03、平面的基本性质与平行关系的判定
平面与平面平行的判定和性质

P
b a
已知:在平面 内有两条直线 a 、 相交且和 b 平面 平行. 求证: // 证明:(用反证法)
c 假设 .
a // , a
a // c
同理
b // c 这与题设 a和 b 是相交直线矛盾.
//
平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个 平面平行,则这两个平面平行. (线面平行面面平行)
PF EF
同理: EP || AD
AS=18
CD=34
A
α
34
C
α
A
18 S
9
C
B β
9
D
β
D
B
S
1.如果三个平面两两相交,那么它们 的交线有多少条?画出图形表示你的 结论。
答:有可能1条,也有可能3条交线。
(1)
(2)
3. 3个平面把空间分成几部分?
(1)
4
(2)
6
(3)
6
(4)
证明: 连结AB, AB. 因为AA∥BB,
B
A
A′
B′
AB AB AB∥ AB AA∥BB ∥ AABB是平行四边形 AA BB.
所以经过AA,BB能确定一个平面,记为平面 .
推论2:平行于同一个平面的两个平面平行
下图表示两平面之间的两种位置,如 何用符号语言描述这两种位置关系?
β α
l
//
l
一、两平面平行:
1、定义:如果两个平面没有公共点,那么 这两个平面互相平行,也叫做平行平面.
高一数学平面与平面平行的判定和性质

一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图 1 ,而不应画 成图2那样.
图1
图2
二、两个平面平行的判定
问题1:从两平面平行的定义出发来探究两平面平行的条件 (转化为线面平行问题) 问题2:一个平面内至少有几条直线和另一个平面平行可以 确保两个平面平行(不相交)
性质定理:如果两个平行平 面同时和第三个平面相交,那么 它们的交线平行.
// 即: a a // b b
例4如图,四棱柱ABCD-A1B1C1D1的相对侧面 分别平行,过它的一个顶点A的一个平面截它的 四个侧面得四边形AMFN. 证明:四边形AMFN是平行四边形.
课堂练习1:课本63页练习1~3
三、两个平面平行的性质
(1)一个结论 根据两个平面平行及直线和平面平行的定义,容 易得出下面的结论:
// , a a //
即:如果两个平面平行,那么其中一个平面内的 直线平行于另一个平面.
三、两个平面平行的性 质
(2)两个平面平行的性质定理
D1 A1 B1 C1
N D
A
M
F
C B
例题分析
例题3:求证:夹在两个平行平面间的平行线段相等。
A
B
D
C
课堂练习2:课本67页练习
点击图片可以演示动画
作业 : 今天学习的内容有:
1. 空间两平面的位置关系有几种? P68 A组 6,8 2. 面面平行的判定定理需要什么条件? 3. 面面平行有什么结论
二、两个平面平行的判 定
判定定理:如果一个平面内有两条相交直线都
教案平面与平面平行的判定和性质

平面与平面平行的判定和性质第一章:教案简介本章将介绍教案平面与平面平行的判定和性质。
通过本章的学习,学生将能够理解并应用平面与平面平行的判定条件,掌握平面与平面平行的性质,并能够运用这些知识解决实际问题。
第二章:平面与平面平行的判定1. 判定条件一:如果两个平面的法向量互相平行,则这两个平面平行。
2. 判定条件二:如果一个平面经过另一个平面的法向量,则这两个平面平行。
3. 判定条件三:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
第三章:平面与平面平行的性质1. 性质一:平面与平面平行时,它们的法向量互相平行。
2. 性质二:平面与平面平行时,它们的法向量垂直于它们的交线。
3. 性质三:平面与平面平行时,它们的交线平行于它们的法向量。
第四章:应用举例1. 例一:给定两个平面,如何判断它们是否平行?2. 例二:给定一个平面和一条直线,如何判断这条直线是否与平面平行?3. 例三:给定两个平面和它们的交线,如何判断这两个平面是否平行?第五章:练习题1. 判断题:如果两个平面的法向量互相垂直,则这两个平面平行。
(对/错)2. 判断题:如果一个平面经过另一个平面的法向量,则这两个平面平行。
(对/错)3. 判断题:如果两个平面相交于一条直线,且这条直线垂直于两个平面的法向量,则这两个平面平行。
(对/错)4. 应用题:给定两个平面,它们的法向量分别为向量A和向量B。
判断这两个平面是否平行,并说明理由。
5. 应用题:给定一个平面P和一条直线L。
已知平面P的法向量为向量A,直线L的方向向量为向量B。
判断直线L是否与平面P平行,并说明理由。
第六章:教案平面与平面平行的判定和性质的综合应用1. 综合应用一:如何判断一个平面是否平行于另一个平面的交线?2. 综合应用二:如何判断一条直线是否与另一个平面平行?3. 综合应用三:如何判断两个平面是否平行,并确定它们的交线?第七章:教案平面与平面平行的判定和性质的证明题1. 证明题一:已知平面P和Q,证明平面P与平面Q平行的条件是它们的法向量互相平行。
直线平面平行、垂直的判定及其性质知识点

直线平面平行、垂直的判定及其性质知识点在几何学中,我们经常会遇到直线和平面之间的关系。
其中,直线与平面可以有平行关系或垂直关系。
本文将介绍直线和平面平行、垂直的判定方法,并讨论它们的性质。
一、直线和平面的基本概念回顾在论述直线和平面的平行、垂直关系之前,我们需要先回顾一些基本概念。
1. 直线直线是由无限多个点按一定方向排列而成的,没有始点和终点。
直线可由一个点和一个方向确定。
在数学中,直线通常用两个点A和B表示,记作AB。
2. 平面平面是二维几何体,具有无限多个点,且任意两点之间可以连成一条直线。
平面由三个非共线的点决定。
在数学中,我们通常用大写字母P、Q、R等表示平面上的点。
二、直线和平面的平行判定1. 平行直线与平面的关系如果一条直线与一个平面内的直线平行,那么它也与这个平面平行。
同样地,如果一条直线与一个平面内的直线垂直,那么它也与这个平面垂直。
2. 平行直线的判定方法直线之间的平行关系有多种判定方法。
下面介绍两种常见的方法:(1) 借助平面间的平行关系进行判定两条直线平行的充要条件是,它们在同一个平面内,且与该平面的一条直线平行。
(2) 借助直线的倾斜角进行判定两条直线平行的充要条件是,它们的倾斜角相等或互补。
三、直线和平面的垂直判定1. 垂直直线与平面的关系如果一条直线与一个平面内的直线垂直,那么它与这个平面垂直。
2. 垂直直线的判定方法直线与平面垂直的判定方法有多种。
下面介绍两种常见的方法:(1) 借助直线和平面的夹角进行判定直线与平面垂直的充要条件是,直线与平面内的两条相交直线成对应的垂直角。
(2) 借助直线的方向向量进行判定直线与平面垂直的充要条件是,直线的方向向量与平面的法向量垂直。
四、直线平面平行、垂直关系的性质1. 性质1:平行或垂直关系具有传递性若直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。
同样的,若直线m与直线n垂直,直线n与直线p垂直,那么直线m与直线p也垂直。
直线和平面平行、垂直的判定和性质

直线和平面平行、垂直的判定和性质1.在直线和平面的位置关系中,平行关系不仅应用较多,而且是学习平面和平面位置关系的基础,所以直线和平面平行的判定和性质是本单元的重点之一.判定定理说明要证一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行即可.对于直线和平面平行的性质定理、要注意避免“一条直线平行于一个平面,就平行于这个平面内的一切直线”的错误,线面平行和线线平行,是指过这条直线的任意一个平面和已知平面的交线与这条直线平行,尽管直线可以和平面内无数条直线平行,但不能说直线和平面内的任何直线平行.反证法是常用的一种证明方法.要会用反证法证明线面平行的判定定理.2.斜线和平面所成的角,定量地反映了斜线和平面的位置关系,它是通过转化为平面内的两条相交直线所成的角来度量的,它是这条斜线和平面内经过斜足的直线所成的一切角中的最小角.直线和平面所成的角,应分三种情形:(1)直线和平面斜交时,直线和平面所成的角是指直线和它在平面内的射影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角就是直角;(3)直线和平面平行或直线在平面内时,直线和平面所成的角的度数是0°.综上所述,直线和平面所成角的范围是[0,].3.在应用三垂线定理及其逆定理时,重点在于先寻找平面的垂线,在引辅助线时,也应先作平面的垂线,这是因为垂线是确定斜线在平面内射影的关键.三垂线定理及其逆定理揭示了平面的斜线和它在这个平面上的射影必定同时垂直于平面内的直线的实质.在学习三垂线定理时,要注意处于各种位置的射影关系图形的识别和掌握,进而达到灵活应用的目的.典型题目分析例1.下列命题中①两条异面直线所成角α 的范围是0°<α<180°.②两条互相垂直的直线不一定相交.③分别和两条异面直线都垂直的直线叫做这两条异面直线的公垂线.④两条异面直线所成角的大小是惟一的,角的位置可以平移变化.⑤两条异面直线的公垂线有且只有一条.⑥若两条直线和第三条直线所成的角相等,则这两条直线平行.其中正确命题的个数是().A.1B.2 C 3D.4分析:对照有关概念,找出结论与条件不相符合的命题.解:由异面直线所成角的定义,公垂线定义知①③⑥错误,②④⑤正确,故选C.例2.如图所示,在长方体ABCD-A1B1C1D1中,BB1=3,BC=4,则异面直线A1B1与BC1的距离是________.分析:证A1B1⊥面BC1.解:在面BC1内作B1E⊥BC1于点E.长方体AC1中,A1B1⊥BB1,A1B1⊥B1C1,所以A1B1⊥面BC1,从而A1B⊥B1E,于是B1E的长就是异面直线A1B1和BC1间的距离.矩形BCC1B1中,BC1=,所以B1E=.即所求距离为.点评:本题将异面直线的距离问题转化为同一三角形内的点线距离问题.例3.E、F分别是棱长为a的正方体ABCD-A1B1C1D1的棱AB、BC的中点,求EF到平面AA1C1C的距离.分析:转化为EF与AC间的距离.解:如图所示,连结BD分别交AC、EF于O、G,则BD⊥AC,BD⊥EF.正方体A1C中,AA1⊥平面ABCD,BD 平面ABCD.∴BD⊥AA1,而AA1、AC是平面AA1C1C内两条相交直线.∴BD⊥平面AA1C1C,又BD⊥EF,于是线段OG的长就是EF到平面AA1C1C的距离.在正方形ABCD中,OG=.所以EF到平面AA1C1C的距离是.点评:将线面距离化为线线距离是一种常用转化方法,应注意正确使用这种方法.例4.点P在ΔABC所在平面上射影为O,如果PA⊥BC,PB⊥AC,则O为ΔABC的().A、垂心B、重心C、内心D、外心分析:作出PA在平面ABC上的射影,证明BC与之垂直.解:如图,连结OA,OB,则OA是PA在平面ABC上的射影.∵BC⊥PA,∴BC⊥OA.同理,AC⊥OB,∴O是ΔABC的垂心,故选A.点评:三角形的内心、外心、垂心、重心分别是三角形的三条角平分线、三条边的垂直平分线、三条高、三条中线的交点.课外练习:1.RtΔABC所在平面外一点P到直角顶点C的距离等于24,P到平面ABC的距离为12,若点P到AC和BC 的距离相等,求:点P到AC的距离.2.在空间四边形ABCD中,若AB⊥BC,BC⊥CD,CD⊥AB,且AB=BC=CD=a.则直线AD和BC所成角的正弦值为().A、B、C、D、3.在棱长为4的正方体,ABCD-A1B1C1D1中,A1到BD的距离等于_________.4.正方体ABCD-A1B1C1D1中,M、N、K分别是AD、DD1、DC的中点,求证:B1K⊥平面CMN.参考解答:1.如图,过P作PD⊥平面ABC,D为垂足,过D作DE⊥AC,DF⊥BC.分别连结PE和PF,则DE和DF分别是PE和PF在平面ABC内的射影.∵AC⊥DE,∴AC⊥PE,∵DF⊥BC,∴BC⊥DF,∵PE⊥AC,PF⊥BC,∴PE和PF是P到AC和BC的距离,∴PE=PF,∴DE=DF,∵CEDF是内角均为90°的四边形,∴CEPF是正方形,∴CD=´DE,在RtΔPCD中,PC=24,PD=12,∠PDC=90°,∴CD=,∴DE=,在RtΔPDE中,PD=12,DE=,∠PDE=90°,∴PE=,即P到AC、BC的距离均为.2.D3.4. 如图,分别连结BK和C1K,证明RtΔCDM≌RtΔBCK,证明RtΔCC1K≌RtΔCDN.设CM∩BK=P,∵∠KBC=∠PCK,∴∠PBC+∠BCP=90°,∴∠CPB=90°,∴CM⊥BK,∵BK是B1K在平面ABCD上的射影,∴B1K⊥CM.同理可证:B1K⊥CN,CN∩CM=C,∴B1K⊥平面MNC.在线测试选择题1.下列命题正确的是()A、两个平面互相垂直,经过一个平面内一点垂直于交线的直线必垂直于另一个平面B、两条直线在两个相交平面内的射影都是平行直线,那么这两条直线互相平行C、一个二面角的两个面分别与另一个二面角的两个面垂直,那么这两个二面角相等或互补D、五边形中有两组不相邻的边平行,那么这个五边形是平面图形2.设P是正ΔABC所在平面外一点,PA=PB=PC=.若ΔABC的边长为1,则直线PC和平面ABC 所成的角是().A、90°B、60°C、45°D、30°3.平面α内的∠MON=60°,PO是平面α的斜线段,PO=3,且PO与∠MON的两边均成45°角,那么点P到平面α的距离为().A、B、C、D、4.已知三个平面α、β、γ,一条直线l,要得到α//β,必须满足下列条件中的().A、l//α, l//β且l//γB、lγ, 且l//α,l//βC、α//γ且β//γD、l与α、β所成角相等5.已知a,b是两条直线,以下四个条件中:①α⊥γβ⊥γ②α内有不共线的三点到β的距离相等③aα, bα, a//β, b//β④a,b是异面直线且aα, a//β, b//β, b//α能推出α//β的是().A、④B、②,③C、②D、①,③答案与解析答案:1、D 2、D 3、A 4、C 5、A解析:1.答案:D.如A中α⊥β,α∩β=l, l'⊥β, l'⊥l, 但l'//α,矛盾.故排除A;B、C很容易否定.故本题应选D.2.答案:D.过P作PO⊥平面ABC,则垂足O为正ΔABC的中心.连结OC,则∠PCO为直线PC和平面ABC所成的角.在RtΔPOC中,OC=,PC=,则cos∠PCO=.从而∠PCO=30°,故选D.3.答案:A.如图,过P作PH⊥平面α,则垂足H在∠MON的平分线上,且PH的长为点P到平面α的距离.作HQ⊥OM,垂足为Q,在RtΔPQO中,PQ=OQ=.在RtΔOQH中,HQ=OQ·tan30°=.在RtΔPHQ中,PH=.选A.4.答案:C.平面与平面平行满足传递性.5.答案:A.当平面α、β是两个相交平面时,①不一定成立.当这三点在平面β两侧时,②不成立.当平面α、β是两个相交平面时,③不一定成立.因此选A.怎样学习立体几何我们学习每一门课,都应有不同的学法,学习《立体几何》时,应注意下面四点。
平行的判定与性质高三学生版

直线、平面平行的判定与性质1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:经过不在同一条直线上的三点,有且只有一个平面.(即可以确定一个平面)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角 ⎝⎛⎦⎤0,π2. 3.直线与平面的位置关系有平行、相交、在平面内三种情况. 4.平面与平面的位置关系有平行、相交两种情况.5.平行公理: 平行于同一条直线的两条直线互相平行.6.定理 :空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 7、直线与平面平行的判定与性质判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
判定性质定义 定理图形条件a ∩α=∅a α,bα,a ∥b a ∥αa ∥α,a β, α∩β=b 结论 a ∥α b ∥αa ∩α=∅a ∥b8、面面平行的判定与性质判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
判定性质定义 定理图形条件α∩β=∅ a β,b β,a ∩b =P ,a ∥α,b ∥α α∥β,α∩γ=a ,β∩γ=b α∥β,a β结论α∥βα∥β a ∥ba ∥α1、平行线的传递性;2、中位线、比例线段;3、证平行四边形;4、线面平行:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;5、面面平行:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;1.已知不重合的直线a ,b 和平面α, ①若a ∥α,b α,则a ∥b ; ②若a ∥α,b ∥α,则a ∥b ;③若a ∥b ,b α,则a ∥α;④若a ∥b ,a ∥α,则b ∥α或b α.上面命题中正确的是________(填序号).2.已知α、β是不同的两个平面,直线a α,直线b β,命题p :a 与b 没有公共点;命题q :α∥β,则由命题p 能推出q 吗?3.已知平面α∥平面β,直线a α,有下列命题:①a 与β内的所有直线平行;②a 与β内无数条直线平行;③a 与β内的任意一条直线都不垂直. 其中真命题的序号是________.4.若直线l 不平行于平面α,且l α,则 ( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交 5.下列命题正确的是 ( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行题型一 直线与平面平行的判定与性质例1 (1)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,若点EF 分别为PC 、BD 的中点,求证:EF ∥平面PAD.(2)如图,在四棱锥P —ABCD 中,底面ABCD 是菱形,∠BAD =60°,AB =2,P A =1,P A ⊥平面ABCD ,E 是PC 的中点,F 是AB 的中点.求证:BE ∥平面PDF .1、如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90ADE ∠=︒,AF DE ∥,DE DA ==22AF =.(1)求证:AC ∥平面BEF ; (2)求四面体BDEF 的体积.2、正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.题型二平面与平面平行的判定与性质例21、如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.2、在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.如图,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q 是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?题型三线线平行证明例3如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面,交平面BDM于GH.求证:P A∥GH.变式训练3、在正三棱柱ABC—A1B1C1中,P,Q分别为AB,AC上的点,且PQ∥BC,设面A1PQ与面A1B1C1相交于l, 求证:l∥BC题型四立体几何中的存在性问题例4如图,在四棱锥P-ABCD中,底面ABCD是梯形,AD∥BC, AD=2AB,ΔABC和ΔPAB均为等边三角形。
高一数学平面与平面平行的判定和性质

一、两个平面的位置关 系
(4)两个平面平行的画法 画两个互相平行的平面时,要注意使表示平面的 两个平行四边形的对应边平行,如图1,而不应画 成图2那样.
图1
图2
二、两个平面平行的判定
问题1:从两平面平行的定义出发来探究两平面平行的条件 (转化为线面平行问题)
问题2:一个平面内至少有几条直线和另一个平面平行可以 确保两个平面平行(不相交)
求证:平面AB`D`//C`BDBiblioteka D`A`DA
C` B`
C B
例3
空间四边形ABCD中,M、E、F 分别为
BAC、 ACD、 ABD 的重心.
(1) 求证: 面MEF // 平面BCD;
(2) 求 S MEF 与 SBCD 面积的比
值.
A
F
M
E
D
B
P
H
G C
判断下列命题是否正确,并说明理由.
二、两个平面平行的判 定
判定定理:如果一个平面内有两条相交直线都
平行于另一个平面,那么这两个平面平行.
例题分 析
例题1: 如图,A,B,C为不在同一直线上的三点,AA`//BB`
//CC`,且AA`=BB`=CC`,求证平面ABC//平面A`B`C`
点击图片可以演示动画
例题分析
例题2: 已知正方体ABCD-A`B`C`D`,
平面与平面平行的判定和性质
一、两个平面的位置关 系
(1)两个平面平行 如果两个平面没有公共点,我们就说这两个平面
互相平行. (2)两个平面相交
如果两个平面有公共点,它们就相交于一条过该 公共点的直线,就称这两个平面相交.
(3)两个平面的位置关系只有两种
①两个平面平行——没有公共点
平面与平面平行的判定和性质

b
δ
γ
'
a
b
证明:因为 证明:因为AA’ ⊥ α,β⊥AA’, , ⊥ , 所以AA’ ⊥ a, AA’ ⊥ a’ 所以 , 所以a 所以 ∥ a’, a’ ∥ α , 同理 b’ ∥ α a 又因为a’交 为 又因为 交b’为A’ b' 所以 α∥β ∥ δ
γ
a
'
b
例2 一条直线垂直于两个平行平面中 的一个平面,它也垂直于另一个平面. 的一个平面,它也垂直于另一个平面.
一般画法
错误画法
3. 平面与平面平行的判定定理 . (1)判定定理: )判定定理: ①文字语言:如果一个平 文字语言: 两条相交直线都平 面内有两条相交 面内有两条相交直线都平 行于另一个平面, 行于另一个平面,那么这 两个平面平行. 两个平面平行 ②图形语言: 图形语言: ③符号语言:a ⊂α,b 符号语言: , b//β α//β. ⇒
两个平面平行的 判定和性质
三. 平面与平面平行 1. 平行平面:如果两个平面没有公共点, 平行平面:如果两个平面没有公共点, 那么这两个平面叫做平行平面. 记作α//β. 那么这两个平面叫做平行平面 记作 两个平面的位置关系
两平面平行
两平面相交
2. 平行平面的画法:在画两个平面平行 平行平面的画法: 画法 时,通常把表示这两个平面的平行四边 形的相邻两边分别画成平行线 平行线. 形的相邻两边分别画成平行线
a ⊂α ⇒ l ⊥ a l ⊥α ∴l ⊥ b
两个平行平面的公垂线、 两个平行平面的公垂线、公垂线段和距离 和两个平行平面α 和两个平行平面α,β同时垂直的直线l, 同时垂直的直线 , 叫做这两个平行平面α 叫做这两个平行平面α,β的公垂线 它夹在这两个平行平面间的部分叫做这 两个平行平面的公垂线段 两个平行平面的公垂线段 我们把公垂线段的长度叫做 两个平行平面的距离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03、平面的基本性质与平行关系的判定
【基础知识】
1、平面的基本性质
2、平行的判定与性质定理 【典型例题】
1、两条直线及直线外两个点,它们至多能确定_______个平面,至少能确定______个平面.
2、如图,正方体1111D C B A ABCD -中,对角线1BD 与过11,,C D A 的平面交于点M ,则
=1:MD BM __________.
3、已知,点O 是正方体1111D C B A ABCD -上底面ABCD 的中心,M 是正方体对角线1AC 和截面BD A 1的交点,求证:1,,A M O 三点共线.
4、已知:直线c b a ////,且直线l 与c b a ,,都相交,求证:直线l c b a ,,,共面.
5、如图,设Q P H G F E ,,,,,分别是正方体1111D C B A ABCD -所在棱上的中点,求证:Q P H G F E ,,,,,共面。
6、平行垂直的转化:(判断正误)
(1).l b l a ⊥⊥,⇒b a // (5).l l ⊥⊥βα,⇒βα// (9).γαγ//,//a ⇒α//a (2).γγ⊥⊥b a ,⇒b a // (6).γβγα⊥⊥,⇒βα// (10).γαγ⊥⊥,a ⇒α//a (3).l b l a //,//⇒b a // (7).l l //,//βα⇒βα// (11). l l a //,//α⇒α//a (4). γγ//,//b a
⇒b a // (8). γβγα//,//⇒βα// (12).l l a ⊥⊥α,⇒α//a
7、如图所示,在三棱锥-P ABQ 中,PB ⊥平面ABQ ,==BA BP BQ ,,,,D C E F 分别是,,,AQ BQ AP BP 的中点,2=AQ BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .求证://AB GH
8、在四棱锥ABCD P -中,底面ABCD 是平行四边形,E 是PC 中点,求证://PA 面EDB .
9、在正方体1111D C B A ABCD -中,Q P 、分别是B A D B 111、上的点,且||31||111D B P B =
,||3
1
||1BA BQ =,求证://PQ 平面D D AA 11.
10、已知三棱柱111C B A ABC -中,1E E 、分别是11C A AC 、的中点。
求证:面//11E AB 面1BEC .
A
1。