浙教版数学九年级(上)期末模拟试卷(二)及参考答案

合集下载

浙教版九年级数学上册期末试卷及答案(2)(K12教育文档)

浙教版九年级数学上册期末试卷及答案(2)(K12教育文档)

浙教版九年级数学上册期末试卷及答案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙教版九年级数学上册期末试卷及答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙教版九年级数学上册期末试卷及答案(2)(word版可编辑修改)的全部内容。

ts 九年级数学(上)期末模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.请将答案填写在题后括号内)1.如果□+2=0,那么“□"内应填的实数是( )A .-2B .-12 C .12D . 2 2.在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦值与余弦值的情况( )A .都扩大2倍B .都缩小2倍C .都不变D .正弦值扩大2倍, 余弦值缩小2倍 3.路程s 与时间t 的大致图象如下左图所示,则速度v 与时间t 的大致图象为( ) oA .B .C .D .4.小明与两位同学进行乒乓球比赛,用“手心、手背"游戏确定出场顺序。

设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出 场.三人同时出手一次, 小明最后出场比赛的概率为( )A .12B .13C .14 D .155.如图, 在ABCD 中, AB=10, AD=6, E 是AD 的中点, 在AB•上取一点F,• 使△CBF∽△CDE, 则BF 的长是( )A.5B.8.2C.6。

4 D 。

1.86。

从1到9这九个自然数中任取一个,是2的倍数或是3的倍数的概率为( )A .19 B .29 C .23 D . 597.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A B C D8.如图,己知△ABC,任取一点O ,连AO ,BO ,CO,并取它们的中点 D ,E,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1:2;④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .49.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N ((-2A F DE CBA .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 210.在一次1500米比赛中,有如下的判断: 甲说: 丙第一 , 我第三; 乙说: 我第一, 丁第四; 丙说: 丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是( ) A .甲 B .乙 C .丙 D .丁二、填空题(本大题共6小题,每小题5分,共30分,请将答案填在横线上) 11.己知平顶屋面 (截面为等腰三角形) 的宽度l 和坡顶的设计倾角α(如图),则设计高度h 为_________.(第11题图) (第14题图) (第15题图)12.有一个直角梯形零件ABCD ,AB CD ∥,斜腰AD 的长为10cm ,120D ∠=,则该零件另一腰BC 的长是__________cm .(结果不取近似值)13.在一张复印出来的纸上,一个等腰三角形的底边长由原图中的3 cm 变成了6 cm,则腰长由原图中的 2 cm 变成了 cm . 14.二次函数2y ax bx c =++和一次函数y mx n =+的图象如图所示,则2ax bx c mx n ++≤+ 时,x 的取值范围是____________.15.如图,四边形ABCD 是长方形,以BC 为直径的半圆与AD 边只有一个交点,且AB =x ,则阴影部分的面积为___________.16.有一个Rt △ABC,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数3C 的坐标为_________. 三、解答题(本大题共8小题,共80分,解答应写出文字说明、证明过程或演算过程) 17.(本题满分8分)在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面直径为18 cm ,母线长为36 cm ,请你计算制作一个这样的圆锥帽需用纸板的面积(精确到个位).18.(本题满分8分)九(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.19.(本题满分8分)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为 5 cm 的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助 小明计算出保温杯的内径.20.(本题满分8分)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积v (单位:m 3)的反比例函数,它的图象如图所示.(1)求ρ与v 之间的函数关系式并写出自变量v 的取值范围; (2)求当310m v =时气体的密度ρ.FEDCBA21.(本题满分10分)如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长 线交于点F .(1)写出图中所有的相似三角形(不需证明);(2)若菱形ABCD 的边长为6,DE:AB=3:5,试求CF 的长.22.(本题满分12分)如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合),连结AP ,PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF 的长;(2)若AP=BP ,求证四边形OEPF 是正方形.FEPOBACBA23.(本题满分12分)课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演,请你也解答这个问题:在一张长方形ABCD 纸片中,AD =25cm, AB =20cm 。

【浙教版】九年级数学上期末模拟试卷(含答案)(2)

【浙教版】九年级数学上期末模拟试卷(含答案)(2)

一、选择题1.反比例函数4y x=-,下列说法不正确的是( ) A .图象经过点()1,4- B .当0x <时,y 随x 的增大而减小C .图象关于直线y x =对称D .图象位于第二、四象限 【答案】B【分析】根据反比例函数的性质判断即可.【详解】解:A. 图象经过点()1,4-,正确,不符合题意;B. 当0x <时,y 随x 的增大而增大,原描述错误,符合题意;C. 图象关于直线y x =对称,正确,不符合题意;D. 图象位于第二、四象限,正确,不符合题意;故选:B .【点睛】本题考查了反比例函数的性质,解题关键是熟记反比例函数的性质,灵活应用这些性质解题.2.如图,在x 轴正半轴上依次截取1122320202021OA A A A A A A ====,过点1A .2A ,3A 、、2020A 、2021A 分别作x 轴的垂线,与反比例函数2y x =的图象依次相交于1P ,2P 、3P 、 、2021P ,得到11OP A ∆、122O P A ∆、、202020212021A P A ∆,并设其面积分别为1S 、2S 、、2021S ,则2021S 的值为( )A .12021B .12020C .22021D .11010【答案】A【分析】设OA1=A1A2=A2A3=…=A2020A2021=t,利用反比例函数图象上点的坐标特征得到P1(t,2t),P2(2t,22t),P3(3t,23t),…,P2021(2021t,22021t),然后根据三角形面积公式可计算出S2021.【详解】解:设OA1=A1A2=A2A3=…=A2010A2021=t,则P1(t,2t),P2(2t,22t),P3(3t,2 3t ),…,P2021(2021t,22021t),所以S2021=121= 220212021tt⨯⨯.故选:A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.3.反比例函数2020yx=-的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【答案】C【分析】根据反比例函数的性质判断即可,当k>0时,函数图象在一、三象限,当k<0时,函数图象在二、四象限;【详解】∵2020yx=-,k=-2020<0,∴函数在二、四象限;故选:C.【点睛】本题考查了反比例函数图象的性质,熟练理解当k>0时,函数图象在一、三象限,当k<0时,函数图象在二、四象限是解题的关键;.4.下面的三视图所对应的物体是().A. B. C.D.5.如图,几何体由6个大小相同的正方体组成,其俯视图...是()A.B.C.D.6.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为16米,若小明的眼睛与地面距离为1.5米,则旗杆的高度为( )A .643米B .12米C .9米D .163米 8.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅.其中正确的是( )A .①②③B .①③④C .②③④D .①②④ 9.两个相似三角形面积比是4:9,其中一个三角形的周长为18,则另一个三角形的周长是( )A .12B .12或24C .27D .12或27 10.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .59B .49C .56D .1311.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=4012.如图,在矩形ABCD 中,3,4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x (k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()P kpa 是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160kpa 时,气球将爆炸,为了安全,气球的体积V 的范围是__________.15.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要_____个小立方体,最多需要_____个小立方体.16.如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为 2cm .17.如图,在平面直角坐标系中,点(0,6)A ,(8,0)B ,点C 是线段AB 的中点,过点C 的直线l 将AOB 截成两部分,直线l 交折线A O B --于点P .当截成两部分中有三角形与AOB 相似时,则点P 的坐标为__________.18.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.19.所示,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144m2,求甬路的宽度.20.如图,在菱形ABCD中,E、F分别是AC、BC的中点,如果EF=5,那么菱形ABCD的周长_____.三、解答题21.如图,反比例函数kyx=的图象与正比例函数14y x=的图象交于点A和()4,1B,点()1,P m在反比例函数kyx=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求AOP的面积.22.如图是由几个相同的小立方块所搭成的几何体,请画出这个几何体的三种视图.【答案】图见解析.【分析】根据俯视图、主视图、左视图的定义即可得.【详解】这个几何体的三种视图如下所示:【点睛】本题考查了几何体的三视图,熟练掌握三视图的画法是解题关键.23.如图,在每个小正方形的边长为1的网格中,ABC 的顶点A ,B ,C 均在格点上,AB 与网格交于点D .(1)线段AD 的长为_______________;(2)在如图所示的网格中,P 是AC 边上任意一点,当A APD BC ∽△△时,请用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)____________________________________.24.甲与乙一起玩一种转盘游戏,下图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用1,2,3表示.固定指针,同时转动两个转盘,任其自由停止.若指针恰好在分割线上,则需重新转动转盘.游戏规则:若两指针所指的数字的和为奇数,则甲得4分;否则,乙得4分.(1)请你用画树状图或列表的方法,求两指针所指的数字的和为偶数的概率.(2)这个游戏规则对甲、乙双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?25.已知关于x 的一元二次方程()22230x m x m +++=有两根α,β. (1)求m 的取值范围;(2)若()()111αβ++=,求m 的值.26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.A解析:A【分析】本题可利用排除法解答.从俯视图看出这个几何体上面一个是圆,直径与下面的矩形的宽相等,故可排除B,C,D.【详解】解:从主视图左视图可以看出这个几何体是由上、下两部分组成的,故排除D选项,从上面物体的三视图看出这是一个圆柱体,故排除B选项,从俯视图看出是一个底面直径与长方体的宽相等的圆柱体,故选:A.【点睛】此题考查由三视图还原实物基本能力,还原实物的形状关键是能想象出三视图和立体图形之间的关系,从而得出该物体的形状.本题只从俯视图入手也可以准确快速解题.5.C解析:C【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【详解】解:从物体上面看,底层是1个小正方形,上层是并排放4个小正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.C解析:C【解析】试题分析:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选C.考点:1.函数的图象;2.中心投影;3.数形结合.第II卷(非选择题)请点击修改第II卷的文字说明7.B解析:B【分析】如图,BC=2m ,CE=16m ,AB=1.5m ,利用题意得∠ACB=∠DCE ,则可判断△ACB △DCE ,然后利用相似比计算出DE 的长.【详解】解:如图,BC=2m ,CE=16m ,AB=1.5m ,由题意得ACB DCE ∠=∠, ACB DCE ∴, AB BC DE CE ∴=,即1.52=16DE , 12DE m ∴=,∴旗杆的高度为12m .故选:B ..【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度,利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.8.D解析:D【分析】由正方形ABCD ,与BPC △是等边三角形的性质求解,求解30,EBA ∠=︒ 从而可判断①;证明60,PFE BPC ∠=∠=︒ =15,PBH PDF ∠=∠︒ 可判断②;由15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒ 可判断③; 证明30,PDH PCD ∠=︒=∠ 再证明,PDH PCD ∽ 可得,DP PH PC PD=从而可判断 ④. 【详解】解: 正方形ABCD , 90,,ABC A BCD ADC CB CD AB ∴∠=∠=∠=∠=︒==BPC △是等边三角形,60,PBC PCB BPC ∴∠=︒=∠=∠906030,EBA ∴∠=︒-︒=︒2,BE AE ∴= 故①符合题意;正方形ABCD ,//,45,AD BC CBD ∴∠=︒60,PFE PCB ∴∠=∠=︒60,PFE BPC ∴∠=∠=︒BPC △是等边三角形,,PC BC CD ∴==而906030,PCD ∠=︒-︒=︒()11803075,2CDP ∴∠=︒-︒=︒ 907515,PDF ∴∠=︒-︒=︒由60,45,PBC CBD ∠=︒∠=︒15,PBH ∴∠=︒,PBH PDF ∴∠=∠,BPH DFP ∴∽ 故②符合题意;15,30,15,60,PBD BDP PDF PFD ∠=︒∠=︒∠=︒∠=︒,PFD BPD ∴不相似,故③不符合题意;正方形ABCD ,45CDB ∴∠=︒,90451530,PDH PCD ∴∠=︒-︒-︒=︒=∠,DPH CPD ∠=∠,PDH PCD ∴∽,DP PH PC PD∴= ∴ 2DP PH PC =⋅,故④符合题意,综上:符合题意的有:①②④.故选:.D【点睛】本题考查的是等边三角形的性质,含30的直角三角形的性质,正方形的性质,相似三角形的判定与性质,掌握以上知识是解题的关键.9.D解析:D【分析】把面积之比转化为周长之比,后分周长为较大三角形或较小三角形的两种情形求解即可.【详解】∵两个相似三角形面积比是4:9,∴两个相似三角形周长比是2:3,当较大三角形的周长为18时,较小三角形的周长为18×23=12;当较小三角形的周长为18时,较大三角形的周长为18×32=27;故选D.【点睛】本题考查了相似三角形面积之比,周长之比,解答时,熟练将面积之比转化为周长之比,会用分类思想求解是解题的关键.10.B解析:B【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得.【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.11.B解析:B【分析】设小路的宽度为x米,则小正方形的边长为2x米,根据小路的横向总长度(20+2x)米和纵向总长度(12+2x)米,根据矩形的面积公式可得到方程.【详解】解:设道路宽为x米,则中间正方形的边长为2x米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B.【点睛】考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.12.C解析:C【分析】过点P 作PH ED ⊥于点H ,用勾股定理求出AE=DE=4,可得ADE ∆为等边三角形,用x 表示出PE 和EQ 的长,在Rt PEH 中利用三角函数用含x 的式子表示出PH 的长,再利用12S EQ PH =⋅△PEQ 可列出y 与x 的函数关系,在结合二次函数性质即可解答. 【详解】∵4BC =,E 为BC 的中点,∴2BE =.在Rt ABE ∆中,23,2AB BE ==,则4AE =,同理可得4ED AE AD ===,故ADE ∆为等边三角形,则60AED ︒∠=, ∵PE QD x ==,∴4QE x =-, 如图,在PQE ∆中,过点P 作PH ED ⊥于点H .3·sin ?sin 602PH PE AED x x =∠=︒=, ∴()211334322y PH EQ x x x x ==⨯⨯-=+ 因此该函数的图象为开口向下的抛物线,当322324b x a =-==-⨯时,y 有最大值3.故选C .【点睛】本题考查了等边三角形的判定和性质,矩形的性质,三角函数解直角三角形,二次函数的性质,解题关键是用含x 的式子表示出PQE ∆的底和高,列出y 与x 的函数关系.二、填空题13.【分析】利用菱形的性质可知D 为OB 的中点设可分别表示F 和B 点从而可表示出直线OE 和直线AB 的解析式联立可求得a 的值即可表示D 点坐标在Rt △OAD 中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为 解析:12825【分析】利用菱形的性质可知D 为OB 的中点,设(,)k D a a,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k .【详解】解:∵四边形OABC 为菱形,∴AC ⊥OB ,2OB OD =, 设(,)k D a a ,则2(2,)k B a a, ∵A (4,0),F 为AD 中点, ∴4(,)22a k F a+, ∴直线OE 的解析式为:242(4)k aa k y x x a a +==+, 直线AB 的解析式为:2(4)(4)24(2)k a k y x x a a a =-=---, 联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩, ∴22((4),)33k E a a+, ∴223(4)3k k a a =+,解得165a =, ∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=, 即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限, ∴12825k =, 故答案为:12825.【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.【分析】利用待定系数法结合反比例函数图象上的点(1564)可求得反比例函数的解析式再根据题意即可求出当时V 的范围【详解】解:设球内气体的气压P (kPa )和气体体积V (m3)的关系式为∵图象过点(15解析:0.6V ≥【分析】利用待定系数法结合反比例函数图象上的点(1.5,64)可求得反比例函数的解析式,再根据题意即可求出当160P ≤时V 的范围.【详解】解:设球内气体的气压P (kPa )和气体体积V (m 3)的关系式为k P V =, ∵图象过点(1.5,64),∴ 1.56496k =⨯=, ∴96P V=. ∵在第一象限内,P 随V 的增大而减小, ∴当160P ≤时,96160V ≤, ∴0.6V ≥.故答案为:0.6V ≥.【点睛】本题考查了反比例函数的应用,根据图象上的已知点的坐标求出函数解析式是解题关键. 15.710【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】解:综合主视图和俯视图这个几何体的底层有5个小正方体第二层最少有2个最多有5个因 解析:7, 10.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】解:综合主视图和俯视图,这个几何体的底层有5个小正方体,第二层最少有2个,最多有5个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:5+2=7个,至多需要小正方体木块的个数为:5+5=10个,故答案为:7,10.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.36【分析】正六角螺母侧面为6个相同的长方形求出每个长方形的面积即可得出它的侧面积【详解】2×3=6cm26×6=36cm2故答案为:36【点睛】本题主要考查正六棱柱的三视图将三视图上边的长度转化为解析:36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm 2,6×6=36cm 2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.17.或或【分析】分三种情况讨论当时则则当时由则当时则则再利用相似三角形的性质求解的坐标即可【详解】解:点是线段的中点当时则如图当时由如图当时则综上:或或故答案为:或或【点睛】本题考查的是坐标与图形三角形 解析:(0,3)或(4,0)或70,4⎛⎫ ⎪⎝⎭ 【分析】分三种情况讨论,当PC OA ⊥时,则//,PC OB 则APC AOB ∽,当PC AB ⊥时,由90,,PCB AOB PBC ABO ∠=∠=︒∠=∠ 则BCP BOA △∽△,当CP OB ⊥时,则//,PC OA 则,BCP BAO ∽ 再利用相似三角形的性质求解P 的坐标即可.【详解】解:()()06,8,0,A B , 点C 是线段AB 的中点,6,8,10,OA OB AB ∴==== 15,2AC AB == 当PC OA ⊥时,则//,PC OB ∴ APC AOB ∽,,AP AC AO AB ∴= 162AP ∴=, ()3,0,3,AP P ∴=如图,当PC AB ⊥时,由90,,PCB AOB PBC ABO ∠=∠=︒∠=∠∴ BCP BOA △∽△,BO BA 5,810BP ∴= 25,4BP ∴= 2578,44OP ∴=-=7,0,4P ⎛⎫∴ ⎪⎝⎭如图,当CP OB ⊥时,则//,PC OA,BCP BAO ∴∽,BC BP BA BO∴=284,BP ∴=4,OP ∴=()4,0.P ∴综上:()0,3P 或7,04P ⎛⎫ ⎪⎝⎭或()4,0.P 故答案为:()0,3P 或7,04P ⎛⎫⎪⎝⎭或()4,0.P 【点睛】本题考查的是坐标与图形,三角形相似的判定与性质,掌握以上知识是解题的关键. 18.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】解:设袋中有黑球x 个, 由题意得:52x x +=0.2, 解得:x=13, 经检验x=13是原方程的解,则布袋中黑球的个数可能有13个.故答案为:13.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.19.2米【分析】设甬路的宽为xm 六块草坪的面积为根据面积之间的关系列方程解方程求解并根据实际意义进行值的取舍即可确定甬路的宽【详解】解:设甬路的宽为xm 根据题意得整理得解得当x=44时不符合题意故舍去所 解析:2米.【分析】设甬路的宽为xm ,六块草坪的面积为()()40226x x --,根据面积之间的关系列方程,解方程求解,并根据实际意义进行值的取舍即可确定甬路的宽.【详解】解:设甬路的宽为xm ,根据题意得()()402261446x x --=⨯,整理得246880x x ,-+= 解得1244,2x x ==,当x =44时不符合题意,故舍去,所以x =2.答:甬路的宽为2米.【点睛】本题考查一元二次方程的应用,掌握列一元二次方程解应用题的方法与步骤,把甬路进行平移,表示出草坪的长与宽是解题的关键.20.40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF 然后根据菱形的四条边都相等列式计算即可得解【详解】解:∵EF 分别是ACBC 的中点∴EF 是△ABC 的中位线∴AB =2EF =解析:40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF ,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵E 、F 分别是AC 、BC 的中点,∴EF 是△ABC 的中位线,∴AB =2EF =2×5=10,∴菱形ABCD 的周长=4×10=40.故答案为:40.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.三、解答题21.(1)4y x =,点P 坐标为(1,4));(2)152 【分析】(1)根据待定系数法求出反比例函数的解析式,然后把()1,P m 代入到解析式,即可求得m 的值;(2)根据函数的对称性求得A 的坐标,再根据待定系数法求得直线AP 的解析式,从而求得直线AP 与y 轴的交点C 的坐标,然后根据S △AOP =S △AOC +S △POC 求得即可.【详解】解:(1)把点()4,1B 代入k y x =,得4k = ∴反比例函数的表达式为4y x =∵把()1,P m 代入4y x=得:441m == ∴点P 坐标为(1,4).(2)∵点A 与点B 关于原点对称,点()4,1B∴点()4,1A -- 设AP 与y 轴交于点C ,直线AP 的函数关系式为y ax b =+, 把点()4,1A --、()1,4P 分别代入得:414a b a b -+=-⎧⎨+=⎩,解得13a b =⎧⎨=⎩∴直线AP 的函数关系式为3y x∴点C 的坐标(0,3)∴11153431222AOP AOC POC S S S =+=⨯⨯+⨯⨯=△△△ 【点睛】本题考查了反比例函数的图象和性质,待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征,三角形的面积等,求得交点坐标是解题的关键.22.无23.(135;(2)图见解析,取格点M ,N ,连接MN ,与AC 相交于点P ,则点P 即为所求【分析】(1)根据勾股定理求出AB 的长,在利用平行线分线段成比例进行计算即可.(2)如图,取格点M ,N ,连接MN ,与AC 相交于点P ,则点P 即为所求.【详解】(1)如图:根据勾股定理得AB 22222425AE BE =+=+=//DF AEBF BD BE AB∴= 1425∴= 52BD ∴= AD AB BD =-535522AD ∴== (2)ABC △APD ∽△,A A ∠=∠AD AP AC AB∴= 223535,252AC AD AB ==== 352525∴= 3AP ∴=点P 在AC 上,5AC =35AP AC ∴=32AP PC ∴= 如图,取格点M 、N ,连接MN ,与AC 相交于点P ,则//,3,2AM CN AM CN == 32AM AP CN PC ∴== 故点P 即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、相似三角形的性质,平行线分线段成比例等知识,解题的关键是灵活运用所学知识解决问题.24.(1)59,见解析;(2)不公平,若两指针的数字和为奇数.甲得5分;否则乙得4分【分析】(1)画树状图展示所有9种可能的结果,其中和为偶数5种,然后根据概率的公式即可计算出两指针的数字和为奇数的概率;(2)由(1)得到p (和为奇数) =49;()59P =和为偶数 ; 而两指针的数字和为奇数,甲得4分;否则,乙得3分,因此可判断游戏对双方不公平.修改的规则必须保证两人的每次所得的平均分相等即可.【详解】解:(1)画树状图如下:共有九种可能结果,其中和为偶数的概率()59P =和为偶数 (2)不公平.理由如下:由(1)知()59P =和为偶数,则()49P =和为奇数;∴甲平均每次得分:416499⨯=(分), 乙平均每次得分:520499⨯=(分), 故游戏对双方不公平.. 修改方法不唯一,如:若两指针的数字和为奇数.甲得5分;否则乙得4分.【点睛】本题考查了游戏公平性,用树状图求出各个事件的概率,比较概率的大小,然后判断游戏的公平性.25.(1)3m 4≥-;(2)m 3= 【分析】(1)利用判别式得到()222340m m =+-≥,然后解不等式即可;(2)根据根与系数的关系得到()23m αβ+=-+,2m αβ=,由已知得到 0αβαβ++=,代入得到关于m 的方程,解方程即可求得m 的值.【详解】(1)由题意知:()22242340b ac m m =-=+-≥, 解得:3m 4≥-, ∴m 的取值范围是3m 4≥-; (2)由根与系数关系可知:()23m αβ+=-+,2m αβ=,∵()()111αβ++=,∴ 0αβαβ++=, 即()2230m m -+=,解得:1231m m ==-,(舍去),∴m 的值为3.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系,若12x x 、是一元二次方程20ax bx c ++=(0a ≠)的两根时,12b x x a +=-,12c x x a=. 26.证明见解析【分析】 利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.。

浙教版2022-2023学年九年级上学期期末数学模拟卷(2)(至九下第1章)

浙教版2022-2023学年九年级上学期期末数学模拟卷(2)(至九下第1章)

浙教版2022-2023学年九年级上学期期末数学模拟卷(2)(至九下第1章)考试时间:120分钟满分:150分一、选择题(本大题有10小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,△ABC经过变换得到△AB'C',其中△ABC绕点A逆时针旋转60°的是()A.B.C.D.2.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上B.必有5次正面朝上C.可能有7次正面朝上D.不可能有10次正面朝上3.把抛物线y=2x2向右平移3个单位长度,再向下平移5个单位长度,得到的抛物线是()A.y=2(x−3)2+5B.y=2(x+3)2+5C.y=2(x+3)2−5D.y=2(x−3)2−54.如图,AB、AC分别为△O的内接正方形、内接正三边形的边,BC是圆内接n边形的一边,则n 等于()A.8B.10C.12D.16(第4题)(第5题)(第6题)(第7题)5.如图,DE∥BC,且EC:BD=2:3,AD=9,则AE的长为()A.6B.9C.3D.46.如图所示,在边长相同的小正方形组成的网格中,两条经过格点的线段相交所成的锐角为α,则夹角α的正弦值为()A.12B.√22C.√32D.17.如图,AB是△O的直径,弦CD△AB,△CDB=30°,CD=2 √3,则阴影部分图形的面积为()A.4πB.2πC.πD.2π38.鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A观察到瞰胜楼楼底点C 的仰角为12°,楼顶点D的仰角为13°,测得斜坡BC的坡面距离BC =510米,斜坡BC的坡度i= 8:15.则瞰胜楼的高度CD是()米.(参考数据:tan12°≈0.2,tan13°≈0.23)A.30B.32C.34D.36(第8题)(第9题)9.书画经装裱后更便于收藏.如图,画心ABCD为长90cm、宽30cm的矩形,装裱后整幅画为矩形A′B′C′D′,两矩形的对应边互相平行,且AB与A′B'的距离、CD与C′D′的距离都等于4cm.当AD与A′D′的距离、BC与B'C′距离都等于acm,且矩形ABCD△矩形A′B′C′D'时,整幅书画最美观此时,a的值为()A.4B.6C.12D.2410.如图,已知二次函数y =﹣ 54(x+1)(x ﹣4)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,P 为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则 AP PK 的最小值为( )A .94B .2C .74D .54(第10题) (第11题) (第14题) (第15题)二、填空题(本大题有6小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.如图,△α的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(b,4),若sinα= 45 ,则b= .12.一年之计在于春,为保障春播任务顺利完成,科研人员对某玉米种子在相同条件下发芽情况进行那么这种玉米发芽的概率是 .13.已知点A(-3,y 1),B(-5,y 2),C(2,y 3)在函数y=-x 2 -2x+b 的图象上,则y 1、y 2、y 3的大小关系为 .14.在△O 中,点C ,D 在△O 上,且分布在直径AB 异侧,延长CO 交弦BD 于点E ,若△DEC =120°,且点A 为DC⌢中点,则DC ⌢的度数为 . 15.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,△AED =△B ,AD =34AC ,若四边形BCED 的面积为7,则△ADE 的面积为 .16.商场卫生间旋转门锁的局部如图1所示,如图2锁芯O 固定在距离门边(EF )3.5cm 处(即ON =3.5cm ),在自然状态下,把手竖直向下(把手底端到达A ).旋转一定角度,把手底端B 恰好卡住门边时,底端A 、B 的竖直高度差为0.5cm.当把手旋转90°到达水平位置时固定力最强,有效的固定长度(把手底端到门边的垂直距离)DN = cm ,当把手旋转到OC 时,△BOC =12△BOD ,此时有效的固定长度为 cm.三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)解答应写出文字说明,证明过程或推演步骤.17.(1)计算: 2sin30°+√3tan60∘−√2cos45° .(2)已知ab=32,求2a−ba+2b的值.18.在一个不透明的口袋中装有四个大小质地相同的小球,上面分别标有数字1、2、3、4每次摸球前将袋子搅拌均匀。

【浙教版】九年级数学上期末试卷(含答案)(2)

【浙教版】九年级数学上期末试卷(含答案)(2)

一、选择题1.如图,在平面直角坐标系中,直线y x =与反比例函数1(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若3OA BC =,则k 的值为( )A .2B .32C .3D .83 【答案】D【分析】解析式联立,解方程求得A 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y x k =+即可求得k 的值.【详解】解:直线y x =与反比例函数1(0)y x x=>的图象交于点A , ∴解1x x=求得1x =±(经检验,符合题意) , A ∴的横坐标为1,A ∴的坐标为(1,1),如图,过C 点、A 点作y 轴垂线,垂足为G ,H ,OA//BC ,∠CGB=∠AHO=90°∴CBG AOH ∠=∠,∴OHA BGC ∽,3OA BC =,∴3OA AH BC GC ==, ∴1=3GC, 解得GC =13, C ∴的横坐标为13, 把13x =代入1y x =得,3y =, 1(,3)3C ∴, 将直线y x =沿y 轴向上平移k 个单位长度,得到直线y x k =+,∴把C 的坐标代入得133k =+,求得83k =, 故选择:D .【点睛】 本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式,三角形相似的判定与性质等知识,求得交点坐标是解题的关键.2.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在y 轴上,边OB 在x 轴上,点F 在边AC 上,反比例函数y =10x在第一象限的图象经过点E ,则正方形AOBC 和正方形CDEF 的面积之差为( )A .12B .10C .6D .4【答案】B【分析】 设正方形AOBC 的边长为a ,正方形CDEF 的边长为b ,则E (a ﹣b ,a +b ),代入反比例函数解析式即可求解.【详解】解:设正方形AOBC 的边长为a ,正方形CDEF 的边长为b ,则E (a ﹣b ,a +b ),∴(a +b )•(a ﹣b )=10,整理为a2﹣b2=10,∵S正方形AOBC=a2,S正方形CDEF=b2,∴S正方形AOBC﹣S正方形CDEF=10,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3.已知反比例函数y=6x-,下列说法中正确的是()A.图象分布在第一、三象限B.点(﹣4,﹣3)在函数图象上C.y随x的增大而增大D.图象关于原点对称【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x的增大而增大,再逐个判断即可.【详解】解:A.∵反比例函数y=6x-中﹣6<0,∴该函数的图象在第二、四象限,故本选项不符合题意;B.把(﹣4,﹣3)代入y=6x-得:左边=﹣3,右边=32,左边≠右边,所以点(﹣4,﹣3)不在该函数的图象上,故本选项不符合题意;C.∵反比例函数y=6x-中﹣6<0,∴函数的图象在每个象限内,y随x的增大而增大,故本选项不符合题意;D.反比例函数y=6x-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D.【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.4.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A .B .C .D .5.如下图所示是由一些大小相同的小正方体构成的三种视图,那么构成这个立体图的小正方体的个数是 ( )A .6B .7C .8D .96.物体的形状如图所示,则从上面看此物体得到的平面图形是( )A .B .C .D . 7.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ) A .51AC AB +=B .35BC AB -= C .51AB AC +D .::AB AC AC BC =8.如图,在△ABC 中,中线AE 、BD 相交于点F ,连接DE ,则下列结论:①12DE AB =;②14 CD CEDEAC BC AB++=++;③CD EFCA FA=;④13FDECDESS=△△.其中正确结论的个数是()A.1个B.2个C.3个D.4个9.已知点P是线段AB的黄金分割点(APPB>),2AB=,那么AP的长约为()A.0.618 B.1.382 C.1.236 D.0.76410.为了解历下区九年级男生的身高情况,随机抽取了100名九年级男生,他们的身高()x cm统计如下,根据以上结果,抽查一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85 B.0.57 C.0.42 D.0.1511.下列一元二次方程中,有两个不相等实数根的是()A.2690x x++=B.2230x x-+=C.22x x-=D.23420x x-+=12.如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为()A.12 B.13 C.14 D.15二、填空题13.如图,B(5,-5),C(7,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为__________.14.如图,点A在反比例函数kyx(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△AD C=53.则k的值为________.15.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_____.16.地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而________(增大、变小)17.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为_____.18.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是_____19.方程2640x x -+=的两个实根分别为1x ,2x ,那么1212x x x x --的值为______. 20.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm ,则矩形的面积为_____cm 2.三、解答题21.如图,已知反比例函数1m y x=的图象经过点()1,4A --,点()1,B n 与点A 关于原点对称,一次函数2y x b =-+的图象经过点B ,交反比例函数图象于点C ,连接AC .(1)求反比例函数与一次函数的表达式;(2)连接OC ,求BOC S的面积; (3)直接写出:①ABCS 的面积______. ②当21y y >时,x 的取值范围______.22.用若干个大小相同的小立方块搭建一个几何体,从正面和上面观察这个几何体得到下面两幅形状图.(从正面看) (从上面看)(1)请画出一种从左面看这个几何体得到的形状图;(2)搭建这个几何体最少要用a =________个小立方块,最多用b =________个小立方块;(3)在(2)的条件下,若有理数x ,y 满足||x a =,||y b =,且0x y +<,求xy 的值.【答案】(1)见解析;(2)10,14;(3)140xy =或-140【分析】(1)根据三视图中的主视图和俯视图即可画出左视图;(2)由主视图和俯视图即可判断原来图形的形状,即可判断最多和最少需要多少个小正方块;(3)根据(2)可知10a =,14b =代入分情况求解即可;【详解】解:(1)(2)最少需要:2+1+1+2+3+1=10最多需要:2×3+2+3×2=14,∴ a=10,b=14(3)∵||x a =,10a =,∴10x =±.∵||y b =,14b =∴14=±y .∵0x y +<,∴10x =-,14y =-或10x =,14y =-,∴140xy =或-140.【点睛】本题主要考查了三视图的知识,掌握三视图的画法是解题的关键;23.在锐角△ABC 中,点D ,E 分别在AC 、AB 上,AG ⊥BC 与点G ,AF ⊥DE 于F ,∠EAF =∠GAC .(1)求证:△AEF ∽△ACG .(2)求证:∠ADE =∠B .(3)若AD =3,AB =5,求AF AG.24.4件同型号的产品中,有1件不合格品和3件合格品.在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,由此可以推算出x 的值大约是多少?25.解下列方程:(1)2x2﹣3x﹣5=0;(2)(x+1)2=6x+6.26.如图,四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,AB=CD,且OA=OD.(1)求证:四边形ABCD是矩形;(2)DF⊥AC于点F,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.B解析:B【分析】利用组合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B.【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.5.B解析:B【解析】【分析】根据三视图,将每一层的小正方体的个数求出来相加,即可得到答案.【详解】根据三视图得:该几何体由两层小正方体构成,最底层有6个,顶层由1个,共有7个,故选:B.【点睛】此题考察正方体的构成,能够理解图形的位置关系是解题的关键.6.C解析:C【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:从上面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:C.【点睛】本题考查了三视图的知识,理解俯视图是从物体的上面看得到的视图是关键.7.A解析:A【分析】由黄金分割点的定义得AB,AB:AC=AC:BC,则AC,BC=AB-AC=352AB,即可得出结论.【详解】解:∵点C为线段AB的黄金分割点,且AC>BC,∴AC=12AB,AB:AC=AC:BC,∴AC,35AB,故选项A符合题意,选项B、C、D不符合题意;故选:A.【点睛】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.8.C解析:C【分析】根据题意和相似三角形的判定与性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:在△ABC中,中线AE、BD相交于点F,∴DE是△ABC的中位线,∴DE ∥AB ,DE AB =12,故①正确; ∴△CDE ∽△CAB , ∴12CD DE CA AB ==,12CD CE DE DE AC BC AB AB ++==++,故②错误; ∵DE ∥AB ,∴△DEF ∽△BAF , ∴12EF DE AF BA ==, ∴CD EF CA FA=,故③正确; ∵CD =DA ,12EF AF =, ∴S △CDE =S △ADE ,13DEF ADE S S ∆∆=, ∴FDE CDE S S ∆∆=13,故④正确; 故选:C .【点睛】本题考查了相似三角形的判定与性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.9.C解析:C【分析】根据黄金分割点的定义,由题意知AP 是较长线段;则AB ,代入数据即可. 【详解】解:∵线段AB=2,点P 是线段AB 的黄金分割点(AP PB >),∴1-+≈1.236 故选:C【点睛】本题考查了黄金分割点的概念,熟记黄金分割的比值是解题的关键.10.D解析:D【分析】先计算出样本中身高不低于180cm 的频率,然后根据利用频率估计概率求解.【详解】样本中身高不低于180cm的频率=15100=0.15,所以估计他的身高不低于180cm的概率是0.15.故选D.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.11.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题意;D.23420x x-+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C.【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.12.B解析:B【解析】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴13=.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】设A坐标为(xy)根据四边形OABC为平行四边形利用平移性质确定出A的坐标利用待定系数法确定出解析式即可【详解】解:设A坐标为(xy)∵B(5-5)C(70)以OCCB为边作平行四边形OAB解析:10 yx =【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(5,-5),C(7,0),以OC,CB为边作平行四边形OABC,∴x+7=0+5,y+0=0-5,解得:x=-2,y=-5,即A(-2,-5),设过点A的反比例解析式为y=kx,把A(-2,-5)代入得:k=10,则过点A的反比例函数解析式为y=10x,故答案为:y=10x.【点睛】本题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x y k=.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.5【解析】试题分析:根据所给的图形可得几何体的底层应该有3+1=4个小正方体第二层应该有1个小正方体因此小正方体的个数有5个解:根据三视图的知识几何体的底面有4个小正方体该几何体有两层第二层有1个小解析:5【解析】试题分析:根据所给的图形可得,几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此小正方体的个数有5个.解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.16.变小【分析】可连接光源和人的头顶可知墙上的影长和人到墙的距离变化规律是:距离墙越近影长越短距离墙越远影长越长【详解】连接光源和人的头顶可知墙上的影长和人到墙的距离变化规律是:距离墙越近影长越短距离墙解析:变小.【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【详解】连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长,则王涛同学在墙上投影长度随着他离墙的距离变小而变小.故答案为:变小.【点睛】本题综合考查了中心投影的特点和规律,中心投影的特点是:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;()2等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.17.【分析】根据矩形的性质可得出AB∥CD进而可得出∠FAE=∠FCD结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD利用相似三角形的性质可得出==2利用勾股定理可求出AC的长度再结合CF=解析:10 3【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出CFAF=CDAE=2,利用勾股定理可求出AC的长度,再结合CF=CFCF AF+•AC,即可求出CF的长.【详解】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴CFAF =CDAE=2.∵AC22AB BC+5,∴CF=CFCF AF+•AC=221+×5=103.故答案为:103.【点睛】本题考查了矩形的性质、相似三角形的判定与性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.18.【分析】数出黑色瓷砖的数目和瓷砖总数求出二者比值即可【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值进而转化为黑色瓷砖个数与总数的比值即故答案为:【点睛】本题考查解析:1 4【分析】数出黑色瓷砖的数目和瓷砖总数,求出二者比值即可.【详解】解:根据题意分析可得:钥匙藏在黑色瓷砖下面的概率是黑色瓷砖面积与总面积的比值,进而转化为黑色瓷砖个数与总数的比值即41 164=故答案为:1 4 .【点睛】本题考查几何概率的求法:根据题意将面积比表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.19.【分析】根据根与系数的关系求出x1+x2和的值然后代入计算即可【详解】∵方程的两个实根分别为∴x1+x2==∴=-(x1+x2)=-2故答案为:-2【点睛】本题考查了一元二次方程ax2+bx+c=0解析:2-【分析】根据根与系数的关系求出x 1+x 2和12x x ⋅的值,然后代入计算即可.【详解】∵方程2640x x -+=的两个实根分别为1x ,2x ,∴x 1+x 2=661--=,12x x ⋅=441=, ∴1212x x x x --=12x x ⋅-(x 1+x 2)=-2.故答案为:-2【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1+x 2=b a -,12x x ⋅=c a. 20.25【分析】根据和谐矩形的性质求出∠ADB =30°由含30°角的直角三角形的性质求出ABAD 的长即可得出答案【详解】解:∵四边形ABCD 是和谐矩形∴OA =OCOB =ODAC =BD =10∠BAD =90解析:【分析】根据“和谐矩形”的性质求出∠ADB =30°,由含30°角的直角三角形的性质求出AB 、AD 的长,即可得出答案.【详解】解:∵四边形ABCD 是“和谐矩形”,∴OA =OC ,OB =OD ,AC =BD =10,∠BAD =90°,∠CAD :∠BAC =1:2,∴OA =OD ,∠CAD =30°,∠BAC =60°,∴∠ADB =∠CAD =30°,∴AB =12BD =5,AD = ∴矩形ABCD 的面积=AB ×AD =cm2);故答案为:【点睛】本题考查了矩形的性质、新定义、等腰三角形的性质、含30°角的直角三角形的性质等知识;熟练掌握矩形的性质和含30°角的直角三角形的性质是解题的关键.三、解答题21.(1)反比例函数为14y x =,一次函数为25y x =-+;(2)BOC 的面积为7.5;(3)①15,②x <0或1<x <4【分析】 (1)将点A 代入1m y x=求得m=4,根据对称可得B 的坐标,再将其代入2y x b =-+,即可求得b=5,由此可得答案; (2)过点C 作CE ⊥x 轴,过点B 作BF ⊥y 轴,垂足分别为点E 、F ,延长EC 、FB 相交于点D ,先令12y y =,可求得点C 的坐标,然后根据DEOF BOC EOC BOF BDC S S S S S =---△△△△矩形即可求得答案;(3)①根据点B 与点A 关于原点对称可得215ABC BOC S S ==△△;②由图象可知当21y y >时,x <0或1<x <4,由此可得答案.【详解】解:(1)∵反比例函数1m y x =的图象经过点()1,4A --, ∴1(4)4m =-⨯-=,∴反比例函数为14y x=, ∵点()1,B n 与点A 关于原点对称,点()1,4A --,∴点B 坐标为(1,4),∵一次函数2y x b =-+的图象经过点B ,∴41b =-+,解得:b=5,∴一次函数为25y x =-+;(2)如图,过点C 作CE ⊥x 轴,过点B 作BF ⊥y 轴,垂足分别为点E 、F ,延长EC 、FB 相交于点D ,则四边形DEOF 为矩形,令12y y =,则45x x=-+,解得:11x =,24x =,将x=4代入25y x =-+,得y=1,∴点C 的坐标为(4,1),∴DEOF BOC EOC BOF BDC S S S S S =---△△△△矩形111444114(41)(41)222=⨯-⨯⨯-⨯⨯-⨯-⨯- 916222=--- 7.5=,∴BOC 的面积为7.5;(3)①∵点B 与点A 关于原点对称,∴AO=BO ,∴7.5AOC BOC S S ==△△,∴215ABC BOC S S ==△△,故答案为:15;②由题意可知:当12y y =时,11x =,24x =,结合图象可知:当21y y >时,x <0或1<x <4,故答案为:x <0或1<x <4.【点睛】本题考查了反比例函数与一次函数的交点问题,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.有一定难度.22.无23.(1)证明见解析;(2)证明见解析;(3)35AF AG =. 【分析】(1)根据条件AG BC AF DE ⊥⊥,,EAF GAC ∠=∠,可得AED ACB ∠=∠,又EAD BAC ∠=∠,证明即可;(2)由(1)知EAF ACG △∽△,证明得到∠AEF =∠D ,再利用公共角相等即可证明∠ADE=∠B ;(3)由(2)知35AD AE AB AC ==,再证明EAF CAG ,运用相似三角形对应边的比相等即可求解出结果.【详解】证明:(1)如图AG ⊥BC 与点G ,AF ⊥DE 于F∴∠AFE =∠AGC =90°在ΔAEF与ΔACG中∠AFE=∠AGC=90°∠EAF=∠GAC∴ΔAEF∽ΔACG(2)由(1)知EAF ACG△∽△,∴∠AEF=∠C在ΔADE与ΔABC中∵∠AEF=∠D,∠DAE=∠BAC(公共角)∴∠ADE=∠B(3)由(2)知在ΔADE与ΔABC中∵∠AEF=∠C∠DAE=∠BAC(公共角)ΔADE∽ΔABC∴AE ADAC AB=由(1)知EAF ACG△∽△∴AE AFAC AG=∴AF ADAG AB=又已知AD=3,AB=5,∴35 AFAG=.【点睛】本题考查相似三角形判定和性质综合运用,需要有一定的推理论证能力,熟练掌握相似三角形判定和性质是解决本题的关键.24.x的值大约是16【分析】根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:由题意,得30.954xx+=+,解得16x=.经检验,16x=是分式方程的解.答:x的值大约是16.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.25.(1)15 2x=,21x=-;(2)x1=-1,x2=5.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】解:(1)2x2﹣3x﹣5=0∵a=2、b=-3、c=-5,∴△=9-4×2×(-5)=49>0,则374x±=,∴15 2x=,21x=-;(2)(x+1)2=6x+6∴(x+1)2-6(x+1)=0,∴(x+1)(x-5)=0,则x+1=0或x-5=0,解得:x1=-1,x2=5.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)详见解析;(2)18°【分析】(1)利用对边平行且相等证明四边形ABCD是平行四边形,再利用对角线相等的平行四边形是矩形,即可证明四边形ABCD是矩形;(2)先求出∠FDC=36°,再求出∠OCD =∠ODC=54°,即可求出∠BDF.【详解】(1)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形;(2)∵四边形ABCD是矩形,∴∠ADC=90°,OC=OD,∴∠ODC=∠OCD,∵∠ADF:∠FDC=3:2,∴∠ADF=54°,∠FDC=36°,∵DF⊥AC,∴∠OCD=∠ODC=90°-∠FDC=54°,∴∠BDF=∠ODC-∠FDC=54°-36°=18°.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、等腰三角形的判定与性质;熟练掌握矩形的判定与性质,并能进行推理计算是解决问题的关键.。

浙教版九年级数学上学期期末模拟试卷(附答案)

浙教版九年级数学上学期期末模拟试卷(附答案)

浙教版九年级数学上学期期末模拟试卷(附答案)一、单选题(共10题;共30分)1.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交,于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点P,作射线交边于点D,若,,则的面积是()A. 15B. 30C. 45D. 602.如图,在△ABC中,∠C=90°,∠A=30°,D为AB上一点,且AD:DB=1:3,DE⊥AC于点E,连接BE,则tan∠CBE的值等于()A. B. C. D.3.下列命题中,①直径是弦;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧相等;④等弧所对的弦相等.⑤经过半径的一端并垂直于半径的直线是圆的切线.正确的个数为()A. 1个B. 2个C. 3个D. 4个4.抛物线y=-2(x-1)2+3的顶点坐标是( )A. (1,3)B. (-1,3)C. (1,-3)D. (-1,-3)5.下列说法正确的是()A. “经过有交通信号的路口,遇到红灯,” 是必然事件B. 已知某篮球运动员投篮投中的概率为,则他投次一定可投中次C. 处于中间位置的数一定是中位数D. 方差越大数据的波动越大,方差越小数据的波动越小6.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A. 6B. 3C. 2D. 1.57.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=()A. 2πB. πC. πD. π8.已知圆锥侧面积为10πcm2,侧面展开图的圆心角为36º,圆锥的母线长为()A. 100cmB. 10cmC. cmD. cm9.反比例函数y= ,y= 图像如图所示,点A在y= 图像上,连接OA交y= 图像于点B,则AB:BO的比为( )A. 1:2B. 2:3C. 4:5D. 4:910.抛物线y=2x2+1的对称轴是()A. 直线x=B. 直线x=﹣C. y轴D. x轴二、填空题(共6题;共24分)11.取一张边长为4的正方形纸折五角星.操作步骤如下:①按如图1、图2的方法对折两次,将图2展开后得到图3;②如图4所示折出正方形ABCD对角线的交点O,将纸片折叠,使得点H与点O重合,折痕为EF,再将四边形EFOG折叠,使得EF与FO重合;③最后再将∠CFO沿着FO折叠,得到图5,沿图中虚线PM剪一刀.展开得图6.(1)若图6中∠ABC=36°,则图5中∠MPN=________°;(2)小王认为此时∠OFC=36°.小黄同学提出了质疑!若已知sin36°= .请求出sin∠OFC=________,这样就可以知道谁的判断是正确的.12.从下列图形:等边三角形、平行四边形、矩形、菱形、正方形,圆中,任意抽取一个图形,抽取的图形既是轴对称图形,又是中心对称图形的概率是________.13.如图,在平面直角坐标系中,直线y=3x+3与x轴、y轴分别交于A、B两点,以线段AB为边在第二象限内作正方形ABCD,点C恰好落在双曲线y= 上,则k的值是________.14.如果直线y=kx+b与抛物线y= x2交于A(x1,y1),B(x2,y2)两点,当OA⊥OB时,直线AB 恒过一个定点,该定点坐标为________.[提示:直线l1:y=k1x+b1与直线l2:y=k2x+b2互相垂直,则k1•k2=-1] 15.如图,正方形ABCD边长是2,BE=CE,MN=1,线段MN的端点M,N分别在CD,AD上滑动,当DM =________时,△ABE与以D,M,N为顶点的三角形相似.16.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为________.三、解答题(共8题;共66分)17.现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图方法解答) 18.如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B (2,-1)、C(3,1).(1)①请在网格图形中画出平面直角坐标系;②以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;③写出△A′B′C′各顶点的坐标,(2)写出△A′B′C′的重心坐标.19.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE 相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:________.20.先阅读下列一段文字,再回答问题.已知平面内两点P1(x1,y1),P2(x2,y2),这两点的距离P1P2.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2﹣x1|或|y2﹣y1|. (1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知点A,B所在的直线平行于y轴,点B的纵坐标为﹣1,A,B两点间的距离等于6.试求点A的纵坐标;(3)已知一个三角形各顶点的坐标分别为A(﹣3,﹣2),B(3,6),C(7,﹣2),你能判断三角形ABC的形状吗?说明理由.21.彬彬童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件(1)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(2)当每件童装售价定为多少元时,该店一星期可获得3910元的利润?22.已知:M点是等边三角形△ABC中BC边上的中点,也是等边△DEF中EF边上的中点,连结AD.(1)如图1,当EF与BC在同一条直线上时,直接写出的值;(2)如图2,△ABC固定不动,将图1中的△DEF绕点M顺时针旋转(≤ ≤ 角,①判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;②作DH⊥BC于点H.设BH=x,线段AB,BE,ED,DA所围成的图形面积为S.当AB=6,DE=2时,求S关于x的函数关系式,并写出相应的x的取值范围.23.如图问题情境:如图1,直角三角板ABC中,∠C=90°,AC=BC,将一个用足够长的的细铁丝制作的直角的顶点D放在直角三角板ABC的斜边AB上,再将该直角绕点D旋转,并使其两边分别与三角板的AC边、BC 边交于P、Q两点.(1)问题探究:在旋转过程中,①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由.________②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由.________③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为________(直接写出结论,不必证明)(2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.答案一、单选题1. B2. C3. B4. A5. D6. D7. B8. B9. A 10. C二、填空题11. (1)18(2)12. 13. -12 14. (0,4)15.或16.(0,4),(0,0)或(4,0)三、解答题17.解:列表如下:所以,两次所献血型均为O型的概率为.18. (1)解:如图所示,从图可知:A(﹣2,0),B(﹣4,2),C(﹣6,﹣2)(2)解:从图上可知重心坐标(﹣4,0)19. (1)证明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE (1)根据矩形的性质得出AD∥BC.∠ ABE = 90 ∘ . 根据二直线平行内错角相等得出∠PAF=∠AEB.根据垂直的定义及等量代换得出∠PFA = ∠ABE= 90∘. 根据有两个角对应相等的两个三角形相似得出结论;(2)解:情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,则有PE∥AB∴四边形ABEP为矩形,∴PA=EB=3,即x=3.情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,即∴满足条件的x的值为3或(3)或0<20. (1)解:∵点,,∴;(2)解:∵点A,B所在的直线平行于y轴,点B的纵坐标为﹣1,A,B两点间的距离等于6,∴点A的纵坐标为﹣1﹣6=﹣7或﹣1+6=5;(3)解:∵,,,∴△ABC为等腰三角形.21. (1)解:设该款童装每件售价x元,每星期的销售量为y件则:y=100+10(60−x)=−10x+700. 设每星期利润为W元,W=(x−30)(−10x+700)=−10(x−50)2+4000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元(2)解:由题意:−10(x−50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.22. (1)解:作DG⊥AB于点G,作EH⊥AB于点H.则四边形DGHE是矩形(如图1),设DG=HE=x,在直角△ADG中,AD= =2x,在直角△BEH中,BE= = ,则= (2)解:① (1)中结论仍成立:证明:连接DM,AM,在等边三角形ABC中,M为BC的中点,∴AM⊥BC,∠BAM= ∠BAC=30°,= ,∴∠BME+∠EMA=90°.同理= ,∠AMD+∠EMA=90°.∴= ,∠AMD=∠BME,∴△ADM∽△BEM,∴= = ;②∵△ADM∽△BEM,∴= =3,∴= ,∴S= + - -= + -= 3 3 + 3 (x-3)- 1= x+ ,S= x+ (3 x 3+ )23. (1)解:DP=DQ理由:连接CD,∵AD=BD,△ABC是等腰直角三角形,∴AD=CD,∠A=∠DCQ,∠ADC=90°,∴∠ADP+∠PDC=∠CDQ+∠PDC=90°,∴∠ADP=∠CDQ,∴△ADP≌△CDQ,∴DP=DQ.解:DP=" 2DQ" .理由:如图,过点D作DM⊥AC、DN⊥BC,垂足分别为M、N,∴∠DMP=∠DNQ=90°,∠MDP=∠NDQ,∴△DPM∽△DQN,∴DM:DN="DP:DQ" .∵∠AMD=∠DNB=90°,∠A=∠B,∴△AMD∽△BND,∴AD:BD=DM:DN.∴DP:DQ=AD:BD=2BD:BD=2:1,∴DP=2DQ.;DP=nQD(2)解:存在,设DQ=x,由(1)①知DP=x,∴S=,当DP⊥AC时,x最小,最小值是,此时,S有最小值,当点P与点A重合时,x最大,最大值是10,此时,S有最大值,24. (1)解:OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)解:抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)解:直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HPsin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2 x,∵<0,∴PD有最大值,当x=2时,其最大值为2 ,此时点P(2,﹣6).。

浙教版初三九年级上册数学期末试卷 (含答案)

浙教版初三九年级上册数学期末试卷 (含答案)

浙教版第一学期期末测试
九年级数学
一、选择题(本大题共10小题,每小题只有一个正确答案,答对得4分)
1、下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()
A.
B.
C.
D.
6.如图,四边形ABCD内接于O,已知∠ADC=140∘,则∠AOC的大小是()
(题图)图
是反比例函数图象上的两点,轴于点,,作轴于点,轴于点,的面积记为,的面积记为,则(

(II) 若点E在AB上,且AC2=AE.AB.求证:∠CEB=2∠CAB.
分数据如下表:
1 图
台州市育英中学2019学年第一学期期末测试
九年级数学答案
一、选择题(本大题共10小题,每小题只有一个正确答案,答对得4分)

)21【答案】
23.
24.【答案】。

浙教版九年级(上)期末数学考试模拟试卷(含答案)

浙教版九年级(上)期末数学考试模拟试卷(含答案)

浙教版九年级(上)期末数学考试模拟试卷一.选择题1.设x 为有理数,若|x|=x ,则( )A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数2.计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 53.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .4.已知⊙O 的半径为6,点A 与点O 的距离为5,则点A 与⊙O 的位置关系是( )A .点A 在圆外B .点A 在圆内C .点A 在圆上D .不确定5.二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,对称轴为直线x =−13,有下列结论:①abc >0; ②b+2c >0;③a+5b+2c <0.其中,正确结论的个数是( )A .3个B .2个C .1个D .0个6.下列说法正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .“等腰三角形的一个角是80度,则它的顶角是80度”是必然事件C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是有理数,|a|≥0”是不可能事件7.将抛物线y =﹣x 2向右平移3个单位后,得到的抛物线的解析式是( )A .y =﹣(x+3)2B .y =﹣(x ﹣3)2C .y =﹣x 2+3D .y =﹣x 2﹣38.如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的( )A .FB .GC .HD .K9.受国际金融危机影响,市自来水公司号召全市市民节约用水.决定采取月用水量分段收费办法,某户居民应交水费y (元)与用水量x (吨)的函数关系如图所示.若该用户本月用水21吨,则应交水费( )A .52.5元B .45元C .42元D .37.8元10.如图,在平面直角坐标系中,点A 的坐标为(2√3,2√3),点P 在直线y =﹣x 上运动,∠PAB =90°,∠APB =30°,在点P 运动的过程中OB 的最小值为( )A .3.5B .2C .√2D .2√2二.填空题11.分解因式:a 3﹣a = .12.在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = . 13.反比例函数y =1−k x 的图象经过点(2,3),则k = . 14.边长分别为1和2的两个正方形按如图所示放置,图中阴影部分的面积是 .15.如图,△DEF 为等边三角形,点D 、E 、F 分别为边AB 、BC 、AC 上一点,且∠C =60°,AD BD =35,AE =7,则AC 的长为 . 16.小甬是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y =−12x 2的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A ,B 两点(如图),对该抛物线,小甬将三角板绕点O 旋转任意角度时惊奇地发现,交点A ,B 的连线段总经过一个固定的点,则该点的坐标是 .三.解答题17.计算:(12)﹣2﹣(π﹣3.14)0+√20−|2−√5|.18.已知a 2=b 3=c 5≠0,求2a−3b+4c 5a+3b−2c 的值.19.解一元一次不等式组{5x +5≥3x −21−2x >3x,并写出它的整数解.20.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为 ,圆心角度数是 度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2).(正方形网格中每个小正方形的边长是一个单位长度),(1)在正方形网格中画出△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1.(2)求出线段OA 旋转过程中所扫过的面积(结果保留π).22.如图,AB 是⊙O 的一条弦,C 、D 是⊙O 上的两个动点,且在AB 弦的异侧,连接CD .(1)若AC =BC ,AB 平分∠CBD ,求证:AB =CD ;(2)若∠ADB =60°,⊙O 的半径为1,求四边形ACBD 的面积最大值.23.网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.24.已知关于x的方程kx2+(3k+1)x+3=0.(1)无论k取任何实数,方程总有实数根吗?试做出判断并证明你的结论;(2)抛物线y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k也为正整数.若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1<y2,请结合函数图象确定实数a的取值范围.25.问题背景:如图①设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=2√2,则∠BPC=°(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展延伸:①如图4,∠ABC=∠ADC=90°,AB=BC.求证:√2BD=AD+DC.②若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.参考答案与试题解析一.选择题1.【解答】解:设x 为有理数,若|x|=x ,则x ≥0,即x 为非负数.故选:D .2.【解答】解:t 3÷t 2=t .故选:B .3.【解答】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .4.【解答】解:∵OA <R ,∴点A 在圆内,故选:B .5.【解答】解:抛物线开口向下,因此a <0,对称轴在y 轴的左侧,a 、b 同号,故b <0,与y 轴的交点在y 轴的正半轴,因此c >0,故abc >0,因此①正确,对称轴为x =−13,即−b 2a =−13,即2a =3b ,也就是a =32b , 由图象可知,当x =﹣1时,y =a ﹣b+c >0,即32b ﹣b+c >0,因此有b+2c >0,所以②正确,当x =﹣2时,y =4a ﹣2b+c <0,(1)当x =1时,y =a+b+c <0,(2)(1)+(2)得,5a ﹣b+2c <0,又2a =3b ,则4a =6b ,∴5a ﹣b+2c =a+4a ﹣b+2c =a+5b+2c <0,因此③正确,故选:A .6.【解答】解:A 、任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,说法错误,不符合题意;B 、等腰三角形的一个角是80度,则它的顶角是80度”是随机事件,说法错误,不符合题意;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,符合题意;D 、“a 是有理数,|a|≥0”是必然事件,说法错误,不符合题意,故选:C .7.【解答】解:将抛物线y =﹣x 2向右平移3个单位后,得到的抛物线的解析式是:y =﹣(x ﹣3)2; 故选:B .8.【解答】解:根据题意,△DEM ∽△ABC ,AB =4,AC =6 DE =2∴DE :AB =DM :AC∴DM =3∴M 应是H故选:C .9.【解答】解:设直线AB 解析式为y =kx+b ,把(15,27)(20,39.5)代入得:{15k +b =2720k +b =39.5, 解之得:{k =2.5b =−10.5即y =2.5x ﹣10.5,当x =21时,y =42. 故选:C .10.【解答】解:如图,作BH ⊥OP 于H ,取PB 的中点F ,连接AF 、FH 、OA 、AH .在Rt △PAB 和Rt △PBH 中,∵PF =FB ,∴AF =PF =FB =FH ,∴A 、P 、H 、B 四点共圆,∴∠AHB =∠APB =30°,∠AHP =60°,∴点B 在射线HB 上运动,∴当OB ⊥BH 时,OB 的值最小,最小值为OH 的长,在Rt △AOH 中,A (2√3,2√3)∴OA =2√6,∠AHO =60°,∴OH =2√2,∴OB 的最小值为2√2.故选:D .二.填空题11.【解答】解:a 3﹣a ,=a (a 2﹣1),=a (a+1)(a ﹣1).故答案为:a (a+1)(a ﹣1).12.【解答】解:根据题意,得:a a+4=23, 解得a =8,经检验:a =8是分式方程的解,故答案为:8.13.【解答】解:因为反比例函数y =1−k x 的图象经过点(2,3), 所以可得:1−k 2=3,解得:k =﹣5,故答案为:﹣514.【解答】解:如图所示:∵正方形ABCD 的边长为2,正方形AEFM 的边长为1,∴AB =AD =2,EF =AM =1,又∵EB =EA+AB ,∴EB =3又∵AN ∥EF ,∴△ABN ∽△EBF ,∴AB EB =AN EF, ∴AN =AB EB ⋅EF =23×1=23,又∵AM =AN+MN ,∴MN =13,S △FMN =12⋅FM ⋅MN =12×1×13=16; 故答案为16. 15.【解答】解:以CE 为边作等边△CEH ,连接DH ,∵{CE =EH∠DEH =∠CEF DE =EF∴△CEF ≌△DEH (SAS ),∴∠DHE =∠ECF =60°,∴DH ∥BC ,∴AD BD =AH CH , ∵AD BD =35, ∴AH CH =35,设AH =3x ,CH =5x ,过点E 作EM ⊥AC 于点M ,在△AEM 中,72=(5√32x)2+(112x)2,∴x =1,∴AC =8.故答案为:8.16.【解答】解:如图,作垂线AE ⊥x 轴,BF ⊥x 轴,垂足分别是E 、F . 设A (﹣m ,−12m 2)(m >0),B (n ,−12n 2)(n >0),设直线AB 的解析式为:y =kx+b ,则{−mk +b =−12m 2①nk +b =−12n 2②, ①×n+②×m 得,(m+n )b =−12(m 2n+mn 2)=−12mn (m+n ),∴b =−12mn . ∵∠AOB =90°,∴∠AOE =∠OBF (同角的余角相等),又∵∠AEO =∠OFB =90°,∴△AEO ∽△OFB ,∴AE OF =OE BF , ∴0.5m 2n =m0.5n 2, ∴mn =4,∴b =−12×4=﹣2.由此可知不论k 为何值,直线AB 恒过点(0,﹣2).故答案是:(0,﹣2).三.解答题17.【解答】解:原式=4﹣1+2√5−√5+2=√5+5.18.【解答】解:设a 2=b 3=c 5=k ≠0,则a =2k ,b =3k ,c =5k , 则2a−3b+4c 5a+3b−2c =4k−9k+20k 10k+9k−10k=53. 19.【解答】解:{5x +5≥3x −2①1−2x >3x② 解不等式①,得x ≥−72; 解不等式②,得x <15,∴不等式组的解集为−72≤x <15, 则不等式组的整数解是﹣3,﹣2,﹣1,0.20.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%, 则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为:35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下: ;(3)根据题意得:2100×32+32100=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.21.【解答】解:(1)如图,△A 1B 1C 1为所作;(2)线段OA 旋转过程中所扫过的面积=90⋅π⋅32360=94π. 22.【解答】(1)证明:∵AC =BC , ∴AĈ=BC ̂, ∵AB 平分∠CBD ,∴∠ABC =∠ABD ,∴AC ̂=AD ̂, ∴AB̂=CD ̂, ∴AB =CD ;(2)解:连接OA 、OB 、OC ,OC 交AB 于H ,如图,∵AĈ=BC ̂, ∴∠ADC =∠BDC =12∠ADB =30°,OC ⊥AB ,AH =BH , ∴∠BOC =60°,∴OH =12OB =12,BH =√3OH =√32,∴AB =2BH =√3,∵四边形ACBD 的面积=S △ABC +S △ABD ,∴当D 点到AB 的距离最大时,S △ABD 的面积最大,四边形ACBD 的面积最大,此时D 点为优弧AB 的中点, 即CD 为⊙O 的直径时,四边形ACBD 的面积最大,∴四边形ACBD 的面积最大值为12•√3×2=√3. 23.【解答】解:(1)当y ≥4000,即﹣100x+5000≥4000,∴x ≤10,∴当6≤x ≤10时,w =(x ﹣6+1)(﹣100x+5000)﹣2000=﹣100x 2+5500x ﹣27000, 当10<x ≤30时,w =(x ﹣6)(﹣100x+5000)﹣2000=﹣100x 2+5600x ﹣32000,综上所述:w ={−100x 2+5500x −27000(6≤x ≤10)−100x 2+5600x −32000(10<x ≤30); (2)当6≤x ≤10时,w =﹣100x 2+5500x ﹣27000=﹣100(x −552)2+48625, ∵a =﹣100<0,对称轴为x =552,∴当6≤x ≤10时,y 随x 的增大而增大,即当x =10时,w 最大值=18000元, 当10<x ≤30时,w =﹣100x 2+5600x ﹣32000=﹣100(x ﹣28)2+46400, ∵a =﹣100<0,对称轴为x =28,∴当x =28时,w 有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x ≤30,∴w =﹣100x 2+5600x ﹣32000,当w =40000元时,40000=﹣100x 2+5600x ﹣32000,∴x 1=20,x 2=36,∴当20≤x ≤36时,w ≥40000,又∵10<x ≤30,∴20≤x ≤30,此时:日获利w 1=(x ﹣6﹣a )(﹣100x+5000)﹣2000=﹣100x 2+(5600+100a )x ﹣32000﹣5000a , ∴对称轴为直线x =−5600+100a 2×(−100)=28+12a ,∵a <4,∴28+12a <30,∴当x =28+12a 时,日获利的最大值为42100元∴(28+12a ﹣6﹣a )[﹣100×(28+12a )+5000]﹣2000=42100, ∴a 1=2,a 2=86,∵a <4,∴a =2.24.【解答】解:(1)有,理由:当k =0时,方程为:x+3=0,解得:x =﹣3,方程有实数根;当k ≠0时,△=(3k+1)2﹣12k =(3k ﹣1)2≥0,故方程有实数根; 综上,无论k 取任何实数,方程总有实数根;(2)令y =0,则kx 2+(3k+1)x+3=0,解得:x =﹣3或−1k ,图象与x 轴两个交点的横坐标均为整数,且k 也为正整数,故k =1, 则抛物线的表达式为:y =x 2+4x+3,Q (1,y 2)是此抛物线上的点,即为点B (1,8),当y =8时,x =﹣5或1,y 1<y 2,则﹣5<a <1.25.【解答】解:简单应用:(1)如图2,∵△ABC 是等腰直角三角形,∴∠ACB =90°,AC =BC ,将△ACP 绕点C 逆时针旋转90°得到△CBP',连接PP',∴BP'=AP =5,∠PCP'=90°,CP'=CP =2√2,∴∠CPP'=∠CP'P =45°,根据勾股定理得,PP'=√2CP =4,∵BP'=5,BP =3,∴PP'2+BP 2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC =∠BPP'+∠CPP'=135°,故答案为:135;(2)如图3,∵△ABC 是等边三角形,∴∠BAC =60°,AC =AB ,将△ACP 绕点A 逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90°,根据勾股定理得,BP'=√BP2+PP′2=13,∴CP=13,故答案为:13;拓展延伸:①如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在DC的延长线上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=√2BD,∴√2BD=CD+AD;②如图5,在△ABC中,∠ABC=90°,AB=BC,将△CBD绕点B顺时针旋转90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB与CD的交点记作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴点D'在AD的延长线上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=√22DD'=√2.。

【浙教版】九年级数学上期末试卷带答案(2)

【浙教版】九年级数学上期末试卷带答案(2)

一、选择题1.若点()12,y -()21,y -、()31,y 都在反比例函数()0k y k x =<的图象上,则有( ) A .123y y y >>B .312y y y >>C .213y y y >>D .132y y y >> 【答案】C【分析】 先根据反比例函数y =k x中k <0判断出函数图象所在的象限,再得出在每一象限内函数的增减性,再根据三点横坐标的值即可判断出y 1,y 2,y 3的大小.【详解】 解:∵反比例函数y =k x中k <0, ∴函数图象的两个分支位于二四象限,且在每一象限内y 随x 的增大而增大, ∵﹣2<﹣1<0,∴y 2>y 1>0,∵1>0,∴y 3<0,∴y 2>y 1>y 3.故选:C .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.关于反比例函数2y x=-,下列说法中错误的是( ) A .当0x <时,y 随x 的增大而增大 B .图象位于第二、四象限C .点(2,1)-在函数图象上D .当1x <-时,2y > 【答案】D【分析】根据反比例函数的图像性质判断即可;【详解】∵2k =-<0,∴当0x <时,y 随x 的增大而增大,故A 不符合题意;∵2k =-,∴图象位于第二、四象限,故B 不符合题意;当2x =时,212y =-=-,故C 不符合题意; 当1x <-时,y <2,故D 错误,符合题意;故答案选D .【点睛】本题主要考查了反比例函数的图像性质,准确分析判断是解题的关键.3.下列命题中,错误的是( )A .顺次连接矩形四边的中点所得到的四边形是菱形B .反比例函数的图象是轴对称图形C .线段AB 的长度是2,点C 是线段AB 的黄金分割点且AC BC <,则51AC =-D .对于任意的实数b ,方程230x bx --=有两个不相等的实数根【答案】C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;B.反比例函数的图象是轴对称图形,故此命题正确;C. 线段AB 的长度是2,点C 是线段AB 的黄金分割点且AC BC <,则51251BC -=⨯=-,则AC=3-5,故此选项错误; D.对于任意的实数b ,方程230x bx --=有两个不相等的实数根,因为△=b²-4ac=b²+12>0,故此命题正确.故选C .【点睛】本题考查了命题和定理以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉掌握性质定理.4.下列四个几何体中,从正面看得到的平面图形是三角形的是( )A .B .C .D . 5.图1是数学家皮亚特•海恩(Piet Hein )发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图( )A .B .C .D . 6.一个不透明的口袋里装有除颜色都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法,先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有个( )A .45B .48C .50D .557.如图,////AB CD EF ,若3BF DF =,则AC CE 的值是( )A .2B .12C .13D .38.如图,在ABC 中,点D 、E 、F 分别在AB 、AC 、BC 上,DE ∥BC ,DF ∥AC .下列比例式中,正确的是( )A .AD DE BD BC =B .DF DE AC BC = C .AD DE AB BC = D .AE BF EC FC = 9.正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M ,N ,则MN 的长为( )A .556B .25-33C .515D .3310.经过一T 字型路口的行人,可能右拐,可能左拐.假设这两种可能性相同.有3人经过该路口,至少一人左拐的概率为( )A.14B.38C.34D.7811.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1x2的值是()A.﹣2 B.﹣3 C.2 D.312.顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.正方形B.矩形C.菱形D.以上都不对二、填空题13.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=kx(k>0,x>0)的图象经过AC的中点D,则k的值为 ___________.14.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.15.如图,是一个立体图形的三种视图,则这个立体图形的体积为______.16.某几何体是由若干个小正方体组成的,它无论从正面看还是从左面看得到的视图都是如图的样子,堆成该几何体的正方体数最少与最多的块数分别是、n,则m n+=______.17.边长为4的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为34,则CE 的长为 _____ .18.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.19.已知关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的取值范是__________________.20.如图,在矩形ABCD 中,4cm AB =,3cm BC =,点P 为AD 上一点,将ABP 沿着BP 翻折至EBP ,PE 与CD 交于点O ,且OE OD ,则DP 的长度为______cm .三、解答题21.如图,已知反比例函数1m y x=的图象经过点()1,4A --,点()1,B n 与点A 关于原点对称,一次函数2y x b =-+的图象经过点B ,交反比例函数图象于点C ,连接AC .(1)求反比例函数与一次函数的表达式;(2)连接OC ,求BOC S的面积; (3)直接写出:①ABC S 的面积______. ②当21y y 时,x 的取值范围______.22.如图,甲、乙两个几何体是由一些棱长是1的正方体粘连在一起所构成的,这两个几何体从上面看到的形状图相同是“”请回答下列问题:(1)请分别写出粘连甲、乙两个几何体的正方体的个数.(2)甲、乙两个几何体从正面、左面、上面三个方向所看到的形状图中哪个不相同?请画出这个不同的形状图.(3)请分别求出甲、乙两个几何体的表面积.【答案】(1)见解析,甲的正方体有8个;乙的正方体有7个;(2)见解析;(3)甲几何体的表面积为:28;乙几何体的表面积为:28【分析】(1)分别利用几何的形状得出组成的个数;(2)甲的左视图从左往右3列正方形的个数依次为2,2,2;乙的左视图从左往右3列正方形的个数依次为2,1,2;(3)直接利用几何体的形状进而得出表面积.【详解】解:(1)如图所示:甲的正方体有4+4=8个;乙的正方体有4+3=7个;(2)甲、乙两个几何体的主视图相同,俯视图也相同,只有左视图不同;甲、乙两个几何体的左视图不同,如图所示:;(3)甲几何体的表面积为:14+14=28;乙几何体的表面积为:14+1+5+8=28.【点睛】本题考查了视图的相关知识;用到的知识点是:三视图分别是从物体的正面、左面、上面看得到的平面图形.23.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5,求证:(1)△ADE ∽△ACB ;(2)求AE 的长.24.为了增强学生体质,开展体育娱乐教学,某校举行了“趣味运动会”,运动会的比赛项目有:“两人三足”、“春种秋收”、“有轨电车”、“摸石过河”(分别用字母A ,B ,C ,D 依次表示这四个运动项目),将A ,B ,C ,D 这四个字母分别写在4张完全相同的不透明卡片的正面上,把这4张卡片背面朝上洗匀后放在桌面上.小明和小亮参加趣味比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上内容进行趣味运动比赛.(1)小明参加“有轨电车”的概率是 ;(2)请用列表法或画树状图法,求出小明和小亮参加同一项目的概率.25.解方程:(1)x 2-3x +2=0 (2)22410y y --=.26.如图,在直角坐标系中,3,4OA OC ==,点B 是y 轴上一动点,以AC 为对角线作平行四边形ABCD .(1)求直线AC 的函数解析式;(2)设点(0)B m ,,记平行四边形ABCD 的面积为S ,求S 与m 的函数关系式; (3)当点B 在y 轴上运动,能否使得平行四边形ABCD 是菱形?若能,求出点B 的坐标;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除1.无2.无3.无4.B解析:B【分析】依次分析每个几何体的主视图,即可得到答案.【详解】A.主视图为矩形,不符合题意;B.主视图为三角形,符合题意;C.主视图为矩形,不符合题意;D.主视图为矩形,不符合题意.故选:B.【点睛】此题考查几何体的三视图,掌握每一个几何体的三视图的图形是解题关键.5.C解析:C【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.6.A解析:A【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选A .7.A解析:A【分析】由BF=3DF ,得BD=2DF ,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF ,∴BD=2DF ,∵////AB CD EF , ∴AC CE =BD DF , ∴AC CE =2DF DF=2, 故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.8.C解析:C【分析】利用平行线分线段成比例以及相似三角形的性质一一判断即可.【详解】解: ∵DE ∥BC ,∴ADE ABC △△∽, ∴AD DE AB BC=,故选项A 错误,选项C 正确, ∵DF ∥AC , ∴BDF BAC △∽△, ∴BD DF AB AC =, ∴DF DE AC BC≠,故选项B 错误, ∵DE ∥BC ,DF ∥AC ,∴AD AE BD EC =,AD FC BD BF =, ∴AE FC EC BF=,故选项D 错误, ∴故选:C .【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是掌握相关知识点并能准确判断对应的比例线段.9.C 解析:C【分析】 首先过F 作FH ⊥AD 于H ,交ED 于O ,于是得到FH =AB =2,根据勾股定理求得AF ,根据平行线分线段成比例定理求得OH ,由相似三角形的性质求得AM 与AN 的长,即可得到结论. 【详解】过F 作FH ⊥AD 于H ,交ED 于O ,则FH =AB =2,∵BF =FC ,BC =AD =2,∴BF =AH =1,FC =HD =1, ∴AF 222221FH AH =++5 ∵OH ∥AE ,∴12HO DH AE AD ==, ∴OH =12AE =12, ∴OF =FH−OH =2−12=32, ∵AE ∥FO , ∴△AME ∽△FMO ,∴23AM AE FM OF ==, ∴AM =25AF 25,∴△AND∽△FNB,∴AN AD=2,FN BF∴AN=2NF=25,∴MN=AN−AM=25−25=45.故选:C.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.10.D解析:D【分析】用树状图列举出所有等可能的情况,去掉至少一人左拐的次数,利用概率计算公式求解.【详解】树状图如下:共有8种等可能的情况,其中至少一人左拐的有7种,∴P(至少一人左拐)=7,8故选:D.【点睛】此题考查用树状图求事件的概率,概率的计算公式,正确理解题意并列举所有可能的情况是解题的关键.11.B解析:B【分析】直接根据根与系数的关系解答即可.【详解】解:∵x1、x2是一元二次方程x2-2x-3=0的两个根,故选B.【点睛】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-b a ,x1•x2=ca.12.B解析:B【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形;【详解】如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H,∵点E、F、G、H,分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,∴四边形EFGH是平行四边形,∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形,∴∠MEN=90°,∴四边形EFGH是矩形;故选:B.【点睛】本题考查了三角形中位线的性质、平行四边形的判定以及矩形的判定方法,正确掌握知识点是解题的关键.二、填空题13.5【分析】作CE⊥x轴于E根据平行于x轴的直线上任意两点纵坐标相同即可求得CE=OA=2T通过证得△AOB∽△BEC求得BE=4进而得到D点坐标代入y=利用待定系数法求出k【详解】解:作CE⊥x轴于【分析】作CE ⊥x 轴于E ,根据平行于x 轴的直线上任意两点纵坐标相同,即可求得CE =OA =2,T 通过证得△AOB ∽△BEC ,求得BE =4,进而得到D 点坐标,代入y =kx,利用待定系数法求出k . 【详解】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1, ∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO , ∴∠OAB =∠CBE , ∵∠AOB =∠BEC , ∴△AOB ∽△BEC ,∴BE CE OA OB =,即221BE =, ∴BE =4, ∴OE =5,∵点D 是AB 的中点,∴D (52,2). ∵反比例函数y =kx(k >0,x >0)的图象经过点D , ∴k =52×2=5. 故答案为:5. 【点睛】本题考查了反比例函数图象上点的坐标特征,三角形相似的判定和性质等知识,求出D 点坐标是解题的关键.14.-2<x<-05【分析】根据图象可直接得到y1>y2>0时x 的取值范围【详解】根据图象得:当y1>y2>0时x 的取值范围是﹣2<x <﹣05故答案为﹣2<x <﹣05【点睛】本题考查了反比例函数与一次函解析:-2<x<-0.5【分析】根据图象可直接得到y1>y2>0时x的取值范围.【详解】根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为﹣2<x<﹣0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.15.【分析】根据该立体图形的三视图可判断该立体图形为圆柱且底面直径为8高为8根据圆柱的体积公式即可得答案【详解】∵该立体图形的三视图为两个正方形和一个圆∴该立体图形为圆柱且底面直径为8高为8∴这个立体图解析:128π【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案.【详解】∵该立体图形的三视图为两个正方形和一个圆,∴该立体图形为圆柱,且底面直径为8,高为8,∴这个立体图形的体积为π×42×8=128π,故答案为:128π【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键.16.【分析】根据题意画出最少和最多的两种情况得出m和n计算即可【详解】由题意可画如图:m=5n=9∴m+n=14故答案为:14【点睛】本题考查三视图根据主视图和左视图得出画出俯视图中最多和最少的情况是解解析:【分析】根据题意画出最少和最多的两种情况,得出m和n,计算即可.【详解】由题意可画如图:m=5 n=9∴m+n=14.故答案为:14.【点睛】本题考查三视图,根据主视图和左视图得出画出俯视图中最多和最少的情况是解题关键.17.1或3【分析】由正方形的性质结合三角形内角和定理可得出结合可得出由可证出再利用相似三角形的性质可求出的长【详解】解:四边形为正方形即或故答案为:1或3【点睛】本题考查了相似三角形的判定与性质正方形的解析:1或3. 【分析】由正方形的性质结合三角形内角和定理可得出90BAE AEB ∠+∠=︒,结合90AEB CEF ∠+∠=︒可得出BAE CEF ∠=∠,由B C ∠=∠,BAE CEF ∠=∠可证出ABE ECF ∆∆∽,再利用相似三角形的性质可求出CE 的长. 【详解】解:四边形ABCD 为正方形, 90B C ∴∠=∠=︒,90BAE AEB ∴∠+∠=︒. EF AE ⊥, 90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒, BAE CEF ∴∠=∠,ABE ECF ∽,∴CE CFBABE,即4344CE CE, 1CE ∴=或3CE =. 故答案为:1或3. 【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形内角和定理,利用“两角对应相等的三角形相似”找出ABE ECF ∆∆∽是解题的关键.18.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可. 【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%, ∴口袋中红色球的个数可能是30×40%=12个. 故答案为:12. 【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.19.且【分析】方程有两不等的实数根得到判别式大于零求出a 的取值范围同时方程是一元二次方程二次项系数不为零【详解】根据题意得a-1≠0且△=(﹣2)2﹣4(a-1)>0解得a <2且a≠1故答案为a <2且a解析:2a <且1a ≠ 【分析】方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零. 【详解】根据题意得a -1≠0且△=(﹣2)2﹣4(a -1)>0, 解得a <2且a ≠1. 故答案为a <2且a ≠1. 【点睛】本题主要考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.解答这类题目时一定要注意方程的定义,其最高次项系数是否可以为0.20.【分析】设CD 与BE 交于点GAP =x 证明△ODP ≌△OEG (ASA )根据全等三角形的性质得到OP =OGPD =GE 根据翻折变换的性质用x 表示出PDOP 根据勾股定理列出方程解方程即可【详解】解:设CD 与解析:35. 【分析】设CD 与BE 交于点G ,AP =x ,证明△ODP ≌△OEG (ASA ),根据全等三角形的性质得到OP =OG ,PD =GE ,根据翻折变换的性质用x 表示出PD 、OP ,根据勾股定理列出方程,解方程即可. 【详解】解:设CD 与BE 交于点G ,∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =3cm ,CD =AB =4cm , 由折叠的性质可知△ABP ≌△EBP , ∴EP =AP ,∠E =∠A =90°,BE =AB =4cm , 在△ODP 和△OEG 中,DOP EOG OD OED E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEG (ASA ), ∴OP =OG ,PD =GE , ∴DG =EP ,设AP =EP =x ,则PD =GE =3﹣x ,DG =x , ∴CG =4﹣x ,BG =4﹣(3﹣x )=1+x , 根据勾股定理得:BC 2+CG 2=BG 2, 即32+(4﹣x )2=(x +1)2, 解得:x 125=, ∴AP 125=(cm ), ∴DP 35=(cm ). 故答案为:35. 【点睛】本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,熟练掌握翻折变换的性质是解题的关键.三、解答题21.(1)反比例函数为14y x=,一次函数为25y x =-+;(2)BOC 的面积为7.5;(3)①15,②x <0或1<x <4 【分析】(1)将点A 代入1my x=求得m=4,根据对称可得B 的坐标,再将其代入2y x b =-+,即可求得b=5,由此可得答案;(2)过点C 作CE ⊥x 轴,过点B 作BF ⊥y 轴,垂足分别为点E 、F ,延长EC 、FB 相交于点D ,先令12y y =,可求得点C 的坐标,然后根据DEOF BOC EOC BOF BDC S S S S S =---△△△△矩形即可求得答案;(3)①根据点B 与点A 关于原点对称可得215ABC BOC S S ==△△; ②由图象可知当21y y >时,x <0或1<x <4,由此可得答案. 【详解】解:(1)∵反比例函数1my x=的图象经过点()1,4A --,∴1(4)4m =-⨯-=, ∴反比例函数为14y x=, ∵点()1,B n 与点A 关于原点对称,点()1,4A --, ∴点B 坐标为(1,4),∵一次函数2y x b =-+的图象经过点B , ∴41b =-+, 解得:b=5,∴一次函数为25y x =-+;(2)如图,过点C 作CE ⊥x 轴,过点B 作BF ⊥y 轴,垂足分别为点E 、F ,延长EC 、FB 相交于点D ,则四边形DEOF 为矩形, 令12y y =, 则45x x=-+, 解得:11x =,24x =, 将x=4代入25y x =-+, 得y=1,∴点C 的坐标为(4,1),∴DEOF BOC EOC BOF BDC S S S S S =---△△△△矩形111444114(41)(41)222=⨯-⨯⨯-⨯⨯-⨯-⨯-916222=---7.5=,∴BOC 的面积为7.5;(3)①∵点B 与点A 关于原点对称, ∴AO=BO ,∴7.5AOC BOC S S ==△△, ∴215ABC BOC S S ==△△,故答案为:15;②由题意可知:当12y y =时,11x =,24x =, 结合图象可知:当21y y >时,x <0或1<x <4, 故答案为:x <0或1<x <4. 【点睛】本题考查了反比例函数与一次函数的交点问题,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.有一定难度.22.无23.(1)见解析;(2)1 【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度. 【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A , ∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB , 则AD AEAC AB= ∵AB =3,AD =2,CE =5, ∴253AEAE =+, 得:121,6AE AE ==-(舍去) ∴AE 的长是1 【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解. 24.(1)14;(2)14【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有16种等可能性结果,再找出小明和小亮加同一项目的结果数,然后根据概率公式求解. 【详解】(1)小明参加“有轨电车”的概率是:14. 故答案为:14(2)列表如下:种:(,)A A ,(,)B B ,(,)C C ,(,)D D , 所以小明和小亮参加同一项目的概率为41164=. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.25.(1)121,2x x ==;(2)1211y y == 【分析】(1)用因式分解法求解即可; (2)用公式法求解即可; 【详解】 (1)∵x 2-3x +2=0 ∴(x-1)(x-2)=0 ∴121,2x x ==;(2)∵22410y y --=∴a=2,b=-4,c=-1, ∴b 2-4ac=16+8=24,∴y=44±=12±,∴121,122y y =+=-. 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键. 26.(1)443y x =+;(2)()3+124S m m =-<;()3124S m m =->;(3)能,70,8B ⎛⎫ ⎪⎝⎭【分析】(1)根据OA、OC的长度结合图形可得出点A、C的坐标,再利用待定系数法即可求出直线AC的解析式;(2)根据点B的坐标可得出BC的长度,结合平行四边形的面积公式即可得出S关于m的函数关系式;(3)根据菱形的性质,利用勾股定理构建方程即可解决问题;【详解】解:(1)∵OA=3,OC=4,∴A(﹣3,0)、C(0,4).设直线AC的函数解析式为y=kx+b,将点A(﹣3,0)、C(0,4)代入y=kx+b中,得:304k bb-+=⎧⎨=⎩,解得:4 34kb⎧=⎪⎨⎪=⎩,∴直线AC的函数解析式为y=43x+4.(2)∵C(0,4) B (0,m)当点B在C点下方时BC=4-m,∴S=BC•OA=3(4-m)=-3m+12(m<4).当B点在C点上方时BC=m-4,∴S=BC•OA=3(m-4)=3m-12(m>4).(3)能,当四边形ABCD是菱形时,AB=BC 在RtΔAOB中 AB2=OA2+OB2=32+m2,∴32+m2=(4﹣m)2解得:m=78,∴B(0,7).8【点睛】本题考查了待定系数法求函数解析式、平行四边形的性质、菱形的性质以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形的面积公式找出S关于m的函数关系式;(3)学会构建方程解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版数学九年级(上)期末模拟试卷(一)2012年8月注意事项:(1)答题前,在试卷的密封线内填写学校、班级、学号、姓名; (2)全卷满分150分,考试时间为120分钟。

一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合题目要求的.请将答案填写在题后括号内) 1.如果□+2=0,那么“□”内应填的实数是( )A .-2B .-12C .12D . 22.在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦值与余弦值的情况( )A .都扩大2倍B .都缩小2倍C .都不变D .正弦值扩大2倍, 余弦值缩小2倍 3.路程s 与时间t 的大致图象如下左图所示,则速度v 与时间t 的大致图象为( )A .B .C .D .4.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出 场.三人同时出手一次, 小明最后出场比赛的概率为( ) A .12B .13 C .14D .155.如图, 在ABCD 中, AB=10, AD=6, E 是AD 的中点, 在AB •上取一点F,•使△CBF ∽△CDE, 则BF 的长是( )A.5B.8.2C.6.4D.1.86. 从1到9这九个自然数中任取一个,是2的倍数或是3的倍数的概率为( )A .19 B .29C .23D .597.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8.如图,己知△ABC ,任取一点O ,连AO ,BO ,CO ,并取它们的中点D ,E ,F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形; ③△ABC 与△DEF 的周长比为1:2;④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .49.已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N ((-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 210.在一次1500米比赛中,有如下的判断: 甲说: 丙第一 , 我第三; 乙说: 我第一, 丁第四; 丙说: 丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是( ) A .甲 B .乙 C .丙 D .丁二、填空题(本大题共6小题,每小题5分,共30分,请将答案填在横线上) 11.己知平顶屋面 (截面为等腰三角形) 的宽度l 和坡顶的设计倾角α(如图),则设计高度h 为_________.(第11题图) (第14题图) (第15题图)12.有一个直角梯形零件ABCD ,AB CD ∥,斜腰AD 的长为10cm ,120D ∠= ,则该零件另一腰BC 的长是__________cm .(结果不取近似值)13.在一张复印出来的纸上,一个等腰三角形的底边长由原图中的3 cm 变成了6 cm ,则腰长由原图中的2 cm 变成了 cm . 14.二次函数2y ax bx c =++和一次函数y mx n =+的图象如图所示,则2ax bx c mx n ++≤+时,x 的取值范围是____________.15.如图,四边形ABCD 是长方形,以BC 为直径的半圆与AD 边只有一个交点,且AB =x ,则阴影部分的面积为___________.16.有一个Rt △ABC ,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数C 的坐标为_________. 三、解答题(本大题共8小题,共80分,解答应写出文字说明、证明过程或演算过程)17.(本题满分8分)在圣诞节,小明自己动手用纸板制作圆锥形的圣诞老人帽.圆锥帽底面 直径为18 cm ,母线长为36 cm ,请你计算制作一个这样的圆锥帽需用纸 板的面积(精确到个位).九(1)班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、 丁两位女生参加竞选.请用列表或画树状图的方法求出两位女生同 时当选正、副班长的概率.19.(本题满分8分)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的 内径.小明回家后把半径为5 cm 的小皮球置于保温杯口上,经过思考 找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助 小明计算出保温杯的内径.20.(本题满分8分)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容 器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体 积v (单位:m 3)的反比例函数,它的图象如图所示. (1)求ρ与v 之间的函数关系式并写出自变量v 的取值范围; (2)求当310m v =时气体的密度ρ.FEDCBA如图,在菱形ABCD 中,点E 在CD 上,连结AE 并延长与BC 的延长 线交于点F .(1)写出图中所有的相似三角形(不需证明);(2)若菱形ABCD 的边长为6,DE :AB=3:5,试求CF 的长.22.(本题满分12分)如图,AB 是⊙O 的直径,点P 是⊙O 上的动点(P 与A ,B 不重合), 连结AP ,PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥BP 于F .(1)若AB=12,当点P 在⊙O 上运动时,线段EF 的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF 的长;(2)若AP=BP ,求证四边形OEPF 是正方形.FEPOBACBA课堂上,周老师出示了以下问题,小明、小聪分别在黑板上进行了板演, 请你也解答这个问题:在一张长方形ABCD 纸片中,AD =25cm, AB =20cm. 现将这张纸片按如 下列图示方式折叠,分别求折痕的长. (1) 如图1, 折痕为AE;(2) 如图2, P ,Q 分别为AB ,CD 的中点,折痕为AE; (3) 如图3, 折痕为EF .24.(本题满分14分)如图,△ABC 中,A C =BC ,∠A =30°,AB= 现将一块三角板中30°角的顶点D 放在AB 边上移动,使这个 30°角的两边分别与△ABC 的边AC ,BC 相交于点E, F ,连结DE ,DF ,EF ,且使DE 始终与AB 垂直.设AD x ,△DEF 的面积为y .(1)画出符合条件的图形,写出与△ADE 一定相似的三角形(不包括此三角板),并说明理由; (2)问EF 与AB 可能平行吗?若能,请求出此时AD 的长;若不能,请说明理由; (3)求出y 与x 之间的函数关系式,并写出自变量x 的取值范围.当x 为何值时,y 有最大值?最大值是为多少?.浙教版数学九年级(上)期末模拟试卷(一)参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A 2.C 3.A 4.C 5.D 6.C 7.B 8.C 9.B 10.B 二、填空题(本大题共6小题,每小题5分,共30分)11.tan 2lα 12. 53 13. 4 14. 21x -≤≤15. 214x π 16. (12,0),(72,0),(72-,0),(12-,0)三、解答题(本大题共8小题,共80分) 17.(本题满分8分)解:Srl π= ………………………………………………………2分 936π=⨯=324π≈1018cm 2. …………………………………………6分18.(本题满分8分)解:树状图分析如下:………………………………………………………4分由树状图可知,两位女生当选正、副班长的概率是212=16. ………………………4分 (列表方法求解略) 19.(本题满分8分)解: 连OD, ∵ EG =8, OG =3, ……………………………………………3分 ∴ GD =4, ……………………………………………3分 故保温杯的内径为8 cm . ……………………………………………2分 20.(本题满分8分) 解:(1)10(0)v vρ=>. ………………………………………………4分 (2)当310m v=时,ρ=1kg/m 3 . ………………………………………………4分21.(本题满分10分)解:(1)△ECF ∽△ABF ,△ECF ∽△EDA ,△ABF ∽△EDA . ………………………3分(2)∵ DE :AB=3:5, ∴ DE :EC=3:2, ………………………………2分 ∵ △ECF ∽△EDA , ∴CF CEAD DE=, …………………………………………2分∴2643CF =⨯=. …………………………………………3分22.(本题满分12分)解:(1)EF 的长不会改变. ………………………………………………2分∵ OE ⊥AP 于E ,OF ⊥BP 于F ,∴ AE=EP ,BF=FP , …………………………………………2分 ∴162EFAB ==. …………………………………………2分 (2)∵AP=BP ,又∵OE ⊥AP 于E ,OF ⊥BP 于F ,∴ OE=OF , …………………………………………3分 ∵ AB 是⊙O 的直径,∴∠P=90°, …………………………………………1分 ∴ OEPF 是正方形. …………………………………………2分 (或者用12OE BP =,12OF AP =, ∵ AP=BP ,∴ OE=OF 证明)23.(本题满分12分)解:(1)∵ 由折叠可知△ABE 为等腰直角三角形,∴ A E =20. …………………………………………3分(2) ∵ 由折叠可知,AG =AB ,∠GAE =∠BAE ,∵ 点P 为AB 的中点,∴ AP =12AB , ∴ AP =12AG ,在Rt △APG 中,得∠GAP =60°,∴ ∠EAB =30°, ………………………………2分在Rt △EAB 中, AE =23=403. ……………………………………2分(3)过点E 作EH ⊥AD 于点H ,连BF ,由折叠可知 DE =BE ,∵ AF =FG ,DF =AB ,GD =AB , ∴ △ABF ≌△GDF , 又 ∵ ∠GDF =∠CDE ,GD =CD , ∴ Rt △GDF ≌Rt △CDE ,∴ DF =DE =BE ,在Rt △DCE 中, DC 2+CE 2=DE 2,∵ CB =25, CD =20,202 + CE 2=(25-CE )2,∴ CE =4.5,BE =25-4.5=20.5,HF =20.5-4.5=16,……………………………2分 在Rt △EHF 中,∵ EH 2 + HF 2=FE 2, 202 + 162=FE 2,∴ EF =cm . …………………………………………3分24.(本题满分14分)解:(1)图形举例:图形正确得2分.△ADE ∽△BFD ,∵ DE ⊥AB ,∠EDF=30°, ∴∠FDB=60°,∵ ∠A=∠B ,∠AED=∠FDB , …………………………………………1分 ∴ △ADE ∽△BFD . …………………………………………1分 (2)EF 可以平行于AB , …………1分此时,在直角△ADE 中,在直角△DEF 中,EF=3x , …………1分在直角△DBF 中, ∵ BD=x , ∴ 2x, …………………1分而DF=2EF , 2x =23x ,∴x =………………………………………………………………2分(3))y x x =,即21244y x x =-+,3x ≤≤ …………………………………………………………………………3分当x =y最大. ……………………………………………2分。

相关文档
最新文档