压铸铝合金

合集下载

压铸铝合金材质

压铸铝合金材质

压铸铝合金材质压铸铝合金是一种常用的金属材料,具有许多优秀的性能和广泛的应用领域。

本文将从以下几个方面介绍压铸铝合金的材质特点、加工工艺、应用领域以及未来发展趋势。

一、材质特点压铸铝合金是指通过压力将熔化的铝合金注入到模具中进行冷却凝固而得到的铝合金制品。

它具有以下几个特点:1. 良好的流动性:压铸铝合金具有较低的熔点,熔化后能够在较低的压力下迅速充填模具,使得制品成型速度快。

2. 优异的力学性能:压铸铝合金具有较高的强度和硬度,能够承受较大的载荷,在工程领域有着广泛的应用。

3. 良好的表面质量:压铸铝合金制品表面光洁度高,不需要进一步的加工处理,节省了生产成本。

4. 耐腐蚀性好:压铸铝合金具有良好的耐腐蚀性,能够在潮湿和腐蚀性环境中长期使用。

二、加工工艺压铸铝合金的加工工艺包括模具设计、原料准备、熔炼、注射、冷却和脱模等步骤。

其中,模具设计是关键的一步,需要根据产品的形状和尺寸设计合适的模具。

原料准备是指准备合适的铝合金材料,并根据配方进行混合。

熔炼是将铝合金材料熔化成液态,通常采用电炉或气炉进行熔炼。

注射是将熔化的铝合金注入到模具中,通过压力使其充填整个模腔。

冷却是指让注射后的铝合金在模具中快速冷却凝固,形成所需的制品。

脱模是将冷却凝固的铝合金制品从模具中取出。

三、应用领域压铸铝合金由于其优异的性能,广泛应用于汽车、航空航天、电子电器、通信设备、机械设备等领域。

在汽车领域,压铸铝合金被用于制造汽车发动机零部件、车身结构件等,能够提高汽车的安全性和燃油经济性。

在航空航天领域,压铸铝合金被用于制造飞机发动机零部件、机身结构件等,能够减轻飞机的重量,提高飞行性能。

在电子电器领域,压铸铝合金被用于制造电脑外壳、手机壳等,具有良好的导热性能和电磁屏蔽性能。

四、未来发展趋势随着科技的发展和人们对产品性能要求的提高,压铸铝合金在未来将有更广阔的应用前景。

未来,压铸铝合金的制造工艺将更加智能化和自动化,提高生产效率和产品质量。

铝合金压铸技术要求

铝合金压铸技术要求

1、范围本标准规定了铝合金压铸件的技术要求、试验方法、检验规那么、交货条件等。

本标准适用于汽车发电机铝合金端盖压铸件。

2、引用标准GB6414铸件尺寸公差铝及铝合金化学分析方法GB288-87金属拉力试验法GB/T13822-92 压铸有色合金试样GB6060.5 外表粗造度比拟样块抛(喷)丸、喷吵加工外表3、技术要求3.1 压铸铝合金的牌号压铸铝合金采用UNS-A03800〔美国,日本ADC10〕可选用材料UNS-A03830 〔美国,日本ADC12〕化学成份见表1表1供给商可选择上述四种牌号的任何一种,如在生产过程中更换其它牌号,需重新进展样件鉴定。

一级回炉料:浇道、化学成份合格的废铸件,后加工次品等不含水分和油污。

二级回炉料:集渣包、坩埚底部剩料、退货废品、存放时间长〔超过10天〕的一级回炉料。

三级回炉料:飞边、溅屑、细小的碎料、带有油污的渣料、因化学成份报废的铸件、从铝渣中捡出的铝粒。

使用单一某级回炉料:一级回炉料最大使用量50%,二级回炉料最大使用量40%。

一级、二级回炉料混合使用:回炉料总量不超过40%,其中二级回炉料最大使用量20%。

三级回炉料:不能直接使用,必须经过重熔、精炼且化学成份分析合格后才能使用,其最大使用量10%,仅与铝锭混合使用。

小颗粒回炉料大块回炉料铝锭,如此循环。

3.2 力学性能采用单铸拉力试样检验,其力学性能应满足抗拉强度≥240Mpa,伸长率≥1%,HB85〔5/250/30〕。

试样尺寸及形状应符合GB/T 13822-92?压铸有色合金试样?的规定。

3.3 压铸件尺寸压铸件的几何形状和尺寸应符合铸件图的规定。

3.4 待加工外表用符号“〞标明,尖头指向被加工面。

例:0.5 表示该外表留有加工余量3.5 外表质量3.5.1 铸件清理后的外表质量铸件的浇口、飞边、溢流口、隔皮等应清理干净,但允许留有清理痕迹。

在不影响使用的情况下,因去除浇口、溢流口时所形成的缺肉或高出均不得超过壁厚的四分之一,并且不得超过1.5 mm。

压铸铝合金材质特性

压铸铝合金材质特性
压铸铝合金材质特性铝合金压铸铝合金压铸件铝合金压铸厂家铝合金压铸机铝合金压铸件检验标准铝合金压铸件抛光机铝合金压铸工艺压铸铝合金表面处理铝合金压铸件表面处理
1
压铸用合金种类
? 主要压铸用合金材料有锡、铅、锌、 铝 、镁、铜等。
? 以锌、铝合金应用最广镁、铜合金次 之。
? 用于压铸锡、铅、锌合金的是低熔点 合金,以及铜系的高熔点合金等。
Al-Si合金
? 硅(Si) 为铝合金最重要也是主要成分, 是显著改善 其流动性的主要成分,从共晶到过共晶区段具有良 好的流动性。 Si性硬且脆,应避免其大块存于铝合金中以
免对铸件造成不良影响。
Si含量增 流动性 耐磨 硬度 强度 加工 凝固收 延性
加性ຫໍສະໝຸດ 性 缩率影响↑增加

↑↑




↓减少
? 调质
在Al-Si-Mg合金中镁含量不能小于0.2﹪。如 果要求A380 (ADC10)或413 铸件有更高 强度,硬度可提高镁含量再经过154℃,2~ 5小时的热处理。基本上来讲镁含量增加强度、 硬度、刚性增加、流动性降低。
Ni(镍)元素
镍在规范中容许量 <0.5﹪。对于铸件有特殊 需求在较高温使用,镍含量2~2.5﹪可提高 其强度及降低热膨胀性。和CU 一样,随着 含量的增加,其硬度、抗拉强度愈增,而耐 蚀性变差,可改善高温抗拉强度。
(2)浇口补充效果大,凝固收缩小。 (3)热裂少。
a. 高温强度大。 b. 固相率小。 c. 热膨胀系数小。 (4)与金属模的附著力小。 a. 和铁的化学亲和力小。 b. 熔汤不易氧化。
压铸用合金材料特性
? 优良的机械性质。 ? 质轻(比重,肉薄)。 ? 价格低廉、价格稳定。 ? 被切削性良好。 ? 普遍的耐腐蚀性良好。 ? 拔模斜度小。 ? 尺寸精度佳、尺寸安定。 ? 表面处理特性佳。 ? 物理性质佳。

铝合金压铸标准

铝合金压铸标准

铝合金压铸标准---中国标准GB/T 15115-941. 铝合金 GB/T 15115-94压铸铝合金的化学成分和力学性能表2. 铝合金压铸件 GB/T 15114-941.主题内容与适用范围本标准规定了铝合金压铸件的技术要求,质量保证,试验方法及检验规则和交货条件等.本标准适用于铝合金压铸件.2.引用标准GB1182 形状和位置公差代号及其标准GB2828 逐批检查计数抽样程序及抽样表(适用于连续的检查)GB2829 周期检查计数抽样程序及抽样表(适用于生产过程稳定性的检查)GB6060.1 表面粗糙度比较样块铸造表面GB6060.4 表面粗糙度比较样块抛光加工表面GB6060.5 表面粗糙度比较样块抛(喷)丸,喷砂加工表面GB6414 铸件尺寸公差GB/T11350 铸件机械加工余量GB/T15115 压铸铝合金3.技术要求3.1化学成分合金的化学成分应符合GB/T15115的规定.3.2力学性能3.2.1当采用压铸试样检验时,其力学性能应符合GB/T15115的规定3.2.2当采用压铸件本体试验时,其指定部位切取度样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定.3.3压铸件尺寸3.3.1压铸件的几何形状和尺寸应符合铸件图样的规定3.3.2压铸件尺寸公差应按GB6414的规定执行,有特殊规定和要求时,须在图样上注明.3.3.3压铸件有形位公差要求时,其标注方法按GB1182的规定.3.3.4压铸件的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,有特殊规定和要求时,须在图样上注明.3.4压铸件需要机械加工时,其加工余量按GB/T11350的规定执行.若有特殊规定和要求时,其加工作量须在图样上注明.3.5表面质量3.5.1铸件表面粗糙度应符合GB6060.1的规定3.5.2铸件不允许有裂纹,欠铸,疏松,气泡和任何穿透性缺陷.3.5.3铸件不允许有擦伤,凹陷,缺肉和网状毛刺等腰三角形缺陷,但其缺陷的程度和数量应该与供需双方同意的标准相一致.3.5.4铸件的浇口,飞边,溢流口,隔皮,顶杆痕迹等腰三角形应清理干净,但允许留有痕迹.3.5.5若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置,分型线的位置,浇口和溢流口的位置等由生产厂自行规定;否则图样上应注明或由供需双方商定.3.5.6压铸件需要特殊加工的表面,如抛光,喷丸,镀铬,涂覆,阳极氧化,化学氧化等须在图样上注明或由供需双方商定.3.6内部质量3.6.1压铸件若能满足其使用要求,则压铸件本质缺陷不作为报废的依据.3.6.2对压铸件的气压密封性,液压密封性,热处理,高温涂覆,内部缺陷(气孔,疏孔,冷隔,夹杂)及本标准未列项目有要求时,可由供需双方商定.3.6.3在不影响压铸件使用的条件下,当征得需方同意,供方可以对压铸件进行浸渗和修补(如焊补,变形校整等)处理.4质量保证4.1当供需双方合同或协议中有规定时,供方对合同中规定的所有试验或检验负责.合同或协议中无规定时,经需方同意,供方可以用自已适宜的手段执行本标准所规定的试验和要求,需方有权对标准中的任何试验和检验项目进行检验,其质量保证标准应根据供需双方之间的协议而定.4.2根据压铸生产特点,规定一个检验批量是指每台压铸设备在正常操作情况下一个班次的生产量,设备,化学成分,铸型和操作连续性的任何重大变化都应被认为是新是一个批量开始.供方对每批压铸件都要随机或统计地抽样检验,确定是否符合全部技术要求和合同或铸件图样的规定要求,检验结果应予以记录.5试验方法及检验规则5.1化学成分5.1.1合金化学成分的检验方法,检验规则和复检应符合GB/T15115的规定.5.1.2化学成分的试样也可取自压铸件,但必须符合GB/T15115的规定5.2力学性能5.2.1力学性能的检验方法,检验频率和检验规则就符合GB/T15115的规定.5.2.2采用压铸件本体为试样时,切取部位尺寸,测试形式由供需双方商定.5.3压铸件几何尺寸的检验可按检验批量抽验或按GB2828,GB2829的规定进行,抽检结果必须符合标准3.3的规定.5.4压铸件表面质量就逐检查,检查结果应符合本标准3.5的规定.5.5压铸件表面粗糙度按GB6060.1的规定执行.5.6压铸件需抛光加工的表面按GB6060.4的规定执行,5.7压铸件需喷丸,喷砂加工的表面按GB6060.5的规定执行.5.8压铸件内部质量的试验方法检验规则由供需双方商定,可以包括:X射线照片,无损探伤,耐压试验,金相图片和压铸件剖面等,其检难结果应符合3.6的规定.5.9经浸渗和修补处理后的压铸件应做相应的质量检验.6压铸件的交付,包装,运输与储存6.1当在合同或协议中有要求时,供方应提供需方一份检验证明,用来说明每批压铸件的取样,试验和检验符合标准的规定.6.2合格压铸件交付时,必须有附有检验合格证,其上应写明下列内容:产品名称,产品号,合金牌号,数量,交付状态,制造厂名,检验合格印记和交付时间.有特殊检验项目者,应在检验员合格证上注明检验的条件和结果.6.3压铸件的包装,运输与储存,由供需双方商定.。

铝合金压铸件材料

铝合金压铸件材料

铝合金压铸件材料铝合金压铸件以其优异的性能和广泛的应用,在现代工业中占据了重要的地位。

在本文中,我们将对铝合金压铸件的材料进行详细的盘点,帮助您了解这一领域的最新发展。

一、铝合金的种类铝合金是铝与其它金属元素通过熔炼而成的合金。

根据主要添加的金属元素不同,铝合金可以分为多个种类,如铝镁合金、铝锌合金、铝硅合金等。

这些合金在压铸过程中表现出不同的物理和化学特性,使得铝合金压铸件具有多样化的性能。

二、铝合金压铸件的特点1.重量轻:铝合金的密度远低于钢铁和铜等金属,使得铝合金压铸件具有轻量化优势,可有效降低产品的重量。

2.耐腐蚀:铝合金表面能形成一层致密的氧化膜,具有良好的耐腐蚀性,适合于各种复杂环境的应用。

3.高强度:经过合理的合金设计和热处理工艺,铝合金压铸件可达到较高的强度和刚性,能够满足各种强度要求。

4.良好的铸造性能:铝合金熔点低,流动性好,易于实现压铸成型,且铸件表面光滑,减少后续加工量。

5.良好的导电性和导热性:铝合金具有良好的导电和导热性能,适用于电子元件、散热器等对导电和导热性能要求较高的领域。

三、铝合金压铸件的应用1.汽车工业:铝合金压铸件广泛应用于汽车领域,如发动机部件、底盘零件、车身结构件等,以实现汽车轻量化,提高燃油经济性和减排效果。

2.电子电器:铝合金压铸件用于制造电子元件、连接器、端子、散热器等部件,具有良好的导电、导热性能和耐腐蚀性。

3.建筑行业:铝合金压铸件如门窗、幕墙、栏杆等,具有美观、耐用、防火等特点,广泛应用于建筑领域。

4.五金工具:铝合金压铸件用于制造各种五金工具,如把手、支架、壳体等,具有良好的强度和耐腐蚀性。

5.家用电器:铝合金压铸件用于制造家用电器部件,如冰箱、洗衣机、空调等的外壳和内部结构件,具有良好的美观度和耐用性。

通过以上的介绍,相信您对铝合金压铸件的材料有了更深入的了解。

随着科技的不断发展,铝合金压铸件的性能和应用领域将不断拓展,为我们的生活和工作带来更多的便利和价值。

压铸铝合金材料

压铸铝合金材料

压铸铝合金材料压铸铝合金是一种常见的金属材料,具有优异的性能和广泛的应用领域。

本文将介绍压铸铝合金的特性、制造工艺、应用领域以及未来发展趋势。

首先,压铸铝合金具有优异的机械性能。

它具有较高的强度和硬度,同时重量轻、耐腐蚀性好,因此在航空航天、汽车、电子等领域得到广泛应用。

另外,压铸铝合金的导热性能也很好,能够满足一些特殊工业领域的需求。

其次,压铸铝合金的制造工艺主要包括原料准备、熔炼、注射、冷却、脱模等工序。

首先是原料准备,将铝合金原料按一定比例混合;然后进行熔炼,将混合好的原料放入熔炼炉中进行加热,直至完全熔化;接着是注射,将熔化的铝合金注入压铸模具中;然后进行冷却,待铝合金冷却凝固后进行脱模,最终得到成品。

整个制造工艺需要严格控制各个环节的温度、压力和时间,以确保最终产品的质量。

压铸铝合金的应用领域非常广泛。

在汽车制造领域,压铸铝合金被广泛应用于发动机零部件、车身结构件等;在航空航天领域,由于其轻质高强的特性,被应用于飞机结构件、发动机零部件等;在电子领域,压铸铝合金被用于制造手机壳、电脑外壳等。

此外,在工程机械、船舶制造、军工等领域也有着重要的应用。

未来,随着工业技术的不断发展,压铸铝合金将会有更广阔的发展前景。

一方面,随着汽车工业、航空航天工业的快速发展,对于轻质高强材料的需求将会不断增加,压铸铝合金将会得到更广泛的应用;另一方面,随着工艺技术的不断进步,压铸铝合金的制造成本将会不断降低,使其在更多领域得到应用。

总之,压铸铝合金作为一种重要的金属材料,具有优异的性能和广泛的应用前景。

通过不断提高制造工艺水平和降低成本,压铸铝合金将会在更多领域发挥重要作用。

铝合金压铸技术要求

铝合金压铸技术要求

铝合金压铸技术要求随着工业化的发展,铝合金作为一种轻质、高强度、易加工的材料,越来越广泛地应用于各个领域。

而在铝合金制品的生产中,铝合金压铸技术是一种广泛使用的生产工艺。

铝合金压铸技术要求严格,下面就从压铸机、模具、原材料、工艺等方面介绍一下其要求。

1. 压铸机要求铝合金压铸机的要求是比较高的,首先是要有较高的压力,一般要求在500T及以上。

其次是要有较高的压铸速度,这样可以保证铝合金材料在短时间内充分填充模具中的空腔。

同时,压铸机还需要有较高的控制精度,以确保生产出来的铝合金制品符合要求。

2. 模具要求铝合金压铸模具是铝合金压铸生产中不可或缺的一部分。

模具的质量和精度直接影响到生产出来的铝合金制品的质量。

铝合金压铸模具要求高硬度、高精度,同时还要具备较好的导热性能和耐磨性能。

模具的设计应该符合铝合金制品的形状和尺寸要求,以保证生产出来的铝合金制品的准确度和一致性。

3. 原材料要求铝合金压铸原材料的质量对于生产出来的铝合金制品的质量起到了至关重要的作用。

压铸原材料一般要求纯度高、杂质少,同时还需要具有较好的流动性和填充性能。

铝合金压铸原材料的选用应该根据铝合金制品的要求和生产工艺来进行选择。

4. 工艺要求铝合金压铸技术的工艺要求主要包括模具温度、压铸温度、压铸速度等。

模具温度一般要求在200℃以上,以保证铝合金材料充分流动。

压铸温度要求控制在合适的范围内,过高会导致铝合金材料产生气孔,过低则会导致铝合金材料填充不充分。

压铸速度也要根据铝合金制品的要求和生产工艺来进行调整。

铝合金压铸技术要求严格,需要从多个方面考虑,才能生产出符合要求和标准的铝合金制品。

同时,压铸技术的不断创新和完善,也为铝合金制品的生产提供了更好的技术支持。

铝合金压铸的介绍

铝合金压铸的介绍

铝合金压铸的介绍铝合金压铸是一种用于生产复杂形状铝合金零件的工艺。

压铸是指将铝合金熔融后注入到特殊的铸造模具中,利用模具的压力将熔融铝合金充填到模具腔内,随后冷却固化形成所需零件。

铝合金压铸具有以下特点:1.复杂形状:铝合金压铸能够生产出复杂形状的零件,如薄壁结构、内腔、槽形等。

这得益于压铸模具能够精确复制设计图纸的形状,使铝合金在固化后能够保持原有的细节和精度。

2.高精度:铝合金压铸具有较高的尺寸精度和表面质量,能够满足对精度要求较高的零件生产。

这是由于压铸过程中,熔融铝合金通过模具的压力充填到腔内,形成接近模具表面的铸件。

3.高效生产:铝合金压铸是一种高效的生产工艺,可实现大批量、连续、自动化的生产。

这使得铝合金压铸成为一种经济实用的生产方式,能够满足工业生产对大规模生产的需求。

4.材料性能优越:铝合金具有低密度、优良的导热性能和机械性能,使得压铸的铝合金零件具有较好的强度和刚性。

此外,铝合金还具有良好的耐腐蚀性和可靠的耐用性。

5.可加工性强:铝合金容易加工,可进行切削、冲压、焊接等工艺。

这为铝合金压铸零件的二次加工提供了便利,例如孔加工、表面处理、组装等。

铝合金压铸广泛应用于各行业,如汽车、航空航天、电子、建筑等。

其中,汽车行业是铝合金压铸的主要应用领域,利用铝合金压铸可以生产轻量化的零部件,提高汽车的燃油效率和性能。

而航空航天行业也广泛使用铝合金压铸零件,以满足轻质化、高强度和高精度的要求。

总的来说,铝合金压铸是一种重要的铝合金加工工艺,具有复杂形状、高精度、高效生产等优点,广泛应用于各个领域。

通过铝合金压铸,可以生产出高质量、高性能的铝合金零件,推动各行业的发展与进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金压铸件中气孔缺陷及压铸技术新发展摘要:压铸铝合金有良好的使用性能和工艺性能,因此铝合金的压铸发展迅速,在各个工业部门中得到广泛的应用,用量远远高于其他有色合金,在压铸生产中占有极其重要的地位。

铝合金压铸生产的工件常因气孔存在而导致报废。

产生气孔的原因很多,在解决这一产品质量问题时常常无从下手,如何快速、正确地采取措施减少因气孔而造成的度品率,这是各铝合金压铸厂所关注的问题。

关键词:压铸铝合金;性能;气孔缺陷;精炼处理1、压铸铝合金的性能及分类长期以来,在我国由于压铸件本身中总是存在气孔的缺陷,所以它们经常地只是局限于一些装饰零件,受载荷不大的零件制造,故压铸铝合金的牌号发展一直停留在几个型号上。

但是,随着生产的发展,压铸技术的掌握,人们在扩大压铸件的应用范围方面提出了更多的要求,如在自行车减轻自重的结构改进中,很重要的措施之一就是用铝合金代替钢材制作自行车的零件。

压铸铝合金除了应满足所制零件的工作性能要求外,为了能顺利地进行压力铸造,它还应具有如下的性能:(1)在过热度不高,甚至处于固、液相线温度范围内时,它应有较好的塑性体流变性能,即在压力作用下,貌似粘稠的铝合金液仍具有优良的流动性,便于填充复杂的型腔,保证良好的压铸件表面质量,减少铸件内的收缩孔洞。

同时改善压铸型的工作状况,提高其工作寿命;(2)线收缩率小,并且有一定的高温强度,以免铸件产生裂纹和变形,提高铸件尺寸精度;(3)结晶温度范围小,可以减少铸件中收缩孔洞产生的可能性;(4)具有一定的高温固态强度,防止模具开模时推出铸件产生变形或破裂;(5)在常温下应具有一定的强度,以尽可能提高压铸件的机械强度和表面硬度;(6)与压铸型不发生化学反应,亲和力小,防止粘型和铸件、铸型相互合金化;(7)在高温熔融状态下不易吸气、氧化,以便能满足压铸时需长期保温的要求。

压铸铝合金有良好的使用性能和工艺性能,因此铝合金的压铸发展迅速,在各个工业部门中得到广泛的应用,用量远远高于其他有色合金,在压铸生产中占有极其重要的地位。

按所含基本元素可将铸造铝合金分为Al-Si合金、Al-Cu合金、Al-Mg合金、Al-Zn合金。

1.1 Al-Si合金由于共晶Al-Si合金具有结晶温度间隔小、合金中硅相有很大的凝固潜热和较大的比热容、其线收缩系数也比较小的特点,因此其铸造性能一般要比其他铝合金的好,其充型性能也好,热裂、缩松倾向比较小。

Al-Si共晶体中所含的脆性相(硅相)数量最少,质量分数仅为lO%左右,因而其塑性比其他铝合金好,组织中仅存的脆性相还可通过变质处理降低其脆性。

实验表明Al-Si共晶体在其凝固点附近温度仍保持良好的塑性,这是其他铝合金所没有的。

铸造合金组织中常要有相当数量的共晶体,以保证其良好的铸造性能;共晶体数量的增加又会使合金变脆而降低力学性能,两者之间存在一定的矛盾。

但是由于Al-Si共晶体有良好的塑性,能较好地兼顾力学性能和铸造性能两方面的要求,所以Al-Si合金是目前应用最为广泛的压铸铝合金。

我国压铸铝合金品种中,绝大多数以Al-Si合金为主,这类合金存在强度较低、切削性能不够好、螺纹加工困难等现象,所以近年来我国正在开发高强度合金。

1.2 Al-Zn合金Al-Zn合金合金压铸件经自然时效后,可获得较高的力学性能。

当其锌质量分数大于10%时,强度显著提高。

此合金的缺点是耐腐蚀性差,有应力腐蚀的倾向,压铸时易热裂。

常用的Y40l合金流动性好,易充满型腔,缺点是形成气孔的倾向性大,硅、铁含量较少时,易热裂。

1.3 Al-Mg合金Al-Mg合金的性能特点是:室温力学性能好;抗蚀性强;铸造性能比较差;力学性能的波动和壁厚效应都比较大;长期使用时,有因时效作用而使合金的塑性下降,甚至压铸件出现开裂的现象;压铸件产生应力腐蚀裂纹的倾向也较大等。

Al—Mg合金的缺点部分抵消了它的优点,使其在应用方面受到一定的影响。

1.4 特殊性能的压铸铝合金国内外研制的特殊性能的压铸铝合金有:装饰型Al—Mn合金:适用于阳极氧化处理和着色处理,伸长率高,还具有相当的耐蚀性。

但其强度不高,收缩率大,易粘模。

热处理型Al一Si—Cu合金:可进行淬火后不完全人工时效和淬火后完全人工时效至最大硬度。

此外还有表面处理和热处理复合型的Al一Mn—zn合金、耐磨型过共晶Al—Si 合金和防爆防振型Al—zn合金等。

另外还有压铸铝合金复合材料,目前尚未普遍生产与应用。

2、压铸件的气孔缺陷及产生原因在铝合金压铸生产中,人们常笼统地把产品的孔洞称之为气孔,产生气孔的原因很多,归结起来可以分为以下几类,分别为由于精炼除气质量不良产生的气孔、因排气不良产生的气孔、因压铸参数不当造成卷气而产生的气孔、铝合金的缩气孔、因产品壁厚差过大而引起的气孔。

现对其进行具体分析。

2.1 精炼除气质量不良产生的气孔在铝合金压铸生产中,熔化了的铝液浇注温度一般常在6lO-660℃,在此温度下,铝液中溶解有大量的气体(主要是氢气),铝合金氢气的溶解度与铝合金的温度密切相关,在660℃左右的液态铝液中约为O.69cm3/100g,而在660℃左右的固态铝合金中仅为0.036cm3/100g,此时液态铝液中含氢量约为固态的19-20倍。

所以当铝合金凝固时,便有大量的氢析出以气泡的形态存在于铝合金压铸件中。

减少铝液中的含气量,防止大量的气体在铝合金凝固时析出而产生气孔,这就是铝合金熔炼过程中精炼除气的目的。

如果在铝液中本来就减少了气体的含量,那么凝固时析出气体量就会减少,因而产生的气泡也显著减少。

因此,铝合金的精炼是非常重要的工艺手段,精炼质量好,气孔必然少,精炼质量差,气孔必然多。

保证精炼质量的措施是选用良好的精炼剂,良好的精炼剂是在660℃左右可以起反应产生气泡,所产生气泡不太剧烈,而是均匀不断的产生气泡,通过物理吸附作用,这些气泡与铝液充分接触,吸附了铝液中的氢将其带出液面。

因此冒泡时间不宜过短,一般要有6~8min的冒泡时间。

当铝合金冷却到300℃时,氢在铝合金中的溶解度仅为0.00lcm3/100g以下,此时仅为液态时的l/700,这种凝固后氢气析出而产生的气孔是分散的,细小的针孔,这不影响漏气和加工表面,肉眼基本看不见。

在铝液凝固时因氢气析出所产生的气泡比较大,多在铝液最后凝固的心部,虽然也分散,但这些气泡常常导致渗漏,严重时常导致工件报废。

2.2因排气不良产生的气孔在铝合金压铸中,因模具的排气通道不畅,模具排气设计结构不良,压铸时型腔内的气体无法完全顺畅排出,造成在产品某些固定部位存在气孔。

这种由模具型腔中气体形成的气孔时大时小,气孔的内壁呈铝与空气氧化的氧化色,与氢气析出产生的气孔不同,氢气析出气孔内壁不如空气孔光滑,没有氧化色,而是灰亮的内壁。

对于因排气不良而产生的气孔,应改进模具的排气通道,及时清理模具排气通道上的残留铝皮就可以避免。

2.3因压铸参数不当造成卷气产生的气孔在压铸生产中压铸参数选择不当,铝液压铸充型速度过快,使型腔中气体不能完全及时平稳的挤出型腔,而被铝液的液流卷入铝液中,因铝合金表面快速冷却,被包在凝固的铝合金外壳中,无法排出形成了较大的气孔。

这种气孔往往在工件表面之下,铝液进口比最后汇合处少,呈梨形或椭圆状,在最后凝固处又多又大。

对于这种气孔应调整充型速度,使铝合金液流平稳推进,不产生高速流动而卷气。

2.4铝合金的缩气孔铝合金同其它材料一样,在凝固时产生收缩,铝合金的浇铸温度愈高,这种收缩就愈大,单一的因体积收缩产生的气孔是存在于合金最后凝固部位,呈不规则形状,严重时呈网状。

往往在产品中,它与凝固时因氢气析出的气孔同时存在,在氢析出气孔或卷气孔的周围存在缩气孔,在气泡周围有伸向外部的丝状或网状气孔。

对于这种气孔,应从浇铸温度着手解决,在压铸工艺条件允许的情况下,尽量降低压铸时的铝液浇铸温度。

这样可以减少铸件的体积收缩,减少缩气孔及缩松。

如果常在加热部位出现这种气孔,可以考虑增加抽芯或冷铁,使其改变最后凝固部位,解决渗漏缺陷问题。

2.5 因产品壁厚差过大而引起的气孔产品形状常有壁厚差过大问题,在壁厚中心是铝液最后凝固的地方,也是最易产生气孔的部位,这种壁厚处的气孔是析出气孔和收缩气孔的混合体,不是一般措施所能防止的。

对产品的形状在设计时就应考虑尽量减少壁厚不均匀,或过厚的问题,采取空心结构,在模具设计上应考虑增设抽芯或冷铁,或水冷,或增加模具此处的冷却速度。

在压铸生产中,要注意厚度大部位的过冷量,适当降低浇注温度等。

3、铝合金压铸件中因氢气产生气孔在铝合金压铸生产中,大量来源于铝和水蒸气反应和金属炉料或回炉料带入的油污、有机物、盐类熔剂等与铝液反应生成的氢气溶解于铝合金液中,氢气的溶解度在液态和固态铝合金有相当大差异。

铝合金液在冷却凝固过程中的某一时刻,氢的含量超过了其溶解度时即以气泡的形式析出,来不及上浮排出的氢气泡就在铸件凝固过程中形成细小分散的气孔,即平常我们所说的针孔。

氢气在液态铝中的溶解度比在固态铝中要高大约20倍。

由于溶解度的不同,在凝固过程中,氢气就倾向于从熔液中逸出,当氢气压力大于表面张力和液体静压力时,即形成气泡,进而在铸件或铸锭中产生气孔。

3.1 铝液中的氢的来源铝及其合金易与气体相互作用,这主要是因为铝是活泼金属。

氢是唯一能大量溶解于铝熔体中的气体。

根据测定,存在于铝合金中的气体,氢占了85%以上,其余是氮气、氧气、一氧化碳等。

因而铝合金的“含气量”可以视为“含氢量”。

溶入铝合金的氢并不来自炉气中的极微量氢,因为大气中氢的分压很低,约为 5×6-10MPa,远比铝熔体中的氢分压低。

根据热力学原理,溶于铝熔体中的氢是不稳定的,有强烈地自铝熔体中向大气扩散逸出的倾向。

其次,研究结果表明,分子态的氢并不能直接溶入铝液中,只有离解成原子态氢才能溶入铝液中。

这可以从在纯净氢气氛中熔炼铝液,铸件中并不出现针孔的实验中得到证明。

可见,炉气中的氢分子不是形成气孔的根源。

根据生产实践和科学实验证明,铝液中的氢和氧化夹杂主要来源于铝液与炉气中水汽的反应。

3.2 铝液中的夹杂铝液中的夹杂物除来自炉料外,还来自熔化、浇注过程中铝与氧反应所生成的氧化物32l O A 。

另外还可能存在金属碳化物、氮化物等非金属夹杂和铁、硅等金属夹杂。

但主要的夹杂还是32l O A ,占夹杂含量的95%以上。

铝液表面有一层氧化膜,接近熔点时,不仅厚度增加,而且结构也发生变化,面向铝液的一面是致密的,对铝液有保护作用。

但背向铝液的一面则是疏松的,背部形成大量微小的孔,并被氢气、空气和水汽所充满。

如果将液膜搅入铝液中,不仅使铝液增加夹杂物,同时也增加气体。

铝熔体中的金属夹杂除了由原材料带进的和由于洗炉不彻底、混料、电热材料掉入等人为因素造成的以外,主要是由于铝熔体和炉衬、工具、各种净化剂、添加剂接触的过程中产生各种化学反应而生成并混入的。

相关文档
最新文档