耳机放大器保护电路原理图

合集下载

D 类放大高效率音频功率放大器电路图原理

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。

系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。

系统可对功率进行计算显示,具有4位数字显示,精度优于5%。

传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。

A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。

AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。

传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。

本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。

1系统方案论证与选择1.1整体方案方案①:数字方案。

输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。

此种方案硬件电路简单,但会引入较大数字噪声。

方案②:硬件电路方案。

三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。

1.2三角波产生电路设计方案①:利用NE555产生三角波。

该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。

高保真耳机放大器电路

高保真耳机放大器电路

高保真耳机放大器电路高保真耳机放大器电路2018-01-14 11:29:10作者:佚名295我要评论这是一款高保真耳机放大器,见下图1所示。

乍一看,这种耳放的线路形式与AA类音频功放、S类音频功放很相似,实际上,它既有别于AA类音频功放,又有别于S类音频功放,是对两者的“扬弃”,主要的优点有5个,即:可以很好的克服非线性的耳机阻抗对反馈回路的不良影响,减小瞬态互调失真(TIMD)、互调失真(IMD);可提高放大电路增益的稳定性;可很好抑制干扰,抑制晶体管载流子热运动产生的噪音;可提高放大电路的上限频率,降低放大电路的下限频率;基本消除了非线性失真。

由图可见,该耳放主要由运放新贵LM4562构成。

LM4562是美国国家半导体(NS)公司全新推出的超低失真、低噪声、高转换速率、高保真音频运算放大器。

该运放拥有极低的电压噪声密度(2.7uV/Hz”)和THD +N(0.00003%),以及极高的增益带宽积(56MHz),可轻松满足最苛刻的音频应用需求。

LM4562具有±45mA 的电流输出能力,能顺利驱动最难应对的负载。

此外,有效输出动态范围大。

输出级驱动2K负载,输出电压摆幅仅比其供电电压低1V;而驱动600Ω负载,输出电压摆幅仅比其供电电压低1.4V。

LM4562工作电压范围较宽,约为±2.5~±17V,在这广阔的供电电压范围内,单位增益稳定可靠,不出现自激和不稳定的工作状态,与此同时,其输入电路的共模抑制比(CMRR)及电源抑制比(PSRR)可达108dB以上,输入偏置电流低至10uA。

此外,LM4562还具备输出短路保护功能。

在图1中,R1和C1构成一阶低通滤波器,滤掉音源信号中的高频杂波,阻止150kHz以上的信号进入,改善实际的放音效果和进一步加强本机的稳定性。

VR1和R3组成音量衰减器,这里的电位器VR1最好选用优质的指教型电位器。

这样做有两个好处,一是音量易于调节,不会惊吓到聆听者,尤其是要求在小音量使用情况下;二是音量的变化更符合入耳的听音习惯。

耳放的原理

耳放的原理

耳放的原理耳放,又称耳机放大器,是一种可以增强耳机音频输出信号的设备。

它可以提高音频信号的功率,使耳机输出的声音更加清晰、饱满。

那么,耳放是如何实现这一功能的呢?接下来就让我们来了解一下耳放的原理。

首先,我们需要知道耳放的基本构成。

耳放通常由电源、输入端、放大电路和输出端组成。

电源提供工作电压,输入端接收音频信号,放大电路对音频信号进行放大处理,输出端将放大后的信号传送给耳机。

在这个过程中,放大电路起到了至关重要的作用。

放大电路是耳放的核心部件,它主要由放大器芯片、电容、电阻、电感等元件组成。

当音频信号进入放大电路后,首先经过电容进行滤波处理,去除掉高频噪声和杂音,然后经过放大器芯片进行放大处理,最终输出到耳机。

放大器芯片是耳放中最关键的部件之一。

它可以将输入的音频信号放大数十甚至上百倍,从而使得输出的声音更加清晰、有力。

放大器芯片的选择直接影响了耳放的音质表现,因此在耳放设计中,放大器芯片的选用非常重要。

在耳放的设计中,还需要考虑电路布局和线路走向。

合理的电路布局可以有效降低电路的噪声和失真,提高音频信号的传输质量。

同时,良好的线路走向可以减少电磁干扰,保证音频信号的纯净传输。

除了硬件设计,耳放的原理还涉及到一些电子技术。

比如,负反馈技术可以有效减小放大器的失真和噪声,提高音频信号的还原度。

此外,耳放还可以采用类A、类AB、甚至类D等不同的工作方式,以满足不同用户的需求。

总的来说,耳放的原理是通过电源、输入端、放大电路和输出端的协同作用,对音频信号进行放大处理,从而实现提升耳机音质的效果。

在实际设计中,需要综合考虑电路布局、线路走向、放大器芯片的选用以及电子技术的运用等因素,才能设计出性能优越的耳放产品。

通过对耳放原理的了解,我们可以更好地选择和使用耳放产品,也可以更好地参与到耳放产品的设计和制造中。

同时,对于电子技术爱好者来说,耳放的原理也是一个值得深入研究的领域。

希望本文能够对大家有所帮助,谢谢阅读!。

耳机放大器电路图

耳机放大器电路图

这里介绍一种驱动低阻抗耳机装置的低价位立体声放大器,电路如附图所示。

该电路使用了几只常用的晶体管(BC547、BC557)和无源元件.如电阻、二极管和电容器等。

为了驱动耳机,该电路使用了一级前置放大器和NPN、PNP组成的推挽电路。

立体声的前置放大器由晶体管T1和T6组成.分别供给左、右声道的输入信号使用。

被放大的左声道输入信号,馈入由晶体管T2、T3组成的推挽级,以驱动左声道耳机。

同理被放大的右声道输入信号,馈入由晶体管T4、T5组成的推挽级以驱动右声道耳机。

该电路在+6V~+12V供电时,其输出电压可达100~200mV。

由于电路耗电低,所以也可用一只+9V的PP3电池供电。

把附图电路安装在PCB板上,并把它装入适当的小盒内。

立体声耳机可从电子市场上购到。

在PCB板上应仔细焊接元器件,以避免虚焊。

电路安装焊接之后,可用一只+9V的PP3电池,此时电路即可使用了。

在交流电源的情况下.可使用任何一种普通的稳压器(+6~+12
v100mA)给电路供电工作。

耳机放大器及其电路(下)

耳机放大器及其电路(下)

耳机放大器及其电路(下)
任保华
【期刊名称】《实用影音技术》
【年(卷),期】2006(000)006
【摘要】@@ 图11是笔者制作的分体OTL阴极输出胆耳放的实物图,图12是它的电路图.rn这台耳放的输入级采用了两只并联的孪生三极管,我们不妨称它为双管并联SRPP输入级.SRPP电路的特点是频响宽、声音华丽,采用双管并联后降低了输出阻抗,提高了灵敏度,不要小看这个改动,它会给你带来比常规单管SRPP输入级更加优良的性能呢! C2、C3是旁路电容.旁路电容使交流信号电流不流经V1的阴极电阻R1,于是没有交流信号电流的负反馈,这使输入级瞬态得到提升、频率响应更加平坦.
【总页数】6页(P12-17)
【作者】任保华
【作者单位】无
【正文语种】中文
【中图分类】TN643
【相关文献】
1.电子管耳机放大器输出级电路分析 [J], 周静雷;行露;贺晓宇
2.基于电子管WCF电路的高保真耳机放大器设计 [J], 周静雷;齐博;李城梁
3.基于电子管SEPP电路的高保真耳机放大器设计 [J], 周静雷;李城梁;齐博
4.基于电子管SRPP电路的高保真耳机放大器设计 [J], 周静雷;王璠;康雪娟
5.高品质全集成电路耳机放大器 [J], 徐轶
因版权原因,仅展示原文概要,查看原文内容请购买。

47耳放_完整版(转自中国音响DIY)

47耳放_完整版(转自中国音响DIY)

47耳放完整版(2010年参赛作品)网通发贴表示压力很大之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。

虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。

所以,决定自己动手做一个耳放。

这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。

便动手做了起来。

下面分贴发一下耳放各部分的设计和制作过程个大家分享。

、因为本人对电路没有进行过系统的学习文章中存在大量文字存在自己的主观性理解可能错在大量问题希望高手及时指出虫虫小林2010-12-07 23:12:49一放大部分47耳放是一位外国人设计的电路,电路如图。

图1.gif因为电路中有较多以47为参数的元件所以称作47耳放。

传说中的47耳放结构其实是很简单的,第一级运放进行负反馈控制放大倍数进行比例放大,第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。

两个运放输出经过两个47欧匀流电阻输出致耳机。

因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。

曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。

所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。

于是,开工了。

首先是线路见图图2.jpg电路没有添加音量电位器,只做了放大部分。

这样一来功能比较独立,方便以后的各种组合。

47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。

而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。

当然OPA2132的价格也是很高档的。

我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。

NE5532虽然指标相对于OPA2132较差,但是工作于+-15V 时音色总体来说还是比较讨人喜欢的。

NE5532经典电路图

NE5532经典电路图

NE5532功放说到小功率的耳放,不得不提到20世纪的运放之王NE5532,曾经出现在无数的优秀前级放大、调音电路之中,中频温暖细腻厚实,胆味十足,性价比很高!直到今天我们还能很容易地在一些中低档的音响产品中找到它。

由于其体积小、电路简单,所以是讲究实用性、低投入的动手派的首选。

因为NE5532从面世到如今已历经数载,大家对其电路也非常熟悉,有着多种多样的玩法。

在此介绍的耳放的特点是简单、功率小,侧重的是制作的过程。

一、原理分析NE5532是典型的双极型输入运算放大器,用单个NE5532组成的小功率电路有很多版本,本人通过不断地对比和思考,对那些五花八门的电路图作了修改,最终确定了原理图(图1)。

放大倍数是由R3(R4)和R5(R6)来控制的,理论上说如果R3(R4)为1kΩ,R5(R6)为100kΩ,则其放大倍数为100倍,但对于耳放来说,这会引起自激,再说就算真的能达到100倍,效果也不可能好,所以这个电路用于前级时也最好别调成100倍。

当然,对于耳放定2~3倍可以让负反馈适量、音质柔和、清晰更通透,但放大倍数也不能太小,否则也会影响音质,大家可以反复调试,达到自己满意的效果。

笔者是将R3(R4)定为1kΩ,R5(R6)定为20 kΩ,即2倍。

C5(C6)是输入回路的对地通路,在用于耳放电路时应该加大,原理图中的值为22 uF,但用于此耳放应该加大到100 uF。

在这里值得一提的是电源问题,如果你是使用的稳压电源,要注意稳压电源的滤波要给足,因为本电路本身就非常简单,那么对元器件的选取就比较挑剔,建议在选材时尽量选择质量好一点的元器件。

二、PCB绘制笔者使用Protel 99 SE进行布线设计,大家看到的这个PCB图(图2)是我画的第三版,也是我最满意的一版,前几版都存在着飞线,而这一版是没有的,网上的很多版本都存在着飞线的问题,这对挑剔的动手派是不能容忍的。

由于面积小,所以在接地方面要尽量争取一点接地,输入和输出端也可以根据实际情况进行改动。

47耳放制作HIFI耳机放大器-PCB-电路图-及全套设计资料(吐血推荐)

47耳放制作HIFI耳机放大器-PCB-电路图-及全套设计资料(吐血推荐)

对于47耳放的完美改进制作高保真耳机放大器之前一直折腾功放听桌面音箱,半年前忽然打算用用耳机了,于是入了森海的HD595。

虽然50欧的阻抗不算高,但是要发挥出设备的实力耳放还是少不了的。

所以,决定自己动手做一个耳放。

这期间参考了大量关于耳放的资料,最终决定以47耳放电路为基础并加以改进制作一个比较完美的耳机放大器。

便动手做了起来。

一、放大部分47耳放是一位外国人设计的电路,电路如图。

因为电路中有较多以47为参数的元件所以称作47耳放。

传说中的47耳放结构其实是很简单的,第一级运放进行负反馈控制放大倍数进行比例放大,第二个运放进行电压跟随,降低放大器内阻,增加了输出电流,并做声音修饰。

两个运放输出经过两个47欧匀流电阻输出致耳机。

因为反馈取样点在47电阻之后,所以不用考虑电阻带来的损耗。

曾经在网上看过很多47耳放的PCB设计,虽然47耳放的电路十分简单,但是很多PCB却存在着或多或少的布线问题,有些抗干扰能力不是很强,甚至在淘宝上看到很多看似很漂亮的板子却有很大的交流声。

所以自己决定做一个比较完美的47耳放以便把这个电路的能力发挥出来。

于是,开工了。

首先线路图电路没有添加音量电位器,只做了放大部分。

这样一来功能比较独立,方便以后的各种组合。

47原设计使用的运放是OPA2132,这个运放是FET输入型的,所以内阻极高。

而且在低电压下可以正常工作,失调电压与失调电流极小,算是比较高档的运放了。

当然OPA2132的价格也是很高档的。

我作为0收入人士必然不能把这种高档传承下去,于是我选用了这年头满大街都是的NE5532。

NE5532虽然指标相对于OPA2132较差,但是工作于+-15V时音色总体来说还是比较讨人喜欢的。

单片5532耗电相对较大,两片并联就更不用说了,双15V下耗电可想而知。

这就意味着这款耳放将要脱离便携式耳放的范畴转型向台式耳放了。

由于5532失调电压较高而且又是NPN管输入的,如果使用原设计必然会引来较大的输出中点漂移,经过测试最大有30多MV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耳机放大器保护电路原理图
基本功能:
1.开机延时接通耳机,按照我做的板子,在开机后大约延时3-5秒接通耳机,保护耳机不受开机电流冲击。

2.关机断电,由于电源部分的滤波电容选的比较小,关机后,几乎是同时断开耳机与放大器的连接,保护耳机不受关机的电流冲击。

3.输出直流电压异常保护,经过简单实验,当放大器输出端出现+1.5V的输出电压的时候,可以在1秒内断开连接,而放大器出现负电压输出的时候,则保护动作电压比较高。

工作原理:
原理比较简单,不再叙述了,从线路上分析,DW可以用电阻代替,这里用稳压管的作用就是可以使用比较小的延时电容而获得比较长的延时接通时间,而且在放大电路出现直流输出的时候切断动作也更加干脆,实验的结果确实也是如此。

三端稳压器的输入电容,是根据负载而定的,如果采用的是直流电阻很小的大功率继电器,因该用470UF以上的电容,由于本继电器的电阻比较大,实测为:1K左右,就是说本电路的消耗电流应该在20MA以下,实验中采用47UF的电容可以正常工作,电路中用100UF的电容是可行的,如果此电容过大,会使关机时不能即使切断负载与放大器的连接,对耳机造成冲击。

由于本电路的工作电流很小要是把三端稳压电路换成78M15或者78L15都是可以的。

整整3个小时的时间,终于把耳放的保护电路焊好了,由于元件不凑手,参数与上面的原理图有出入,可喜的是一次焊接成功,注意输入输出接线端子之间的小黑色长方体就是那个小日本的微型继电器,用来保护耳机是最合适的了,当然,你也可以采用大型的继电器,把她用做喇叭保护,PCB板子上已经按照双继电器的安装形式制作。

相关文档
最新文档