【解析版】2015年广东省茂名市中考数学一模试卷

合集下载

2015年15广东省中考数学试卷(解析版)

2015年15广东省中考数学试卷(解析版)

2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12D.12- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。

到原点的距离是2错误!未找到引用源。

,所以,22-=.故选A.2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯. 故选B.3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 6 【答案】B. 【考点】中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).因此,∵将这组数据重新排序为2,2,4,5,6,∴中位数是按从小到大排列后第3个数为:4.故选B.4(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35° 【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°. 故选C.5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 【答案】D.【考点】幂的乘方和积的乘方.【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积”的积的乘方法则得()()22224416-=-=x x x .故选D.7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 9 【答案】D.【考点】正方形的性质;扇形的计算.【分析】∵扇形DAB 的弧长»DB 等于正方形两边长的和6+=BC CD ,扇形DAB 的半径为正方形的边长3,∴16392=⋅⋅=扇形DAB S . 或由变形前后面积不变得:339==⨯=正方形扇形ABCD DAB S S . 故选D.10. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()13224=⋅⋅⋅=-V AEG S AE AG sinA x x . ∴()2333333323442=-=-⋅-=-+V V ABC AEG y S S x x x x . ∴其图象为开口向上的二次函数. 故选D.二、填空题(本大题6小题,每小题4分,共24分)11. (2015年广东4分)正五边形的外角和等于 ▲ (度). 【答案】360.【考点】多边形外角性质.【分析】根据“n 边形的外角和都等于360度”的性质,正五边形的外角和等于360度.12. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 ▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质. 【分析】∵四边形ABCD 是菱形,∴AB =B C =6.∵∠ABC =60°,∴△ABC 为等边三角形,∴AC =AB =B C =6.13. (2015年广东4分)分式方程321=+x x的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x ,解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .14. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 ▲ . 【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.15. (2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 ▲ . 【答案】1221. 【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥. ∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4. 三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想). 18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=11(1)(1)1-⋅=+-+x x x x x x .当21=+x 时,原式=1112122112===+-+x . 【考点】分式的化简;二次根式化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A 为圆心画弧交BC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两交于点G ; ③连接AG ,即为BC 边的垂线MN ,交BC 于点D .(2)在Rt △ABD 中,根据正切函数定义求出BD 的长,从而由BC 的长,根据等量减等量差相等求出DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. (2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21.(2015年广东7分)如题图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【答案】解:(1)∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB .由折叠的性质可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF . ∴∠AFG =∠B .又∵AG =AG ,∴△ABG ≌△AFG (HL ). (2)∵△ABG ≌△AFG ,∴BG =FG .设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3+x ,在∆Rt CEG 中,由勾股定理,得2223(6)(3)+-=+x x ,解得2=x , ∴BG =2.【考点】折叠问题;正方形的性质;折叠对称的性质;全等三角形的判定和性质;勾股定理;方程思想的应用.【分析】(1)根据正方形和折叠对称的性质,应用HL 即可证明△ABG ≌△AFG (HL ).(2)根据全等三角形的性质,得到BG =FG ,设BG =FG =x ,将GC 和EG 用x 的代数式表示,从而在∆Rt CEG 中应用勾股定理列方程求解即可.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A型号的计算a台,得3040(70)2500+-≥a a,解得30≥a.答:最少需要购进A型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A,B型号的计算器的销售价格分别是x元,y元,等量关系为:“销售5 台A型号和1台B型号计算器的利润76元”和“销售6台A型号和3台B型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A型号的计算a台,不等量关系为:“购进A,B两种型号计算器共70台的资金不多于2500元”.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(2015年广东9分)如图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.【答案】解:(1)∵A(1,3),∴OB=1,AB=3.又∵AB=3BD,∴BD=1. ∴D(1,1).∵反比例函数=kyx (0≠k,0>x)的图象经过点D,∴111=⨯=k.(2)由(1)知反比例函数的解析式为1=yx,解方程组31=⎧⎪⎨=⎪⎩y xyx,得333⎧=⎪⎨⎪=⎩xy或333⎧=-⎪⎨⎪=-⎩xy(舍去),∴点C 的坐标为(33,3). (3)如答图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为=+y kx b ,则3331⎧+=⎪⎨⎪-+=⎩k b k b ,解得233232⎧=-⎪⎨=-⎪⎩k b , ∴直线CE 的解析式为(233)232=-+-y x .当x =0时,y =232-,∴点M 的坐标为(0,232-).【考点】反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;待定系数法的应用;轴对称的应用(最短距离问题);方程思想的应用.【分析】(1)求出点D 的坐标,即可根据点在曲线上点的坐标满足方程的关系,求出k 的值.(2)由于点C 是反比例函数1=y x的图象和直线3=y x 的交点,二者联立即可求得点C 的坐标. (3)根据轴对称的应用,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.24. (2015年广东9分)⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1)如题图1;若D 是线段OP 的中点,求∠BAC 的度数;(2)如题图2,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3)如题图3,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB.【答案】解:(1)∵AB 为⊙O 直径,点P 是»BC的中点,∴PG ⊥BC ,即∠ODB =90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°.∴sin15°=FC NC.又∵NC=x,sin15°=624-,∴624-=FC x.∴NE=DF=62224-+x.∴点N到AD的距离为62224-+x cm.(3)∵NC=x,sin75°=FNNC,且sin75°=624+∴624+=FN x,∵PD=CP=2,∴PF=6224-+x.∴16262116262(26)(22)(26)2(2)()2442244 +--+=+-+--⨯-+y x x x x x x〃即22673222384---=++y x x . ∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---. 【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.。

2015广东省中考数学模拟卷(1)含答案

2015广东省中考数学模拟卷(1)含答案

(图1)数学试题说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.答案写在答题卡上.一、选择题(本大题共 10 小题,每小题3分,共30 分.在每小题给出的4个选项中,有且只有一项是符合题目要求的.)1. 4-的绝对值是A. 4B. 4- C.14D.14-2. 下列四个几何体中,俯视图为四边形的是A. B. C. D.3. “送人玫瑰,手留余香”,广东有一批无私奉献的志愿者,目前注册志愿者已达274万人,274万用科学记数法表示为A. 42.7410⨯ B. 52.7410⨯ C. 62.7410⨯ D. 72.7410⨯4. 下列图形中既是中心对称图形,又是轴对称图形的是A . B. C. D.5.若3-=ba,则ab-的值是A.3- B.3 C.0 D.66.如图1,AB∥CD,∠CDE=140︒,则∠A的度数为A.40︒ B.60︒C.50︒ D.140︒7.肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是A.150,150B.150,155C.155,150 D.150,152.58.下列式子中正确的是A.21()93-=- B.()326-=-C2=- D.()031-=9.如图2,AB是⊙O的直径,∠AOC =130°,则∠D的度数是(图3)D(图4)ECBA OA .65°B .25°C .15°D .35° 10.二次函教225y x x =+-有A .最大值5-B .最小值5-C .最大值6-D .最小值6-二、填空题(本大题共6 小题,每小题 4 分,共24分.) 11.计算:=⨯2731▲ . 12.一个正五边形绕它的中心至少要旋转 ▲ 度,才能和原来五边形重合.13.已知错误!未找到引用源。

是一元二次方程错误!未找到引用源。

2015年中考数学学生版茂名

2015年中考数学学生版茂名

2015年广东省茂名市中考数学模拟试卷(二)一、选择题(每小题3分,共30分)2. C4.(3分)(2015•茂名模拟)如图,是由相同小正方体组成的立体图形,它的主视图为( )B5.(3分)(2015•茂名模拟)函数y=中,自变量x 的取值范围为( ) >≠且 6.(3分)(2015•茂名模拟)如图,已知OA ,OB 均为⊙O上一点,若∠AOB=80°,则∠ACB=( )(点E 与点A 、D 不重合),BE 的中垂线交AB 于M ,交DC 于N ,设AE=x ,则图中阴影部分的面积S 与x 的大致图象是( ). B . . .这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是( )BBC 为高的圆锥的侧面积为S 1,以BC 为底面圆半径、AC 为高的圆锥的侧面积为S 2,则( )⊙A 的圆心A 的坐标为(﹣,1),半径为1,那么⊙O 与⊙A 的位置关系是()11.(4分)(2015•茂名模拟)为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼 条.12.(4分)(2010•綦江县)不等式组的整数解为 .13.(4分)(2015•茂名模拟)如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 .14.(4分)(2005•扬州)2005年某省荔枝总产量为50000吨,销售收入为61000万元.已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨.如果设“妃子笑”荔枝产量为x吨,其它品种荔枝产量为y吨,那么可列出方程组为.15.(4分)(2015•茂名模拟)如图,正比例函数y=kx与反比例函数的图象相交于点A、B,过B作x轴的垂线交x轴于点C,连接AC,则△ABC的面积是.三、解答题(本大题共7个小题,共50分)16.(18分)(2015•茂名模拟)(1)计算:()﹣1﹣(2006﹣)0﹣sin60°(2)化简求值:(+)÷,其中x=﹣1(3)解方程:=.17.(7分)(2015•茂名模拟)西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?18.(8分)(2015•茂名模拟)某校九年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是成绩统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)估计两班比赛数据的方差哪一个小?(4)根椐以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.19.(8分)(2015•茂名模拟)如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O 相交于点D,连接AD并延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.20.(9分)(2002•荆州)如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

2015年广东省实中考一模数学及答案

2015年广东省实中考一模数学及答案
19、 (本题满分 10 分) 如图,是一个正方体的展开图,如果相对的两个面的代数式的值相等,求 x、y 的值.
20、 (本题满分 10 分) 某校七年级各班分别选出 3 名同学组成班级代表队,参加知识竞赛,得分最多的班级为最优班级,各代表 队比赛结果如下: 班级 得分 七(1) 85 七(2) 90 七(3) 90 七(4) 100 七(5) 80 七(6) 100 七(7) 90 七(8) 80 七(9) 85 七(10) 90
1 A 作 AB⊥x 轴于点 B,且△AOB 的面积为 . 2 k (k>0)的图象经过点 A(2,m) ,过点 x
(1)求 k 和 m 的值; (2)求当 x≥1 时函数 y 的取值范围.
23、 (本题满分 12 分) 把一副三角板如图甲放置,其中∠ACB=∠DEC=90° ,∠A=45° ,∠D=30° ,斜边 AB=6cm,DC=7cm, 把三角板 DCE 绕点 C 顺时针旋转 15° 得到△D1CE1(如图乙) ,这时 AB 与 CD1 相交于点 O,与 D1E1 相交 于点 F. (1)求∠OFE1 的度数; (2)求线段 AD1 的长; (3)若把三角形 D1CE1 绕着点 C 顺时针再旋转 30°得△D2CE2,这时点 B 在△D2CE2 的内部,外部,还 是边上?证明你的判断.
24、 (本题满分 14 分) 已知 A P 是半圆 O 的直径,点 C 是半圆 O 上的一个动点(不与点 A、P 重合) ,连接 AC,以直线 AC 为对称轴翻折 AO,将点 O 的对称点记为 O1,射线 AO1 交半圆 O 于点 B,连接 OC. (1)如图 1,求证:AB∥OC; (2)如图 2,当点 B 与点 O1 重合时,求证:⌒ AB =⌒ BC ; (3)过点 C 作射线 AO1 的垂线,垂足为 E,联结 OE 交 AC 于 F.当 AO=5,O1B=1 时,求 C14 分) 已知,在平面直角坐标系中,抛物线 y=ax2−x+3(a≠0)交 x 轴于点 A、B 两点,交 y 轴于点 C,且对 称轴为直线抛物线 x=−2. (1)求该抛物线的解析式及顶点 D 的坐标; (2)若点 P(0,t)是 y 轴上的一个动点,请进行如下探究: ①如图 1,设△ PAD 的面积为 S,令 W=t•S,当 0<t<4 时,W 是否有最大值?如果有,求出 W 的最 大值和此时 t 的值;如果没有,说明理由; ②如图 2,是否存在以 P、A、D 为顶点的三角形与 Rt△ AOC 相似?如果存在,求点 P 的坐标;如果 不存在,请说明理由.

2015年广东中考数学试卷及参考答案

2015年广东中考数学试卷及参考答案

2015年广东中考数学试卷及参考答案一、选择题(本大题10小题,每小题3分,共30分) 1.2-=( )A.2B.2-C.12D.12-2.据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.6 4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( ) A.75° B.55° C.40° D.35°5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( ) A.矩形 B.平行四边形 C.正五边形 D.正三角形 6.2(4)x -=( )A.28x -B.28xC.216x -D.216x7.在0,2,0(3)-,5-这四个数中,最大的数是( ) A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( ) A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分) 11. 正五边形的外角和等于 (度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 .16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 . 三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中1x .19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分) 20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长交BC 于点G ,连接AG .(1) 求证:△ABG ≌△AFG ; (2) 求BG 的长.22. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O是△ABC的外接圆,AB是直径,过BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1) 如题24﹣1图;若D是线段OP的中点,求∠BAC的度数;(2) 如题24﹣2图,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3) 如题24﹣3图;取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°sin15°2015年广东省初中毕业生学业考试参考答案一、选择题1.【答案】A.2.【答案】B.3.【答案】B.4.【答案】C.5.【答案】A.6.【答案】D.7. 【答案】B.8.【答案】C.9.【答案】D. 【略析】显然弧长为6,半径为3,则16392S=⨯⨯=扇形.10.【答案】D.二、填空题11. 【答案】360. 12.【答案】6. 13.【答案】2x=. 14.【答案】4:9.15.【答案】10 21.16.【答案】4.【略析】由中线性质,可得AG=2GD,则11212111222232326BGF CGE ABG ABD ABCS S S S S===⨯=⨯⨯=⨯=△△△△△,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.三、解答题(一)17.【答案】解:(1)(2)0x x--=∴10x-=或20x-=∴11x=,22x=18. 【答案】解:原式=1 (1)(1)x xx x x-⋅+-=11x+当1x=时,原式=19. 【答案】(1) 如图所示,MN为所作;(2) 在Rt△ABD中,tan∠BAD=34 ADBD=,∴3 44 BD=,∴BD=3,∴DC=AD﹣BD=5﹣3=2.四、解答题(二)20. 【答案】(1) 如图,补全树状图;(2) 从树状图可知,共有9种可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P (积为奇数)=4921. 【答案】(1) ∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB , 由折叠的性质可知AD =AF ,∠AFE =∠D =90°, ∴∠AFG =90°,AB =AF , ∴∠AFG =∠B , 又AG =AG ,∴△ABG ≌△AFG ; (2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6x -, ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =3x +,∴2223(6)(3)x x +-=+,解得2x =, ∴BG =2.22. 【答案】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,解得x=42,y=56, 答:A ,B 两种型号计算器的销售价格分别为42元,56元; (2) 设最少需要购进A 型号的计算a 台,得3040(70)2500a a +-≥解得30x ≥ 答:最少需要购进A 型号的计算器30台.五、解答题(三)23. 【答案】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD , ∴BD =1,∴B (1,1), ∴111k =⨯=;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y xy x =⎧⎪⎨=⎪⎩,得x y ⎧⎪⎨⎪⎩或x y ⎧=⎪⎨⎪=⎩, ∴点C 的坐标为3,;(3) 如图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则1b k b +=⎪-+=⎩3k =,2b =, ∴直线CE的解析式为3)2y x =+,当x =0时,y=2, ∴点M 的坐标为(0,2).24. 【答案】(1) ∵AB 为⊙O 直径,BP PC =,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =, ∴∠BOD =60°, ∵AB 为⊙O 直径, ∴∠ACB =90°, ∴∠ACB =∠ODB , ∴AC ∥PG ,∴∠BAC =∠BOD =60°; (2) 由(1)知,CD =BD ,∵∠BDP =∠CDK ,DK =DP , ∴△PDB ≌△CDK ,∴CK =BP ,∠OPB =∠CKD , ∵∠AOG =∠BOP , ∴AG =BP , ∴AG =CK ∵OP =OB ,∴∠OPB =∠OBP , 又∠G =∠OBP , ∴AG ∥CK ,∴四边形AGCK 是平行四边形; (3) ∵CE =PE ,CD =BD ,∴DE ∥PB ,即DH ∥PB ∵∠G =∠OPB , ∴PB ∥AG , ∴DH ∥AG ,∴∠OAG =∠OHD , ∵OA =OG , ∴∠OAG =∠G ,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥A B.25.【答案】(1)(2) 如图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°,∴sin15°=FCNC,又NC=x,∴FC=,∴NE=DF+.∴点N到AD+cm;(3) ∵sin75°=FNNC,∴FN=,∵PD=CP,∴PF∴111)222y x x=++-+·)即2y+当x=时,y即16162938623-++。

茂名市2015-2016年初中毕业生学业考试与高中阶段学校招生模拟考试卷一(含详细答案)

茂名市2015-2016年初中毕业生学业考试与高中阶段学校招生模拟考试卷一(含详细答案)

ABOM茂名市2015-2016年初中毕业生学业考试与高中阶段学校招生模拟考试数学试卷(一)第一卷 选择题(共30分)1.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=2. 下面的图形中,是中心对称图形的是( )3.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解, 那么a 的值是( )A .1B .3C .-3D .-1 4.函数y x 的取值范围是( ) A .12x -≥ B.12x ≥ C .12x -≤ D .12x ≤5.在直角坐标系中,点M (sin50°,-cos70°)所在的象限是( ) A .第一象限 B . 第二象限C . 第三象限D . 第四象限6.已知样本数据 1、2、3、4、5 ,下列说法不正确的是 ( ) A 、平均数是3 B 、中位数是4 C 、极差是4 D 、方差是2 7.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径 分别为6,3,则图中阴影部分的面积是( ) A .πB .πC .3πD .2π8.在△ABC 中,∠C=90°,D 是边AB 上一点(不与点A 、B 重合),过点D 作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有( ) (A)1条 (B)2条 (c)3条 (D)4条9.有一列数A 1,A 2,A 3,A 4,A 5,…,A n ,其中A 1=4×4+1,A 2=4×5+2,A 3=4×6+3,A 4=4×7+4,A 5=4×8+5,…,当A n =2012时,n 的值等于( ) A .400 B .401 C .2011 D .201210.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在 最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为 ( ) A 、2米 B 、2π米 C 、43π米 D 、43米第二卷 非选择题(共90分)二、细心一填、一锤定音。

茂名市中考数学一模试卷

茂名市中考数学一模试卷

茂名市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共10题;共20分)1. (2分)(2016·杭州) 下列各式变形中,正确的是()A . x2•x3=x6B . =|x|C . (x2﹣)÷x=x﹣1D . x2﹣x+1=(x﹣)2+2. (2分)(2019·湖州模拟) 一个由相同小正方体堆积而成的几何体如图所示,从正面看,该几何体的形状图是().A .B .C .D .3. (2分) (2018九上·武昌期中) 如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A . 100°B . 110°C . 120°D . 130°4. (2分) (2018九上·宜兴月考) 关于x的一元二次方程(a -5)x2-4x-1=0有实数根,则a满足()A . a≥1且a≠5B . a>1且a≠5C . a≥1D . a≠55. (2分) (2015七上·广饶期末) 若点P(m,1﹣2m)的横坐标与纵坐标互为相反数,则点P一定在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A . 20°B . 40°C . 50°D . 70°7. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是()A . 图象的对称轴是直线x=1B . 当x>1时,y随x的增大而减小C . 一元二次方程ax2+bx+c=0的两个根是-1,3D . 当-1<x<3时,y<08. (2分)(2012·阜新) 如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF= AD,那么平行四边形ABCD应满足的条件是()A . ∠ABC=60°B . AB:BC=1:4C . AB:BC=5:2D . AB:BC=5:89. (2分) (2018九上·宁都期中) 在直角坐标系 xOy 中,抛物线y=ax2+bx+c 上部分点的横、纵坐标间的对应值如表:则下列结论正确的是()A . 抛物线的开口向下B . 抛物线的顶点坐标为(2.5,﹣8.75)C . 当 x>4 时,y 随 x 的增大而减小D . 抛物线必经过定点(0,﹣5)10. (2分) (2019八下·温岭期末) 下列给出的条件中不能判定一个四边形是矩形的是()A . 一组对边平行且相等,一个角是直角B . 对角线互相平分且相等C . 有三个角是直角D . 一组对边平行,另一组对边相等,且对角线相等二、填空题 (共8题;共8分)11. (1分) (2015九下·嘉峪关期中) 据株洲市统计局公布的数据,今年一季度全市实现国民生产总值约为3920000万元,那么3920000万元用科学记数法表示为________万元.12. (1分)(2014·内江) a﹣4ab2分解因式结果是________.13. (1分)在平面直角坐标系中,把抛物线y=﹣x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是________14. (1分)(2020·宿迁) 用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.15. (1分) (2019九上·丰县期末) 如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=________.16. (1分)(2019·铁岭模拟) 如图,在平面直角坐标系中,直线与轴交于点 ,与轴交于点 ,与反比例函数在第一象限内的图像交于点 ,连接 .若 , ,则的值是________.17. (1分)(2017·鹤岗模拟) 已知关于x的分式方程 =1无解,则a=________.18. (1分)(2017·广丰模拟) 已知对任意锐角α、β均有:cos(α+β)=cosα•cosβ﹣sinα•sinβ,则cos75°=________.三、三.解答题 (共7题;共72分)19. (10分)计算(1)﹣﹣ +2 ﹣3(2)• ﹣(π﹣2016)0﹣3 ﹣|1﹣ |20. (10分) (2015九上·宁海月考) 将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21. (10分)如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.22. (5分)(2020·扬州) 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品进价(元/件)数量(件)总金额(元)甲7200乙3200商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%.王师傅:甲商品比乙商品的数量多40件.请你求出乙商品的进价,并帮助他们补全进货单.23. (10分)(2019·安阳模拟) 如图,AB∥CD,连结AD,点E是AD的中点,连结BE并延长交CD于F点.(1)请说明△ABE≌△DFE的理由;(2)连结CE,AC,若CB⊥CD,AC=CD,∠D=30°,CD=2,求BF的长.24. (12分) (2020九下·郑州月考)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:AF与BE的数量关系是________;②∠ABE=________;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.25. (15分) (2017八下·大石桥期末) 已知A,B两地公路长300km, 甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C, 取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地。

2015年中考真题及答案-数学-茂名-1

2015年中考真题及答案-数学-茂名-1

A BCD的内接四边形,
C
.在等腰三角形、平行四边形、直角梯形和圆中,既是轴对称图形又是中心对称图
.等腰三角形
.下列说法正确的是(
20
10.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()
A.120100
5
x x
=B.
120100
5
x x
=C.
120100
5
x x
=D.
120100
5
x x=
.计算:
的中位线,求证:
采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中最感兴趣的一项),对调查结果进行统计后,绘制了如下两个统计图:
个球均匀混合在一起,使从袋中随机摸出一个球是红球,请求出后来放入袋中的红球的个数.
)求新铺设的输电线路
)问整改后从
)是反比例函数
.某公司生产的某种产品每件成本为
天内日销售量(
188
分,共
M
(2)连接AN,CM,若AN⊥CM,求t的值.
25.如图,在平面直角坐标系中,⊙A与x轴相交于C(-2,0),
D(-8,0)两点,与y轴相切于点B(0,4).
(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,证明:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年广东省茂名市中考数学一模试卷一、单项选择题:1.下列计算正确的是()A.()﹣2=9 B.=﹣2 C.(﹣2)0=﹣1 D. |﹣5﹣3|=22.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A. 1个 B. 2个 C. 3个 D. 4个3.x若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. ac>bc B. ab>cb C. a+c>b+c D. a+b>c+b4.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A. 5×10﹣10米 B. 5×10﹣9米 C. 5×10﹣8米 D. 5×10﹣7米5.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B. 1 C. 3 D.﹣36.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A. 68° B. 32° C. 22° D. 16°7.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A. k>﹣1 B. k<1且k≠0 C. k≥﹣1且k≠0 D. k>﹣1且k≠09.下列图形中,是轴对称图形的是()A. B. C. D.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n 的关系是()A.M=mn B. M=n(m+1) C. M=mn+1 D. M=m(n+1)二、填空题:11.将多项式m2﹣4n2﹣4n﹣1分解因式得.12.已知函数,那么= .13.已知关于x的方程的解是负数,则n的取值范围为.14.如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是.15.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= .三、细心做一做16.先化简,再求值:(x﹣1)2+x(x+2),其中x=.17.利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形;(2)完成上述设计后,整个图案的面积等于.18.解二元一次方程组:.四、沉着冷静,慎密思考19.如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.20.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?五、满怀信心,再接再厉21.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?23.如图,已知函数y=x与反比例函数y=(x>0)的图象交于点A.将y=x的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C.(1)求点C的坐标;(2)若=2,求反比例函数的解析式.六、灵动智慧、超越自我24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,交BA的延长线于点M.(1)求⊙O的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.25.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2015年广东省茂名市中考数学一模试卷参考答案与试题解析一、单项选择题:1.下列计算正确的是()A.()﹣2=9 B.=﹣2 C.(﹣2)0=﹣1 D. |﹣5﹣3|=2考点:算术平方根;绝对值;有理数的乘方;零指数幂.分析:根据负整数指数幂、二次根式的化简、零指数幂、绝对值的性质逐一判断即可.解答:解:A.=9,故本项正确;B.,故本项错误;C.(﹣2)0=1,故本项错误;D.|﹣5﹣3|=|﹣8|=8,股本项错误,故选:A.点评:本题考查了负整数指数幂、求算术平方根、零指数幂、绝对值的性质,熟练掌握运算法则及性质是解题的关键.2.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A. 1个 B. 2个 C. 3个 D. 4个考点:无理数.专题:常规题型.分析:无限不循环小数为无理数,由此可得出无理数的个数.解答:解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)(2013•台州)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. ac>bc B. ab>cb C. a+c>b+c D. a+b>c+b考点:实数与数轴.分析:根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.解答:解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.点评:本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.4.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A. 5×10﹣10米 B. 5×10﹣9米 C. 5×10﹣8米 D. 5×10﹣7米考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:50纳米=50×10﹣9米=5×10﹣8米.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B. 1 C. 3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.6.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A. 68° B. 32° C. 22° D. 16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.7.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近考点:概率的意义.分析:概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.解答:解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.点评:正确理解概率的含义是解决本题的关键.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A. k>﹣1 B. k<1且k≠0 C. k≥﹣1且k≠0 D. k>﹣1且k≠0考点:根的判别式;一元二次方程的定义.专题:计算题.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.解答:解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选D点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9.下列图形中,是轴对称图形的是( )A .B .C .D .考点: 轴对称图形.分析: 根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案. 解答: 解:A 、不是轴对称图形,故A 错误; B 、是轴对称图形,故B 正确; C 、不是轴对称图形,故C 错误; D 、不是轴对称图形,故D 错误. 故选:B .点评: 本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是( )A . M=mnB . M=n (m+1)C . M=mn+1D . M=m (n+1)考点: 规律型:数字的变化类. 专题: 规律型.分析: 根据数的特点,上边的数与比左边的数大1的数的积正好等于右边的数,然后写出M 与m 、n 的关系即可.解答: 解:∵1×(2+1)=3, 3×(4+1)=15, 5×(6+1)=35, …,∴M=m (n+1). 故选D .点评: 本题是对数字变化规律的考查,观察出上边的数与比左边的数大1的数的积正好等于右边的数是解题的关键.二、填空题:11.将多项式m 2﹣4n 2﹣4n ﹣1分解因式得 (m+2n+1)(m ﹣2n ﹣1) .考点:因式分解-分组分解法.分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有n的二次项,n的一次项,有常数项.所以要考虑﹣4n2﹣4n﹣1为一组.解答:解:m2﹣4n2﹣4n﹣1,=m2﹣(4n2+4n+1),=m2﹣(2n+1)2,=(m+2n+1)(m﹣2n﹣1).故答案为:(m+2n+1)(m﹣2n﹣1).点评:本题考查了分组分解法进行因式分解,难点是采用两两分组还是三一分组.比如本题有n的二次项,n的一次项,有常数项,所以首要考虑的就是三一分组.12.已知函数,那么= 1 .考点:函数值.分析:把自变量的值代入函数关系式进行计算即可得解.解答:解:f()==1.故答案为:1.点评:本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.13.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.考点:分式方程的解.分析:求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.解答:解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.点评:本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.14.如图,在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AE∥CD交BC于点E,若AD=2,BC=5,则边CD的长是 3 .考点:梯形;等腰三角形的判定与性质;平行四边形的判定与性质.专题:压轴题.分析:先判定四边形AECD是平行四边形,根据平行四边形对边相等可得AD=EC,再求出BE 的长度,然后根据两直线平行,同位角相等求出∠AEB=∠C,再根据三角形的内角和定理求出∠BAE=50°,从而得到∠B=∠BAE,再根据等角对等边得到AE=BE,从而得解.解答:解:∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形,∴AD=EC=2,CD=AE,∵AD=2,BC=5,∴BE=BC﹣EC=5﹣2=3,∵AE∥CD,∠C=80°,∴∠AEB=∠C=80°,在△ABE中,∠BAE=180°﹣∠B﹣∠AEB=180°﹣50°﹣80°=50°,∴∠B=∠BAE,∴AE=BE=3,∴CD=3.故答案为:3.点评:本题考查了梯形的性质,等腰三角形的性质,平行四边形的判定与性质,以及三角形的内角和定理,根据度数确定出相等的角,从而得到相等的边是解答本题的关键.15.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m= 2 .考点:二次函数图象与几何变换.专题:压轴题.分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.解答:解:∵一段抛物线:y=﹣x(x﹣3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为:y13=﹣(x﹣36)(x﹣39),当x=37时,y=﹣(37﹣36)×(37﹣39)=2.故答案为:2.点评:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.三、细心做一做16.先化简,再求值:(x﹣1)2+x(x+2),其中x=.考点:整式的混合运算—化简求值.分析:原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=时,原式=4+1=5.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,多项式除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.17.利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形;(2)完成上述设计后,整个图案的面积等于20 .考点:利用旋转设计图案;利用轴对称设计图案.专题:探究型.分析:(1)根据图形对称的性质先作出关于直线l的对称图形,再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形即可;(2)先利用割补法求出原图形的面积,由图形旋转及对称的性质可知经过旋转与轴对称所得图形与原图形全等即可得出结论.解答:解:(1)如图所示:先作出关于直线l的对称图形;再作出所作的图形连同原四边形绕0点按顺时针方向旋转90°后的图形.(2)∵边长为1的方格纸中一个方格的面积是1,∴原图形的面积为5,∴整个图案的面积=4×5=20.故答案为:20.点评:本题考查的是利用旋转及轴对称设计图案,熟知经过旋转与轴对称所得图形与原图形全等是解答此题的关键.18.解二元一次方程组:.考点:解二元一次方程组.分析:先把②变形为y=2x﹣1代入①求出x的值,再把x的值代入③即可求出y的值.解答:解:,由②得:y=2x﹣1③把③代入①得:3x+4x﹣2=19,解得:x=3,把x=3代入③得:y=2×3﹣1,即y=5故此方程组的解为.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.四、沉着冷静,慎密思考19.如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.考点:列表法与树状图法.分析:(1)画出树状图即可;(2)根据树状图可以直观的得到共有12种情况,都是红色情况有2种,进而得到概率.解答:解:(1)如图所示:(2)根据树状图可得共有12种情况,都是红色情况有2种,概率为P==.点评:本题考查概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t的家庭数,即可得出1000户家庭超过20t的家庭数.解答:解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故表格从上往下依次是:12户和0.08;(2)×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.点评:此题主要考查了利用样本估计总体以及频数分布直方图与条形图综合应用,根据已知得出样本数据总数是解题关键.五、满怀信心,再接再厉21.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.考点:一次函数的应用.专题:压轴题.分析:(1)根据总费用=男生的人数×男生每套的价格+女生的人数×女生每套的价格就可以分别表示出y1(元)和y2(元)与男生人数x之间的函数关系式;(2)根据条件可以知道购买服装的费用受x的变化而变化,分情况讨论,当y1>y2时,当y1=y2时,当y1<y2时,求出x的范围就可以求出结论.解答:解:(1)总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式分别是:y1=0.7[120x+100(2x﹣100)]+2200=224x﹣4800,y2=0.8[100(3x﹣100)]=240x﹣8000;(2)由题意,得当y1>y2时,即224x﹣4800>240x﹣8000,解得:x<200当y1=y2时,即224x﹣4800=240x﹣8000,解得:x=200当y1<y2时,即224x﹣4800<240x﹣8000,解得:x>200答:当参演男生少于200人时,购买B公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买;当参演男生多于200人时,购买A公司的服装比较合算.点评:本题考查了根据条件求一次函数的解析式的运用,运用不等式求设计方案的运用,解答本题时根据数量关系求出解析式是关键,建立不等式计算优惠方案是难点.22.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是7 元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?考点:待定系数法求一次函数解析式.分析:(1)根据函数图象可以得出出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,运用待定系数法就可以求出结论;(3)将x=18代入(2)的解析式就可以求出y的值.解答:解:(1)该地出租车的起步价是7元;(2)设当x>2时,y与x的函数关系式为y=kx+b,代入(2,7)、(4,10)得解得∴y与x的函数关系式为y=x+4;(3)把x=18代入函数关系式为y=x+4得y=×18+4=31.答:这位乘客需付出租车车费31元.点评:此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.23.如图,已知函数y=x与反比例函数y=(x>0)的图象交于点A.将y=x的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C.(1)求点C的坐标;(2)若=2,求反比例函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据一次函数图象的平移问题由y=x的图象向下平移6个单位得到直线BC 的解析式为y=x﹣6,然后把y=0代入即可确定C点坐标;(2)作AE⊥x轴于E点,BF⊥x轴于F点,易证得Rt△OAE∽△RtCBF,则===2,若设A点坐标为(a,a),则CF=a,BF=a,得到B点坐标为(+a,a),然后根据反比例函数上点的坐标特征得a•a=(+a)•a,解得a=3,于是可确定点A的坐标为(3,4),再利用待定系数法确定反比例函数的解析式.解答:解:(1)∵y=x的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C,∴直线BC的解析式为y=x﹣6,把y=0代入得x﹣6=0,解得x=,∴C点坐标为(,0);(2)作AE⊥x轴于E点,BF⊥x轴于F点,如图,∵OA∥BC,∴∠AOC=∠BCF,∴Rt△OAE∽Rt△CBF,∴===2,设A点坐标为(a,a),则OE=a,AE=a,∴CF=a,BF=a,∴OF=OC+CF=+a , ∴B 点坐标为(+a ,a ), ∵点A 与点B 都在y=的图象上,∴a •a=(+a )•a ,解得a=3,∴点A 的坐标为(3,4),把A (3,4)代入y=得k=3×4=12, ∴反比例函数的解析式为y=.点评: 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了相似三角形的判定与性质以及一次函数图象的平移问题.六、灵动智慧、超越自我24.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,DE=3,连接BD ,过点E 作EM ∥BD ,交BA 的延长线于点M . (1)求⊙O 的半径;(2)求证:EM 是⊙O 的切线;(3)若弦DF 与直径AB 相交于点P ,当∠APD=45°时,求图中阴影部分的面积.考点: 切线的判定与性质;圆周角定理;扇形面积的计算;解直角三角形. 专题: 几何综合题;压轴题. 分析: (1)首先连接OE ,由弦DE 垂直平分半径OA ,根据垂径定理可求得OC 与OE 的关系,求得CE 的长,然后根据直角三角形的性质,求得∠OEC=30°,根据三角函数的性质,则可求得⊙O 的半径;(2)由垂径定理,可得,根据在等圆或同圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,即可求得∠B的度数,即可求得∠EDB的度数,又由EM∥BD,可求得∠MED 的度数,继而求得∠MEO=90°,即可证得EM是⊙O的切线;(3)由∠APD=45°,根据在等圆或同圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,即可求得∠EOF的度数,然后根据S阴影=S扇形EOF﹣S△EOF,即可求得答案.解答:(1)解:连接OE.∵DE垂直平分半径OA,∴OC=OA∵OA=OE,∴OC=OE,CE=DE=,∴∠OEC=30°,∴OE==;(2)证明:由(1)知:∠AOE=60°,,∴∠B=∠AOE=30°,∴∠BDE=60°∵BD∥ME,∴∠MED=∠BDE=60°,∴∠MEO=∠MED+∠OEC=60°+30°=90°,∴OE⊥EM,∴EM是⊙O的切线;(3)解:连接OF.∵∠DPA=45°,∵∠DCB=90°,∴∠CDP=45°,∴∠EOF=2∠EDF=90°,∴S阴影=S扇形EOF﹣S△EOF==π﹣.点评:此题考查了垂径定理,圆周角的性质,切线的判定,直角三角形的性质,以及平行线的性质等知识,此题综合性很强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.25.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,。

相关文档
最新文档