30W,12V输出开关电源电路图
TOP开关芯片资料

TOP开关电源芯片工作原理及应用电路--------------------------------------------------------------------------------TOP开关电源芯片工作原理及应用电路1.什么叫TOP开关电源芯片TOP开关电源的芯片组是三端离线式脉宽调制单片开关集成电路TOP(ThreeterminalofflinePWM)的简称,TOP将PWM控制器与功率开关MOSFET合二为一封装在一起,。
采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。
2.TOP开关结构及工作原理2.1 结构TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO220或8脚DIP封装。
少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。
三个引出端分别是漏极端D、源极端S和控制端C。
其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。
控制端C控制输出占空比,是误差放大器和反馈电流的输入端。
在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。
源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。
图1 为TOP开关电源芯片的内部结构电路图图1TOP开关内部工作原理框图2.2工作原理TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。
RA与CA构成截止频率为7kHz的低通滤波器。
主要特点是:(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;(4)电压型控制方式与逐周期峰值电流限制。
常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源单端正激式开关电源的典型电路如图四所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
CR6853控制的反激式开关电源设计

电力电子技术实操技能训练CR6853控制的反激式开关电源设计系别专业班级学生姓名指导教师王志强提交日期2012年9月20日一、 反激稳压电源的工作原理1、 设计要求:(1) 输入直流电压为90V~220V; (2) 输出直流电压为12V,功率为30W; (3) 开关频率为65KHz。
2、 CR6853控制的反激式开关电源原理分析:图1 CR6853控制的反激式开关电源原理图(1) 输入滤波电路开关电源的输入滤波器的主要作用是抑制电网中的噪声,使电子设备抗干扰能力大大加强,仅使电源工作频率附近的频率成分顺利通过,衰减高次频率成分。
它还能抑制开关电源所产生的共模干扰和差模干扰进入交流电网,避免干扰其他电气电子设备。
开关电源输入滤波器的结构如图2所示:图2 入滤波器的结构输入滤波器主要是由电容和电感组成。
(2) 整流滤波电路一般情况下的交流电压输入的电源,其整流器大多为桥式整流电路,每半个周期里,有两个整流二极管参与导电。
整流滤波电路如图3所示:图3 整流滤波电路(3) RCD吸收电路MOSEFT关断时,当 超过RCD缓冲电路中的电容两端的电压 时,缓冲二极管导通,尖峰电流被RCD电路吸收时,从而削减尖峰电流。
缓冲电容一定要足够大,才能保证在一个开关周期内电容两端的电压没有显著变化。
但吸收电容太大,也会增加缓冲电路的损耗,必须折中。
图4 RCD 吸收电路(4) 电压反馈控制电路反激电源原副边隔离,电压调节需要采样副边输出电压,经过调节后需要控制原边开关管的门极驱动,因此电压反馈控制涉及到采样隔离和PI 调节。
采用TL431 和TLP521 的控制电路如下:图5 TL431控制电路T L431提供参考电压,并与Rf1,Rf2,Rf4,Cf1构成PI 调节器,Rf3用于增加TL431的偏置电流,使其工作在稳压状态。
TLP521用于隔离模拟信号,在一定范围内可以等效为比例环节。
+-V DCV RO+-图6 TL431控制电路(5) 逆变电路反激式变换器是一种电气隔离的升压/降压变换器,也是最简单的隔离型直流变换器。
7款12v充电器电路图!详述其电子电路原理,充放电过程

7款12v充电器电路图!详述其电子电路原理,充放电过程充电过程分析:1.维护充电:当电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下,工作原理为U⑨脚(同相端)电位低于⑧脚(反相端),U输出低电位,T4截止。
U1D11脚电位约0.18V.此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理自行分析).2.快速充电:随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U⑨脚(同相端)电位高于⑧脚(反相端),U输出高电位,T4导通,U1D11脚电位约为0.48V,充电器恒定输出约电流给电池充电。
3.限压浮充:当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V),此时的充电电流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。
4.保护及充电指示电路:本电路设有反极性保护电路,由D4,U,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。
充电指示由U,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。
简易12v充电器电路图(二)对于胶体电介质铅酸蓄电池来说,该电路是一个高性能的充电器。
该充电器能够迅速地为电池充电,且当电池充满时,它可迅速地断开充电。
最开始的充电电流限制在2A。
随着电池电流和电压的增加,当电流增加到150mA时,充电器就会调整至较低的漂浮电压,以防止过度充电。
简易12v充电器电路图(三)如图所示,该电路由7805构成恒流源电路,通过大功率三极管进行扩流。
简易12v充电器电路图(四)不管是一个低电流(50毫安),还是高电流(1安培),该电路都有能力提供。
你可以选择手动充电或者自动模式。
当电流很低的时候,你可以在选择高电流充电之前先用低电流。
12V开关电源电路工作原理分析

12V开关电源电路工作原理分析该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。
其电原理图如图1所示。
其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。
各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。
(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。
(6)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。
(4)脚为RT/RC定时电阻和电容的公共接人端,用于产生锯齿振荡波。
(5)脚为接地端。
(6)脚为脉宽可调脉冲输出端。
(7)脚为工作电压输入端(10V>Vi≤30V)。
(8)脚为内部基准电压(VREF=5v)输出端。
图1 开关电源原理图一、输入与整流电路220V交流市电经O.IA保险管Fl及正温度系数热敏电阻PT1进入交流输入电路,交流输入电路由Cl和L构成,为一低通滤波器。
其主要作用是抗干扰、抑制杂波。
它既阻止市电网中高频干扰脉冲进入开关电源电路,叉阻止开关电源产生的高频干扰谐波进入市电网。
经过低通滤波器滤除了高频杂波的220V交流电,由ED1全桥整流。
C2滤波后,在C2两端得到约300V的直流电压。
该电压经开关变压器初级线圈后作为功率开关管Ql的工作电源;经R2到电容C4作为脉宽调制集成电路TL3843P的启动电源。
二、启动与稳压电路经整流滤波的300V电压:一路经开关变压器Tl的1~2绕组加到功率开关管Ql(K3326)的漏极,另一路经启动电阻R2加到U1(TL3843)的(7)脚,作为主控制芯片TL3843P的启动电源。
在电路加电的瞬间300V通过R2对C4进行充电,当Ul的(7)脚电压达到10V以上时,Ul的(8)脚输出5v基准电压,同时TL3843P内部的振荡电路开始工作,(6)脚输出工作脉冲,通过R4驱动开关管01工作,这时开关管工作于开关状态。
12V开关电源接线方法

12V开关电源接线方法
在电子设备的使用过程中,我们经常会用到各种电源供应器,其中12V开关电源是一种常见的类型。
正确的接线方法不仅可以确保设备正常工作,还可以保障用户的安全。
下面将介绍一些关于12V开关电源的接线方法,供大家参考。
首先,在接线之前,我们需要准备好一些工具和材料,如螺丝刀、绝缘剥线工具、绝缘胶带等。
确保这些工具都是正常可用的,以免在接线过程中出现问题。
接下来,我们需要将12V开关电源的各个部分进行正确的连接。
首先,找到电源的输入端和输出端,一般输入端是接触220V交流电源的部分,输出端则是输出12V直流电压供给设备使用。
在接线时,一定要注意先将电源插头拔掉,确保安全。
接着,使用螺丝刀将电源的输入端和输出端分别与设备的对应端口连接起来,确保连接牢固而不松动。
除此之外,还需要注意接线的顺序和方法。
一般来说,应该先将输入端的接线完成,再进行输出端的接线。
在接线过程中,要注意保持线路整齐,避免出现交叉或短路的情况。
另外,在接线完成后,应该用绝缘胶带将接线处进行包裹,确保不会出现漏电或触电的危险。
同时,可以使用绝缘套管对接线处进行加固,提高接线的稳定性和安全性。
最后,接线完成后,可以将电源插头插入电源插座,然后打开电源开关来测试设备是否正常工作。
如果设备正常工作,则表示接线正确无误,可以正常使用了。
总的来说,12V开关电源的接线方法并不复杂,只要按照正确的步骤和方法进行操作,就能够顺利完成接线工作。
希望以上内容能够对大家在实际操作中有所帮助,确保设备的正常使用和安全。
1。
明伟12V开关电源电路原理分析

明伟12V开关电源电路原理分析摘要:该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流 1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。
其电原理图如图1所示。
关键字:, ,该属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流 1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。
其电原理图如图1所示。
其控制核心器件为TL3843P(内含、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。
各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。
(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+进行比较,产生误差控制电压,控制脉冲宽度。
(6)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。
(4)脚为RT/RC定时电阻和电容的公共接人端,用于产生锯齿振荡波。
(5)脚为接地端。
(6)脚为脉宽可调脉冲输出端。
(7)脚为工作电压输入端(10V>Vi≤30V)。
(8)脚为内部基准电压(VREF=5v)输出端。
图 1 开关电源原理图一、输入与整流电路220V交流市电经保险管Fl及正温度系数热敏电阻PT1进入交流输入电路,交流输入电路由Cl和L构成,为一低通滤波器。
其主要作用是抗干扰、抑制杂波。
它既阻止市电网中高频干扰脉冲进入开关电源电路,叉阻止开关电源产生的高频干扰谐波进入市电网。
来源:大比特半导体器件网经过低通滤波器滤除了高频杂波的220V交流电,由ED1全桥整流。
C2滤波后,在C2两端得到约300V的直流电压。
该电压经开关变压器初级线圈后作为功率开关管Ql的工作电源;经R2到电容C4作为脉宽调制集成电路TL3843P的启动电源。
来源:大比特半导体器件网二、启动与稳压电路经整流滤波的300V电压:一路经开关变压器Tl的1~2绕组加到功率开关管Ql(K3326)的漏极,另一路经启动电阻R2加到U1(TL3843)的(7)脚,作为主控制芯片TL3843P的启动电源。
TOP开关电源芯片工作原理及应用电路资料

TOP开关电源芯片工作原理及应用电路1.什么叫TOP开关电源芯片TOP开关电源的芯片组是三端离线式脉宽调制单片开关集成电路TOP(ThreeterminalofflinePWM)的简称,TOP将PWM控制器与功率开关MOSFET合二为一封装在一起,。
采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。
2.TOP开关结构及工作原理2.1 结构TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET 于一体,采用TO220或8脚DIP封装。
少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。
三个引出端分别是漏极端D、源极端S和控制端C。
其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。
控制端C控制输出占空比,是误差放大器和反馈电流的输入端。
在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。
源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。
图1 为TOP开关电源芯片的内部结构电路图图1TOP开关内部工作原理框图2.2工作原理TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。
RA与CA构成截止频率为7kHz的低通滤波器。
主要特点是:(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;(4)电压型控制方式与逐周期峰值电流限制。
下面简要叙述一下:(1)控制电压源控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流IC则能调节占空比。
控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30W,12V输出开关电源电路图(2)
如图为一款30W,12V输出开关电源电路图。
该电源电路具有成本低,元件数量少,小巧轻便,能效高,空载和待机功耗低等特点,在265V交流输人时的空载功耗小于250mW,在50°C环境下工作时输出功率为30W,无须使用外部散热片,具有精确的自动恢复、迟滞特性的过热关断功能,使PCB的温度在各种条件下均维持在安全范围内,在输出短路及反馈环路开环时进人到自动重启动保护状态,并具有出色的输人电压调整率和负载调整率,符合EN55022和CISPR-22B对EMI限制的要求,EMI裕量大于10dBuV。