A .在有理数中,0的意义仅仅表示没有 B .一个有理数,它不是正数就是负数 C .正有理数和负有理数组成有理数 D .0是自然数 答案:D强调:在有理数概念中,“0”很特殊: (1)0既不是正数,也不是负数; (2)0是整数,不是分数; (3)0既是非正数,又是非负数. 活动意图说明:【解析】本题主要考查了有理数的分类,理解有理数的相关定义是解题的关键.先根据正数的定义判断A 的正误,再根据非负数是正数或0判断B 的正误;再根据有理数也可分成整数和分数判断C ,D 的正误即可解答.解:A .由50%,1,2.5是正数,故正确,符合题意; B .由−2,−4为负数,故错误,不符合题意; C .1为整数,故错误,不符合题意; D .因为112是分数,故错误,不符合题意. 故选:A .【综合拓展类作业】5.如图,把下列各数填入相应的各圈里. 100,−99%,0,−2000,5.2,6,−0.3,116,−53【答案】见解析【解析】本题考查了有理数的分类,根据有理数的分类,即可求解. 解:整数为:100,0,−2000,6; 负数为:−99%,−2000,−0.3,−53; 则负整数为:−2000;本节课的主要内容是让学生明确有理数的概念,并能对有理数进行正确。

第一章有理数总结教案

第一章有理数总结教案

第一章有理数总结教案第一章:有理数总结教案一、教学目标通过本章学习,学生应掌握以下能力:掌握有理数的基本概念,包括正数、负数、整数、分数等。

掌握有理数的四则运算,包括加法、减法、乘法、除法及乘方。

理解并能够运用有理数的性质,如相反数、绝对值等。

能够在实际问题中运用有理数的知识,进行简单的数学建模。

二、教学内容及方法有理数的概念:通过实例引入正数、负数、整数、分数等概念,让学生明确有理数的范围和分类。

有理数的四则运算:通过例题讲解和课堂练习,让学生掌握加法、减法、乘法、除法的运算方法和运算律。

同时,引入乘方的概念,让学生理解其运算规则。

有理数的性质:讲解相反数和绝对值的概念,通过实例让学生理解并运用这些性质。

数学建模:选取一些实际问题,引导学生运用有理数的知识建立数学模型,提高其解决实际问题的能力。

三、教学重点与难点重点:有理数的概念和四则运算。

这些是有理数学习的基础,对于后续的学习至关重要。

难点:有理数的性质理解和运用,特别是绝对值的概念。

需要通过大量的实例和练习帮助学生理解。

四、教学评价与反馈课堂练习:通过课堂练习,检查学生对有理数知识的掌握情况,及时发现并纠正学生的错误。

课后作业:布置适量的有理数练习题,要求学生按时完成,巩固所学知识。

单元测试:进行单元测试,全面了解学生对有理数知识的掌握程度,为后续教学提供依据。

反馈与指导:根据学生的练习、作业和测试情况,进行有针对性的反馈和指导,帮助学生解决学习中遇到的问题。

五、教具和多媒体资源黑板:用于展示例题和重要的概念、公式。

投影仪:用于展示PPT课件,帮助学生更好地理解有理数的概念和运算过程。

教学软件:使用数学教育软件进行辅助教学,如GeoGebra等,可以动态展示数学概念和运算过程。

教学卡片:用于制作各种数学概念的卡片,便于学生进行复习和记忆。

教学模型:如数轴等,可以帮助学生直观理解数学概念和性质。

六、学生活动设计分组讨论:将学生分成小组,让他们在小组内讨论有理数的概念和性质,互相交流学习心得。

第一章有理数全章教案

第一章有理数全章教案

第一章有理数全章教案有理数教学目标〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。

2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.4、会利用数轴和绝对值比较有理数的大小。

5、理解乘方的意义,会进行乘方的计算。

掌握有理数加减、乘除、乘方的混合运算。

6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。

〔过程与方法〕1、经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。

〔情感、态度与价值观〕1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。

2、给学生渗透辩证唯物主义思想。

重点难点有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。

课时分配1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法3课时1.4有理数的乘除法5课时1.5有理数的乘方4课时本章小结2课时人教版数学第一章有理数全章教案1.1.1 正数和负数的概念〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。

〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。

〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3 ;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影4](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4U1),黄队胜蓝队(1U0),蓝队胜红队(1U0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2022年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面三个问题中,哪些数的形式与以前学习的数有区别?数-3、-2、-2.7%与以前学习的数有区别。

湘教版七年级上数学第一章有理数教案

湘教版七年级上数学第一章有理数教案

一、教学内容
本章教学内容为湘教版七年级上册有理数,主要包括以下几个方面:
1、识记有理数的定义:有理数是由整数、分数和小数构成的数,能以最简分数形式表示。

2、认识有理数的性质:(1)有理数可以正可以负;(2)有理数可以表示一个具体的数值;(3)有理数相加、相减、相乘、相除都有确定的结果;(4)有理数具有可比性;(5)每个有理数都可以表示成两个整数的比例;(6)有理数的加、减、乘、除运算都遵循结合律、交换律和分配律。

3、掌握有理数的知识点:具体包括:(1)约分:了解相同因素的分子分母的约分;(2)有理数的四则运算:正负数的加减法、整数和小数的四则运算;(3)分式的四则运算:省去公因子、约分、化简、分母相乘;(4)实数的有理化:理解无理数的有理化,用分数形式表示。

二、教学目标
1、认知目标:
(1)正确理解有理数的概念,掌握有理数的特征;
(2)掌握有理数的知识点,掌握有理数的各种运算规则;
(3)了解实数的有理化,正确用分数形式表示。

2、能力目标:
(1)能够根据有理数的性质进行有理数的计算;
(2)掌握约分、分式的四则运算和实数的有理化的规律;。

第一章有理数-有理数(教案)

第一章有理数-有理数(教案)
-有理数的乘除运算:特别是分数的乘除,以及运算过程中的符号处理。
-难点解释:分数乘除时,分子分母的交叉相乘相除,以及结果的符号判定。
-数轴上的有理数比较:特别是负数的大小比较。
-难点解释:在数轴上,负数的绝对值越大,其值越小,对于学生来说是思维上的一个转换点。
-应用题的建模:如何将实际问题抽象为有理数运算问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算总价。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,使用数轴来表示不同的有理数,并观察它们之间的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲授新课内容时,我尽量用简洁明了的语言解释有理数的性质和运算规则,并通过案例分析让学生们看到有理数在实际中的应用。然而,我也发现,仅仅依靠讲解和案例可能还不够,学生们需要更多的实践活动来加深理解。因此,在实践活动中,我安排了分组讨论和实验操作,让学生们亲自动手去解决问题,这样能够更好地帮助他们消化吸收所学知识。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

《有理数》教案

《有理数》教案

《有理数》教案一、教学目标理解有理数的概念,掌握有理数的分类方法。

能正确判断一个数是有理数,并能将有理数进行分类。

体会数学分类思想,培养学生的逻辑思维能力。

二、教学重难点教学重点有理数的概念和分类。

对有理数不同分类标准的理解。

教学难点有理数分类中零的地位。

无限循环小数与分数的关系及在有理数分类中的归属。

三、教学方法讲授法:讲解有理数的概念和分类方法。

讨论法:组织学生讨论有理数分类的不同方式及特点。

举例法:通过大量实例帮助学生理解有理数的概念和分类。

练习法:通过课堂练习巩固学生对有理数概念和分类的掌握。

四、教学过程导入新课回顾小学所学的数的种类,如自然数、整数、小数、分数等。

提出问题:进入初中后,我们又学习了哪些新的数呢?这些数可以怎样进行分类呢?引出课题《有理数》。

讲解有理数的概念定义有理数:整数和分数统称为有理数。

解释整数包括正整数、零、负整数;分数包括正分数和负分数。

举例说明一些常见的有理数,如 2、-3、0、1/2、-2/3 等。

有理数的分类按定义分类教师讲解按定义分类的方法:有理数分为整数和分数。

整数又分为正整数、零、负整数;分数分为正分数和负分数。

让学生举例说明不同类型的有理数,并进行分类练习。

按性质分类讲解按性质分类的方法:有理数分为正有理数、零、负有理数。

正有理数包括正整数和正分数;负有理数包括负整数和负分数。

引导学生思考这种分类方法的特点和意义。

重点讨论零的地位提问学生:零在有理数分类中属于哪一类?为什么?组织学生讨论零的特殊性,明确零既不是正数也不是负数,但它是整数。

探讨无限循环小数与有理数的关系提出问题:无限循环小数是有理数吗?如果是,它属于哪一类有理数?引导学生回忆无限循环小数可以化成分数的方法,从而得出无限循环小数是有理数,且属于分数的结论。

课堂练习出示一些数,让学生判断这些数是否为有理数,并进行分类。

设计一些填空、选择题,巩固学生对有理数概念和分类的掌握。

课堂小结回顾本节课的主要内容,包括有理数的概念和分类方法。

有理数教案(精选多篇)

有理数教案(精选多篇)

有理数教案(精选多篇)第一篇:《有理数》教案2《有理数》教案教学目标1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标:能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系. 教学重难点重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程一、创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决分组讨论扣的分怎样表示?用前面学的数能表示吗?数怎么不够用了?引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数. 启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.2、下面说法中正确的是().a.“向东5米”与“向西10米”不是相反意义的量;b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.三、小结回顾、纳入体系学生交流回顾、讨论总结,教师补充如下:概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.第二篇:有理数减法教案一、课题2.4有理数的减法二、教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力.三、教学重点有理数减法法则四、教学难点有理数减法法则五、教学用具三角尺、小黑板、小卡片六、课时安排1课时七、教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).3.填空:(1)______+6=20;(2)20+______=17;(3)______+(-2)=-20;(4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.(二)、师生共同研究有理数减法法则问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,即 (+10)-(+3)=(+10)+(-3).教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)(三)、运用举例变式练习例1计算:(1)(-3)-(-5);(2)0-7.例2计算:(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?阅读课本63页例3(四)、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;2.计算:(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.3.计算:(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).利用有理数减法解下列问题4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?八、布置课后作业:课本习题2.6知识技能的2、3、4和问题解决1九、板书设计2.5有理数的减法(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计十、课后反思第三篇:有理数的减法教案有理数的减法教案赵英俊一、教学目标:知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数教案教学目标1.知识与技能①通过生活实例,了解有理数等知识是生活的需要.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过全章的学习,培养学生应用数学知识的意识,训练和增强学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过生活实例的引入,通过教师、学生双边的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.②通过本章知识的学习,给学生渗透辩证唯物主义思想.教学重点难点重点:有理数的运算,这一章的主要学习目标都可以归结到有理数的运算上,诸如有理数的有关概念、运算法则、运算律、近似数与有效数字等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,对有理数中的有关概念以及有理数法则的理解,绝对值意义和运算中符号的确定.课时分配内容课时1.1 正数和负数 1 1.2 有理数 4 1.3 有理数的加减法 51.4 有理数的乘除法 4 1.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题以及解决问题,从而使学生自得知识,自觅规律.在这过程中,训练学生分析问题、解决问题的能力.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意利用数轴的直观性讲述相反数、绝对值,发挥字母表示数的优越性,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴更直观形象易理解,并且要着重在符号法则的基础上,进行基本运算训练,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.②通过正负数的学习,渗透对立、统一的辩证思想.教学重点难点重点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义.难点:负数的引入.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米,等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗你能再举一些日常生活中具有相反意义的量吗该如何表示它们呢2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学任说有关相反的两个量,由其他同学用正负数表示.讨论什么样的数是负数什么样的数是正数0是正数还是负数•自己列举正数、负数.【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查用正负数与相反意义量的表示能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么【答案】表示比标准质量低0.03克.例3 2001年美国的商品进出口总额比上年减少%可记为% ,中国增长%可记为+% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() B.-3 C. 【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字的排列是按正常的大小顺序,符号是负正相间,第奇数个为负,第偶数个为正.【点评】本节是对探究问题的训练.2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16++10(1)本周小张一共用掉了多少钱存进了多少钱【答案】元,31元.(2)储蓄罐中的钱与原来多了还是少了【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)+1=(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,.4.有没有这样的有理数,它既不是正数,也不是负数【答案】有,是0.5.下列各数中哪些是正数哪些是负数-15,,67,-171,4,-213,,0,,π【答案】正数:67,4,,,π;负数:-15,,-171,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为点,•你知道他们分别是什么时候到的吗最早到的同学比最迟到的同学早多少小时【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.3.情感、态度与价值观通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.教学重点难点重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,,-7,-9,-10,0,13,25,-356,,…议一议你能说说这些数的特点吗学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗有理数⎧⎧⎪⎨⎩⎪⎨⎧⎪⎨⎪⎩⎩正整数整数零正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数分数呢做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合:把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1把下列各数填入相应的集合内:12 7,,0,2004,-85,,10%,,,-89正数集合负数集合整数集合分数集合-1250.48130 例2 以下是两位同学的分类方法,你认为他们的分类的结果正确吗为什么有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数 有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【讲解答案】 两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视 (B) ①0是最小的正整数 ②0是最小的有理数③0不是负数 ④0既是非正数,也是非负数个 个 个 个例3 如果用字母表示一个数,那a 可能是什么样的数,一定为正数吗与你的伙伴交流一下你的看法.【答案】 不一定,a 可能是正数,可能是负数,也可能是0.【点评】 此题开放性较强.同时,要求学生能用分类的思想对a 全面认识.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________. 【点拨】 找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数. 【答案】56 (四)总结反思,拓展升华提问:今天你获得了哪些知识由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集. 【答案】 答案不唯一,如图1-2-2所示.分数集合负数集合2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数 按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗(2)生活中,我们也常常对事物进行分类,请你举例说明.【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢答案 负分数(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,,12,-312,3,0,50%, (1)整数集合{-7,3,0} (2)分数集合{,12,-312,50%,} (3)负分数集合{-312,} (4)非负数集合{,12,3,0,50%} (5)有理数集合{-7,,12,-312,3,0,50%,} 2.下列说法正确的是(D)A.整数就是自然数 B.0不是自然数C.正数和负数统称为有理数 D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±)千克,(25±•千克),(25±)千克的字样,从中任意两袋,它们质量相差最大的是 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)【答案】(1)50%;(2)这10名男生共做了多少个引体向上【答案】(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.E DC B A 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,,-3,-72,0吗 讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上与原点相距多少个单位长度;表示-a 的点在原点的什么位置上•与原点又相距了多少个长度单位小结 整数能在数轴上都找到点吗分数呢可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对如果不对,指出错在哪里.①②-1021③④0⑤0⑥-1-20-321 ⑦0【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,,-3,-73,0 【答案】 图中A点表示4,B点表示,C点表示-3,D点表示-73,E点表示0. 例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上•表示-a 的点在原点的什么位置上呢【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B) 个 个 个 个【提示】 题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,• ⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.5M 4M 3M 2M 1例5 (1)与原点的距离为个单位的点有 两 个,它们分别表示有理数 •和 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是 +3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数. 【答案】 -2,-1,0,1 【点评】 本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若这个数轴上随意画出一条长2000cm 的线段AB ,则线段AB 盖住的整点是(C )A .1998或1999B .1999或2000C .2000或2001D .2001或2002【提示】分两种情况分析:(1)当线段AB 的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB 的起点不是整点时,•终点也不落在整点上,那么线段AB 盖住了2000个整点.【点评】 本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边. 【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数. 一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图: (1)点M 4和M 2所表示的有理数是什么 (2)点M 3和M 5两点间的距离为多少(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单位长度.(五)课堂跟踪反馈夯实基础1.规定了 原点 、正方向 、 单位长度的直线 叫数轴,所有的有理数都可从用 数轴 上的点来表示.2.P 从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P 点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为个单位长度的点有 2 个,它们分别是和.8.画一条数轴,并把下列数表示在数轴上:+2,-3,,0,,4,31 3开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.31.2.3 相反数教学目标1.知识与技能①借助数轴了解相反数的概念,知道互为相反数的位置关系.②给一个数,能求出它的相反数. 2.过程与方法①训练学生利用数轴应用数形结合的方法解决问题.②培养学生自己归纳总结规律的能力.3.情感、态度与价值观①通过相反数的学习,渗透数形结合的思想.②感受事物之间对立、统一联系的辩证思想.教学重点难点重点:理解相反数的意义.难点:理解和掌握双重符号简化的规律.教与学互动设计(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么(二)合作交流,解读探究1.观察下列数:6和-6,223和-223,7和-7,57和-57,并把它们在数轴上标出.想一想(1)上述各对数之间有什么特点(2)表示这两对数的点在数轴上有什么特点(3)你能够写出具有上述特点的数吗观察像这样只有符号不同的两个数叫相反数.两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,•并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.【总结】在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=•-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0•的相反数是0.(三)应用迁移,巩固提高例1 填空(1)是的相反数, 3 的相反数是-(+3),a的相反数是–a ,a-b的相反数是-(a-b),0的相反数是0 .(2)正数的相反数是负数,负数的相反数是正数,0 的相反数是它本身.例2 下列判断不正确的有(C)个个个个①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.例3化简下列各符号:(1)-[-(-2)] (2)+{-[-(+5)]} (3)-{-{-…-(-6)}…}(共n个负号)【答案】(1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6.【提示】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A•的距离为2,点B和点C各对应什么数【提示】画出数轴,结合数轴的特点来分析.【答案】 C点表示2或6,则相应的B点应表示-2或-6.。

相关文档
最新文档