2020年广东省茂名市中考数学试卷

合集下载

2020年广东省茂名市初中毕业生学业考试与高中阶段学校招生考试初中数学

2020年广东省茂名市初中毕业生学业考试与高中阶段学校招生考试初中数学

2020年广东省茂名市初中毕业生学业考试与高中阶段学校招生考试初中数学数学试卷第一卷〔选择题,总分值40分,共2页〕一、精心选一选(本大题共10小题,每题4分,共40分.每题给出四个答案,其中只有一个是正确的). 1.-21的相反数是〔 〕 A .-2 B .2 C .21 D .21- 2.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕3.以下运算正确的选项是〔 〕A .-22=4B .22-=-4 C. a ·a 2 = a 2 D .a +2a =3a4.用平面去截以下几何体,截面的形状不可能...是圆的几何体是〔 〕 A .球 B .圆锥 C .圆柱 D .正方体5.任意给定一个非零数,按以下程序运算,最后输出的结果是〔 〕A .mB .2mC .m +1D .m -16.在数轴上表示不等式组10240x x +>⎧⎨-⎩≤的解集,正确的选项是〔 〕A BC D7.正方形内有一点A ,到各边的距离从小到大依次是1、2、3、4,那么正方形的周长是〔 〕A .10B .20C .24D .258.一组数据3、4、5、a 、7的平均数是5,那么它的方差是〔 〕A .10B .6C .5D .2 9.反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,那么一次函数y =-a x +a 的图象不通过...〔 〕 A .第一象限 B .第二象限 C .第三象限 D .第四象限10.如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,那么图中阴影部分的面积是△ABC 的面积的 〔 〕A .91B .92C .31D .94 第二卷(非选择题,共8页,总分值110分)二、耐心填一填(本大题共5小题,每题4分,共20分.请你把答案填在横线的上方).11.据最新统计,茂名市户籍人口约为7020000人,用科学记数法表示是 人.12.分解因式:3x 2-27= .13.如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠AOB = 50°, 那么∠OAC 的度数是 .14.依法纳税是每个公民应尽的义务,新的«中华人民共和国个人所得税法»规定,从2008年3月1日起公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按右表分段累进运算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是 元.15.有一个运算程序,能够使:a ⊕b = n (n 为常数)时,得〔a +1〕⊕b = n +1, a ⊕〔b +1〕= n -2现在1⊕1 = 2,那么2018⊕2018 = .三、细心做一做 (本大题共3小题,每题8分,共24分)16.〔此题总分值8分〕运算:〔12-a a - 1+a a 〕· a a 12- 17.〔此题总分值8分〕如图,方格纸中有一条漂亮可爱的小金鱼.〔1〕在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案;〔4分〕〔2〕在同一方格纸中,并在y 轴的右侧,将原小金鱼图案以原点O 为位似中心放大,使它们的位似比为1:2,画出放大后小金鱼的图案.〔4分〕18.〔此题总分值8分〕不透亮的口袋里装有3个球,这3个球分不标有数字1、2、3,这些球除了数字以外都相同.〔1〕假如从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?〔2分〕〔2〕小明和小东玩摸球游戏,游戏规那么如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规那么对双方是否公平?并讲明理由.〔6分〕四、沉着平复,周密考虑(本大题共2小题,每题8分,共16分)19.〔此题总分值8分〕2008年5月12日14时28分我国四川汶川发生了8.0级大地震,地震发生后,我市某中学全体师生积极捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.甲班平均每人捐款金额是乙班平均每人捐款金额的1.2倍,乙班比甲班多2人,那么这两个班各有多少人?20.〔此题总分值8分〕某文具店王经理统计了2018年1月至5月A、B、C这三种型号的钢笔平均每月的销售量,并绘制图1〔不完整〕,销售这三种型号钢笔平均每月获得的总利润为600元,每种型号钢笔获得的利润分布情形如图2.A、B、C这三种型号钢笔每支的利润分不是0.5元、0.6元、1.2元,请你结合图中的信息,解答以下咨询题:〔1〕求出C种型号钢笔平均每月的销售量,并将图1补充完整;〔4分〕〔2〕王经理打算6月份购进A、B、C这三种型号钢笔共900支,请你结合1月至5月平均每月的销售情形〔不考虑其它因素〕,设计一个方案,使获得的利润最大,并讲明理由.〔4分〕五、开动脑筋,再接再厉(本大题共3小题,每题10分,共30分)21.〔此题总分值10分〕如图,某学习小组为了测量河对岸塔AB的高度,在塔底部B的正对岸点C处,测得仰角∠ACB=30°.〔4分〕〔参考数据:2≈1.414,〔1〕假设河宽BC是60米,求塔AB的高〔结果精确到0.1米〕;3≈1.732〕〔2〕假设河宽BC的长度无法度量,如何测量塔AB的高度呢?小明想出了另外一种方法:从点C动身,沿河岸CD的方向〔点B、C、D在同一平面内,且CD⊥BC〕走a米,到达D处,测得∠BDC=60°,如此就能够求得塔AB的高度了.请你用这种方法求出塔AB的高.〔6分〕22.〔此题总分值10分〕如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE 交AB的延长线于点E,连结AD、BD.〔1〕求证:∠ADB=∠E;〔3分〕〔2〕当点D运动到什么位置时,DE是⊙O的切线?请讲明理由.〔3分〕〔3〕当AB=5,BC=6时,求⊙O的半径.〔4分〕23.〔此题总分值10分〕如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AD=2,BC=4,延长BC到E,使CE=AD.〔1〕写出图中所有与△DCE全等的三角形,并选择其中一对讲明全等的理由;〔5分〕〔2〕探究当等腰梯形ABCD的高DF是多少时,对角线AC与BD互相垂直?请回答并讲明理由.〔5分〕六、充满信心,成功在望(本大题共2小题,每题10分,共20分)24.〔此题总分值10分〕我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销. 通过调查,得到如下数据:〔1〕把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;〔4分〕〔2〕当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?〔利润=销售总价-成本总价〕〔4分〕〔3〕当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?〔2分〕25〔此题总分值10分〕如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 通过A 〔0,-4〕、B 〔x 1,0〕、 C 〔x 2,0〕三点,且x 2-x 1=5.〔1〕求b 、c 的值;〔4分〕 销售单价x 〔元∕件〕…… 30 40 50 60 …… 每天销售量y 〔件〕 …… 500 400 300 200 ……〔2〕在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;〔3分〕〔3〕在抛物线上是否存在一点P,使得四边形B P O H是以OB为对角线的菱形?假设存在,求出点P的坐标,并判定那个菱形是否为正方形?假设不存在,请讲明理由.〔3分〕。

茂名市2020年中考数学试卷(II)卷

茂名市2020年中考数学试卷(II)卷

茂名市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·昭通期末) -6的相反数是()A . -6B . 6C . -D .2. (2分)(2016·北仑模拟) 据初步统计,2015年北仑区实现地区生产总值(GDP)约为1134.6亿元.其中1134.6亿元用科学记数法表示为()A . 1134.6×108元B . 11.346×1010元C . 1.1346×1011元D . 1.1346×1012元3. (2分)(2017·萧山模拟) 多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A . 极差是47B . 众数是42C . 中位数是58D . 每月阅读数量超过40的有4个月4. (2分)(2019·孝感) 下列立体图形在,左视图是圆的是()A .B .C .D .5. (2分) (2016八上·阳信期中) 已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于()A . 15°或75°B . 140°C . 40°D . 140°或40°6. (2分) (2019七下·梁园期末) 平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x 轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A . (﹣1,4)B . (1,0)C . (1,2)D . (4,2)7. (2分)从1,2,3,6中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A .B .C .D .8. (2分)如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠BOC=100°,则∠BAC等于()A . 40°B . 50°C . 60°D . 80°9. (2分) (2019九上·长丰月考) 如图,正方形的边长为,动点P,Q同时从点A出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点C运动终止,连接,设运动时间为xs,的面积为,则下列图象中能大致表示y与x的函数关系的是()A .B .C .D .10. (2分) (2018九下·广东模拟) 如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A . 扇形AOB的面积为B . 弧BC的长为C . ∠DOE=45°D . 线段DE的长是二、填空题 (共6题;共6分)11. (1分)已知关于的方程与方程的解相同,则方程的解为________.12. (1分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.13. (1分) (2019九上·枣阳期末) 如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行20分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是________海里.14. (1分)(2017·吴中模拟) 某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为________.15. (1分)(2018·滨州) 若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y= (k 为常数)的图象上,则y1、y2、y3的大小关系为________.16. (1分)(2020·杭州) 如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC,若sin∠BAC=,则tan∠BOC=________。

广东省茂名市2020年中考数学试卷B卷

广东省茂名市2020年中考数学试卷B卷

广东省茂名市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·宁波模拟) 下列各数是无理数的是()A . 3.14B .C . -D .2. (2分)(2020·如皋模拟) 据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A . 0.3×105B . 3×105C . 0.3×106D . 3×1063. (2分)(2015·舟山) 下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2016七上·岱岳期末) 化简m﹣n﹣(m+n)的结果是()A . 0B . 2mC . ﹣2nD . 2m﹣2n5. (2分)如图是一个正六棱柱,它的俯视图是()A .B .C .D .6. (2分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A . y=x2+2x+1B . y=x2+2x﹣1C . y=x2﹣2x+1D . y=x2﹣2x﹣17. (2分)(2017·渝中模拟) 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为()A . 44°B . 34°C . 46°D . 56°8. (2分) (2017九上·武汉期中) 如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=24°,则∠ADC 的度数为()A . 45°B . 60°C . 66°D . 70°9. (2分)反比例函数(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2),当y2>y1时,x的取值范围是()A . x<1B . 1<x<2C . x>2D . x<1或x>210. (2分) (2019八上·厦门月考) 如图,△ABC中, AB =AC=24 cm, BC=16cm,AD= BD.如果点P在线段BC上以 2 cm/s 的速度由B点向C点运动,同时,点 Q在线段CA上以v cm/s 的速度由C点向A点运动,那么当△BPD 与△CQP全等时,v =()A . 3B . 4C . 2或 4D . 2或3二、填空题 (共6题;共7分)11. (1分)(2016·东营) 分解因式:a3﹣16a=________.12. (1分)(2017·广东模拟) 如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13. (1分) (2020八下·巴中月考) 关于x的分式方程的解是正数,则m的取值范围为________.14. (1分)(2020·贵州模拟) 某兴趣小组用高为1米的仪器测量建筑物CD的高度.如示意图,由距CD一定距离的A处用仪器观察建筑物顶部D的仰角为∠β=30 ,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为∠ɑ=60 .测得A,B之间的距离为4米,建筑物CD的高度为________ .15. (1分)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为________.16. (2分) (2019七上·凉州月考) 观察按如下规律摆放的三角形:则第四个图中的三角形有________个,第n个图中的三角形有________个.三、解答题 (共9题;共69分)17. (5分)(2020·铁西模拟) 计算:|﹣2 |+(﹣1)0﹣4sin60°﹣(﹣2)2.18. (5分)先化简,再求值:÷(+1),其中X是的整数部分.19. (5分) (2015七下·威远期中) 解不等式组,并写出整数解.20. (10分)(2016·石家庄模拟) 解答题(1)已知方程x2﹣2x+m﹣ =0有两个相等的实数根,求m的值(2)求代数式的值,其中m为(1)中所得值.21. (10分)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F.(1)求证:EF与⊙O相切;(2)若AB=6,AD=,求EF的长.22. (10分)为了了解某电影院上半年每天晚场的观众人数,抽查了其中的12天每天晚场的观众人数,结果如下(单位:人):641717753684850638724591675713841668(1)你认为上述调查方式合理吗?(2)若上述调查方式合理,请你运用这个样本估计该电影院上半年平均每天晚场的观众人数是多少.若不合理,请你提出一条建议.23. (12分)小丽一家利用元旦三天驾车到某景点旅游,小汽车出发前油箱有油36L,行驶若干小时后,中途在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)汽车行驶________h后加油,中途加油________L;(2)求加油前油箱余油量Q与行驶时间t之间的函数关系式;(3)如果加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.24. (10分)(2018·沙湾模拟) 如图,在正方形中,、分别是、边上的点,且.(1)求证: ;(2)若,,求的长.25. (2分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=________m2 .(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为________m.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共69分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。

茂名市2020版中考数学试卷A卷

茂名市2020版中考数学试卷A卷

茂名市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给 (共10题;共20分)1. (2分)在3.141592,,,,2.06200620006.这九个数中,无理数的个数为()A . 2个B . 3个C . 4个D . 5个2. (2分)(2020·通州模拟) 如图是2019北京世园会的部分场馆展示区的分布示意图.当表示国际馆A馆的点的坐标为(325,0),表示九州花境的点的坐标为(﹣65,460)时,则建立的平面直角坐标系,x轴最有可能的位置是()A . 表示中国馆和世艺花舞的两点所在的直线B . 表示中国馆和中华园艺展示区的两点所在的直线C . 表示中国馆和九州花境的两点所在的直线’D . 表示百松云屏和中华园艺展示区的两点所在的直线3. (2分) (2019九上·栾城期中) 在中,,则的值是()A .B .C .D .4. (2分)(2019·吉林模拟) 不等式组的解集是()A . ﹣1<x≤1B . ﹣1<x<1C . x>﹣1D . x≤15. (2分) (2019九下·温州竞赛) 我校七年级开展了“你好!阅读“的读书话动。

为了解全段699名学生的读书情况,随机调查了本年级50名学生平均每月读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()册数01234人数41216171A . 中位数是2B . 众数是17C . 平均数是2D . 方差是26. (2分) (2017九上·虎林期中) 如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有()①AE=CF;②∠APE=∠CPF;③△BEP≌△AFP;④△EPF是等腰直角三角形;⑤当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPF= S△ABC .A . 2B . 3C . 4D . 57. (2分)在我校读书月活动中,小玲在书城买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,恰好摆成“上、中、下”顺序的概率是()A .B .C .D .8. (2分)(2018·番禺模拟) 桌子上摆放了若干碟子,分别从三个方向上看其三视图如图所示,则桌子上共有碟子().A . 17个B . 12个C . 9个D . 8个9. (2分)如图,把一个长方形纸片对折两次,然后剪下一个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为()A . 60°B . 30°C . 45°D . 90°10. (2分) (2017八上·上城期中) 有一个边长为的正方形,经过一次“生长”后在它的上侧生长出两个小正方形(如图),且三个正方形所围成的三角形是直角三角形;再经过一次“生长’’后变成了图,如此继续“生长”下去,则“生长”第K次后所有正方形的面积和为().A .B .C .D .二、填空题(每题4分,满分24分,将答案填在答题纸上) (共6题;共7分)11. (1分)(2018·灌南模拟) 分解因式:2mx-6my=________.12. (1分) (2017九上·平房期末) 函数y= 中自变量的取值范围是________.13. (1分) (2016·太仓模拟) 已知多边形的每个内角都等于135°,求这个多边形的边数是________.(用两种方法解决问题)14. (2分) (2018九上·南京月考) △ABC中,∠A=40°,若点O是△ABC的外心,则∠BOC=________°;若点I是△ABC的内心,则∠BIC=________°.15. (1分) (2018七上·江津期末) 正方形ABCD在数轴上的位置如图,点A、D对应的数分别为0和-1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,数轴上数2015所对应的点是________;16. (1分)(2017·三台模拟) 等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明 (共8题;共70分)17. (5分)计算:﹣+|﹣|+2sin45°+π0+()﹣1 .18. (10分)解下列分式方程:(1);(2)19. (5分) (2017七下·大同期末) 解不等式,并把解集在数轴上表示出来.20. (5分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?21. (5分)(2017·思茅模拟) 如图,从热气球C上测得两建筑物A,B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A,D,B在同一直线上,求建筑物A,B间的距离.22. (15分)(2017·浙江模拟) 如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)在(1)的条件下,抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.23. (5分)(2017·滨州) 如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.24. (20分)(2017·台州) 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

2020年中考广东茂名数学卷

2020年中考广东茂名数学卷
17、解:方程两边乘以 (x 2) ,得: 3x 2 12 2x(x 2) ,······················
1分
3x 2 12 2x 2 4x ,··························
····················2 分
x 2 4x 12 0 ,···························
如图,⊙P 与 y 轴相切于坐标原点 O(0,0),与 x 轴相交于点 A(5,0),过点 A 的直线 AB
与 y 轴的正半轴交于点 B,与⊙P 交于点 C.
y
(1)已知 AC=3,求点B的坐标。
(4分)
(2)若 AC= a , D 是 OB的中点.问:点 O、P、C、D 四点
是否在同一圆上?请说明理由.如果这四点在同一圆上,
②若 a b ,则 a b . ③若 a b ,则 (a)2 b2 .其中正确的判断的个数是
A.3
B.2
C.1
D.0
10、如图,正方形 ABCD 内接于⊙O,⊙O 的直径为 2 分米,
若在这个圆面上随意抛一粒豆子,则豆子落在正方形 ABCD
内的概率是
2
A.
B.
2
1
C.
2
D. 2
第 7 题图 第 8 题图
16、解:(1)原式= 16 4 ,··1 分(2)原式= x 2 2xy y 2 x 2 2xy y 2 ,·2

=4-2,········2 分
= 4xy . ·····················4 分
=2 .·········3 分
(注:以上两小题如果考生直接写出正确答案的建议给满分).
公里,则村庄 C 到公路 l2 的距离是

广东省茂名市2020版中考数学试卷D卷

广东省茂名市2020版中考数学试卷D卷

广东省茂名市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·天津) 计算(﹣3)+5的结果等于()A . 2B . ﹣2C . 8D . ﹣82. (2分) (2017八下·淅川期末) 若分式有意义,则x的取值范围是()A . x≠3B . x=3C . x<3D . x>33. (2分) (2019七上·南山期末) 下列运算正确的是A .B .C .D .4. (2分)(2019·许昌模拟) 某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A . 2,1B . 1,1.5C . 1,2D . 1,15. (2分) (2020八上·香洲期末) 若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A . 2B . -2C . 4D . -46. (2分) (2019八上·双台子月考) 已知M(a,3)和N(4,b)关于y轴对称,则的值为()A . 1B . -1C .D .7. (2分)(2019·哈尔滨模拟) 在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,下列正确的是()A . m=5,n=13B . m=8,n=10C . m=10,n=13D . m=5,n=108. (2分)现给出下列四个命题:①无公共点的两圆必外离②位似三角形是相似三角形③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于60°⑤对角线相等的四边形是矩形其中选中是真命题的个数的概率是()A .B .C .D .9. (2分) (2020七下·福田期中) 观察下列各式及其展开式= +2ab+= +3 b+3a += +4 b+6 +4a += +5 b+10 +10 +5a +……请你猜想的展开式中含项的系数是()A . 224B . 180C . 112D . 4810. (2分)(2017·黄石模拟) 如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019八下·端州期中) 三角形三边分别为 cm, cm, cm,则这个三角形周长是________.12. (1分)在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 ________.13. (1分)已知:,则m=________ .14. (1分) (2016九上·衢江月考) 如图,△ABC中,∠BAC=90°,AB=AC. P是AB的中点,正方形ADEF 的边在线段CP上则正方形ADEF与△ABC的面积的比为________.15. (1分)抛物线y=2(x-3)2+1的顶点坐标为________ .16. (1分) (2015八下·淮安期中) 如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=________三、解答题 (共8题;共101分)17. (15分) (2020八上·柯桥开学考) 解方程:(1)(2)(3)先化简,再求值:,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.18. (5分) (2019八下·合肥期末) 四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.19. (20分) (2019九上·惠山期末) 抚顺市某校想知道学生对“遥远的赫图阿拉”,“旗袍故里”等家乡旅游品牌的了解程度,随机抽取了部分学生进行问卷调查,问卷有四个选项(每位被调查的学生必选且只选一项)A.十分了解,B.了解较多,C.了解较少,D.不知道.将调查的结果绘制成如下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查了多少名学生?(2)补全条形统计图;(3)该校共有500名学生,请你估计“十分了解”的学生有多少名?(4)在被调查“十分了解”的学生中有四名学生会干部,他们中有3名男生和1名女生,学校想从这4人中任选两人做家乡旅游品牌宣传员,请用列表或画树状图法求出被选中的两人恰好是一男一女的概率.20. (11分)(2020·淮安) 甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为千米,图中折线表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为________千米/小时;(2)求线段所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.21. (10分) (2016九上·肇庆期末) 如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求证:AE是⊙O的切线;(2)当BC=4时求劣弧AC的长.22. (10分) (2016九上·岳池期末) 如图,将圆心角都是90°的扇形OAB和扇形OCD叠放在一起,连接AC、BD.(1)将△AOC经过怎样的图形变换可以得到△BOD?(2)若的长为πcm,OD=3cm,求图中阴影部分的面积是多少?23. (15分) (2020九上·合浦期中) 如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB 相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)过点A作AM⊥BC于点M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的长.24. (15分)(2012·遵义) 如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共101分)17-1、17-2、17-3、18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

茂名市2020年中考数学试题含答案

茂名市2020年中考数学试题含答案

ABCEF茂名市2020年初中毕业生学业考试与高中阶段学校招生考试数学试题一、精心选一选(本大题共10小题,每小题3分,共30分) 1.右图所示的几何体的主视图是( )2.下列运算中结果正确..的是( ) A .3a +2b =5ab B .5y -3y =2 C .-3x +5x =-8x D .3x 2y -2x 2y =x 2y3.如图,梯子的各横档互相平行,若∠1=70°,则∠2的度数是( )A .80°B .110°C .120°D .140° 4.下列命题是假命题...的是( ) A .三角形的内角和是180° B .多边形的外角和都等于360° C .五边形的内角和是900°D .三角形的一个外角等于和它不相邻的两个内角的和5.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是AB 、AC 的中点,量得EF =5m ,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是( ) A .15m B .20m C .25m D .30m 6.若代数式21--x x 有意义,则x 的取值范围是( ) A .x >1且x ≠2 B .x ≥1 C .x ≠2 D .x ≥1且x ≠2 A . B . C . D .ABC D O B 1 C 1 D 1DAB OC1A .4B .3C . 154D .58.如图是一个圆锥形冰淇淋,已知它的母线长是13cm ,高是12cm , 则这个圆锥形冰淇淋的底面面积是( )A .π10cm 2B .π25cm 2C .π60cm 2D .π65cm 29.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )A .4n 枚B .(4n -4)枚C .(4n +4)枚D .n 2枚10.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的周长..是( ) A .22 B .3 C .2 D .1+2二、细心填一填(本大题共5小题,每小题3分,共15分) 11.一组数据1,2,3,5,5,6的中位数是 .12.随机掷一枚均匀的硬币两次,两次都是....正面朝上的概率是 . 13.如图,已知AD 为⊙O 的切线,⊙O 的直径AB =2,弦AC =1,则∠CAD = .14.如图,已知△OAB 与△OA 1B 1是相似比为1∶2的位似图形,点O 是位似中心,若△OAB 内的点P (x ,y )与△OA 1B 1内的 点P 1是一对对应点,则点P 1的坐标是 . 15.小慧同学不但会学习,而且也很会安排时间干好家务活,煲饭、炒菜、擦窗等样样都行,是爸妈的好帮手.某一天放学回家后,…第一个“口” 第二个“口” 第三个“口”第n 个“口”她完成各项家务活及所需时间如下表:小慧同学完成以上各项家务活,至少需要分钟(各项工作转接时间忽略不计).三、用心做一做(本大题共3小题,每小题7分,共21分)16.计算:122+---.-|-)2)|42010((17.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB、CD.(1)请你在图中画出路灯所在位置(用点P表示);(2)画出小华此时在路灯下影子(用线段EF表示).18.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别为0.2和0.3.(1)试求出纸箱中蓝色球的个数;(2)假设向纸箱中再放进红色球x个,这时从纸箱中任意摸出一球是红色球的概率为0.5,试求x的值.四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分)19.我国杂交水稻之父——袁隆平院士,全身心投入杂交水稻的研究.一次他用A、B、C、D四种型号的水稻种子共1000粒进行发芽率实验,从中选出发芽率高的种子进行推广.通过实验得知,C种型号的种子发芽率96%,根据实验数据绘制了如下尚不完整的统计表和统计图.(1)请你补充完整统计表;(2)通过计算分析,你认为应选哪一型号的种子进行推广?20.已知关于x 的一元二次方程x 2―6x ―k 2=0(k 为常数).(1)求证:方程有两个不相等的实数根;(2)设x 1、x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值.四种型号的种子发芽数统计图 ABCD型号五、满怀信心,再接再厉(本大题共3小题,每小题8分,共24分)21.张师傅驾车运荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶小时后加油,中途加油升;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.OB CA E DOBCDA E图1 图222.如图,已知OA ⊥OB ,OA =4,OB =3,以AB 为边作矩形ABCD ,使AD =a ,过点D 作DE 垂直OA 的延长线交于点E . (1)证明:△OAB ∽△EDA ;(2)当a 为何值时,△OAB ≌△EDA ?请说明理由,并求此时点C 到OE 的距离.23.我市某商场为做好“家电下乡”的惠农服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价分别为1000元/台、1500元/台、2000元/台.(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?六、灵动智慧,超越自我(本大题共2小题,每小题8分,共16分)24.如图,在直角坐标系xOy 中,正方形OABC 的顶点A 、C 分别在y 轴、x 轴上,点B 的坐标为(6,6),抛物线y =ax 2+bx +c 经过点A 、B ,且3a -b =-1. (1)求a 、b 、c 的值.(2)动点E 、F 同时分别从点A 、B 出发,分别沿A →B 、B →C 运动,速度都是每秒1个单位长度,当点E 到达终点B 时,点E 、F 随之停止运动.设运动时间为t 秒,△BEF 的面积为S .①试求出S 与t 的函数关系式,并求出S 的最大值;②当S 取最大值时,在抛物线上是否存在点R ,使得以点E 、B 、R 、F 为顶点的四边形是平行四边形?若存在,求出此时点R 的坐标;若不存在,请说明理由.25.已知⊙O 1的半径为R ,周长为C .(1)在⊙O 1内任意作三条弦,其长分别为l 1、l 2、l 3.求证:l 1+l 2+l 3<C . (2)如图,在直角坐标系xOy 中,设⊙O 1的圆心O 1的坐标为(R ,R ). ①当直线l :y =x +b (b >0)与⊙O 1相切时,求b 的值;②当反比例函数y=kx(k>0)的图象与⊙O1有两个交点时,求k的取值范围.O1 R。

2020年广东省茂名市中考数学试题及答案

2020年广东省茂名市中考数学试题及答案

茂名市2020年初中毕业生学业考试与高中阶段学校招生考试数学试卷考生须知1.全卷分第一卷(选择题,满分40分,共2页)和第二卷(非选择题,满分110分,共8页),全卷满分150分;考试时间120分钟.2.请认真填写答题卡和第二卷密封线内的有关内容,并在试卷右上角的座位号处填上自己的座位号.3.考试结束,将第一卷、第二卷和答题卡一并交回.温馨提示:亲爱的同学,请你沉着冷静,充满自信,认真审题,仔细答卷,祝你考出好成绩!第一卷(选择题,满分40分,共2页)一、精心选一选(本大题共10小题,每小题4分,共40分.每小题给出四个答案,其中只有一个是正确的).1.列计算正确的是()A.B.C .D.2.《茂名日报》(2007年5月18日)报道,刚刚投产半年的茂名百万吨乙烯工程传来喜讯,正在创造全国最好的效益,每月为国家创利30 000万元,这个数用科学记数法表示是()A. B.C.D.3.在一组数据3,4,4,6,8中,下列说法正确的是()A.平均数小于中位数 B.平均数等于中位数C.平均数大于中位数D.平均数等于众数4.的角平分线AD交BC于点D,,则点D到AB的距离是()A.1 B.2 C.3 D.45.某商场2006年的销售利润为,预计以后每年比上一年增长b%,那么2008年该商场的销售利润将是()A . B.C .D .6.在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm变成2cm,那么这次复印出来的多边形图案面积是原来的()A.1倍 B.2倍 C.3倍 D.4倍7.上午九时,阳光灿烂,小李在地面上同时摆弄两根长度不相等的竹竿,若它们的影子长度相等,则这两根竹竿的相对位置可能是()A.两根都垂直于地面 B.两根都倒在地面上C.两根不平行斜竖在地面上 D.两根平行斜竖在地面上8.右图是由一些相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.79.已知某村今年的荔枝总产量是吨(是常数),设该村荔枝的人均产量为y(吨),人口总数为x (人),则y与x之间的函数图象是()10.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .B .茂名市2007年初中毕业生学业考试与高中阶段学校招生考试数学试卷第二卷(非选择题,共8页,满分110分)二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方).11.化简:.12.现有一个测试距离为5m的视力表,根据这个视力表,小华想制作一个测试距离为3m的视力表,则图中的.13.若实数满足,则.14.如图是一盏圆锥形灯罩AOB,两母线的夹角,若灯炮O离地面的高OO1是2米时,则光束照射到地面的面积是米2(答案精确到0.1).15.在数学中,为了简便,记.,,,,.则.三、细心做一做(本大题共3小题,每小题8分,共24分)16.(本题满分8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使它们成为轴对称图形.17.(本题满分8分)已知正方形和圆的面积均为.求正方形的周长和圆的周长(用含的代数式表示),并指出它们的大小.18.(本题满分8分)已知一纸箱中放有大小均匀的只白球和只黄球,从箱中随机地取出一只白球的概率是.(1)试写出与的函数关系式;(4分)(2)当时,再往箱中放进20只白球,求随机地取出一只黄球的概率.(4分)四、沉着冷静,周密考虑(本大题共2小题,每小题8分,共16分)19.(本题满分8分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了右边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2分)(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3分)(3)将两个统计图补充完整.(3分)20.(本题满分8分)已知函数的图象与轴的两交点的横坐标分别是,且,求c及,的值.五、开动脑筋,再接再厉(本大题共3小题,每小题10分,共30分)21.(本题满分10分)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.(1)若把绕点旋转一定的角度时,能否与重合?请说明理由.(5分)(2)现把向左平移,使与重合,得,交于点.求证:,并求的长.(5分)22.(本题满分10分)某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:(1)该采购员最多可购进篮球多少只?(5分)(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?(5分)23.(本题满分10分)已知甲、乙两辆汽车同时、同方向从同一地点A出发行驶.(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度;(5分)(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A,请你设计一种方案使甲车尽可能地远离出发点A,并求出甲车一共行驶了多少千米?(5分)六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)24.(本题满分10分)如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧的中点,AC交BD于点E,AE=2, EC =1.(1)求证:∽;(3分)(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(4分)(3)延长AB到H,使BH=OB.求证:CH是⊙O的切线.(3分)25.(本题满分10分)如图,已知平面直角坐标系中,有一矩形纸片OABC,O为坐标原点,轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,.折叠后,点O落在点,点C落在点,并且与在同一直线上.(1)求折痕AD 所在直线的解析式;(3分)(2)求经过三点O,,C的抛物线的解析式;(3分)(3)若⊙的半径为,圆心在(2)的抛物线上运动,⊙与两坐标轴都相切时,求⊙半径的值.(4分)茂名市2007年初中毕业生学业考试与高中招生考试数学试题参考答案及评分标准说明:1、如果考生的解法和本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷.2、解答题右端所注的分数,表示考生正确做到这一步应得的累加分数.一、选择题(本大题共10小题,每小题4分,共40分).题号 1 2 3 4 5 6 7 8 9 10答案 D B C B B D C A D A二、填空题(本大题共5小题,每小题4分,共20分).11. 12.(或答)13.-1 14. 15.0三、(本大题共3小题,每小题8分,共24分).16.解:此题答案不唯一,只要在方格内添的二个正方形使整个图形是对称图形就给分,每答对一个给4分,共8分.17.解:设正方形的边长为,圆的半径为R,则,.······························································································· 2分∴,.···················································································· 4分∴,.···················································· 6分∵,∴. ······················································································· 8分18.解:(1)由题意得, ······································································· 2分即.····································································································· 3分∴. ············································································································ 4分(2)由(1)知当时,.··························································· 6分∴取得黄球的概率.·························································· 8分四、(本大题共2小题,每小题8分,共16分).19.解:(1)由两个统计图可知该校报名总人数是(人).············· 2分(2)选羽毛球的人数是(人). ····················································· 3分因为选排球的人数是100人,所以, ························································ 4分因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.·········································· 5分(3)如图(每补充完整一个得1分,共3分). (8)分20.解:令,即,当方程有两个不相等的实数根时,该函数的图象与x轴有两个交点. 1分此时即.····························································································· 2分由已知,······························································································ 3分∵,∴,················································································ 4分∴,∴,∴(舍去).····································································· 6分当时,,解得.···························· 7分综上:,为所求.················································· 8分五、(本大题共3小题,每小题10分,共30分)21.解:(1)由已知正方形ABCD得AD=DC=2,········· 1分AE=CF=1,·································································· 2分,··············································· 3分∴.··················································· 4分∴把绕点D旋转一定的角度时能与重合. 5分(2)由(1)可知,∵,∴,························································· 6分即.··························································· 7分由已知得,∴,∴.····························································· 8分由已知AE=1,AD=2,∵,···································································· 9分∴,即,∴.·················· 10分(注:本题由三角形相似或解直角三角形同样可求AG.)22.解:(1)设采购员最多可购进篮球只,则排球是(100-)只,···································· 1分依题意得:. ···························································· 3分解得. ························································································ 4分∵是整数,∴=60.····························································································· 5分答:购进篮球和排球共100只时,该采购员最多可购进篮球60只.······························ 6分(2)由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球40只,······················································································································ 8分商场可盈利(元).················ 9分即该商场可盈利2600元.·········································································· 10分23.解:(1)设甲,乙两车速度分别是x千米/时和y千米/时,···································· 1分根据题意得:.············································································ 3分解之得:.································································································· 4分即甲、乙两车速度分别是120千米/时、60千米/时.······················································ 5分(2)方案一:设甲汽车尽可能地远离出发点A行驶了x千米,乙汽车行驶了y千米,则······························································································· 6分.∴即.······························ 7分即甲、乙一起行驶到离A点500千米处,然后甲向乙借油50升,乙不再前进,甲再前进1000千米返回到乙停止处,再向乙借油50升,最后一同返回到A点,此时,甲车行驶了共3000千米. (10)分方案二:(画图法)如图此时,甲车行驶了(千米).··············································· 10分方案三:先把乙车的油均分4份,每份50升.当甲乙一同前往,用了50升时,甲向乙借油50升,乙停止不动,甲继续前行,当用了100升油后返回,到乙停处又用了100升油,此时甲没有油了,再向乙借油50升,一同返回到A点.此时,甲车行驶了(千米). ···································· 10分六、(本大题共2小题,每小题10分,共20分)24.(1)证明:∵C是劣弧的中点,∴.·········································· 1分而公共,∴∽.········································ 3分(2)证明:连结,由⑴得,∵,∴.∴.··········································································································· 4分由已知,∵是⊙O的直径,∴,∴.∴,∴,∴四边形OBCD是菱形.∴,∴四边形ABCD是梯形.················································ 5分法一:过C作CF垂直AB于F,连结OC,则∴. ······································································································ 6分∴,,∴.······································· 7分法二:(接上证得四边形ABCD是梯形)又∴,连结OC,则,和的边长均为的等边三角形 6分∴,∴······························································ 7分(3)证明:连结OC交BD于G由(2)得四边形OBCD是菱形,∴且. ····················································································· 8分又已知OB=BH,∴. ··································································· 9分∴,∴CH是⊙O的切线.·············································· 10分25.解:(1)由已知得.∴,∴.································································································ 1分设直线AD的解析式为.把A,D坐标代入上式得:,解得:,··································································································· 2分折痕AD所在的直线的解析式是.·················································· 3分(2)过作于点F,由已知得,∴.又DC=3-1=2,∴.∴在中,.,∴,而已知.··················································································· 4分法一:设经过三点O,C1,C的抛物线的解析式是·································· 5分点在抛物线上,∴,∴∴为所求························································· 6分法二:设经过三点O,C1,C的抛物线的解析式是.把O,C1,C的坐标代入上式得:,······························································································· 5分解得,∴为所求.················································· 6分(3)设圆心,则当⊙P与两坐标轴都相切时,有.································· 7分由,得,解得(舍去),.······················· 8分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省茂名市中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.(3分)9的相反数是()
A.﹣9B.9C.D.﹣
2.(3分)一组数据2,4,3,5,2的中位数是()
A.5B.3.5C.3D.2.5
3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()
A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)
4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()
A.4B.5C.6D.7
5.(3分)若式子在实数范围内有意义,则x的取值范围是()
A.x≠2B.x≥2C.x≤2D.x≠﹣2
6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4
7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3
8.(3分)不等式组的解集为()
A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1
9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF 沿EF折叠,点B恰好落在AD边上,则BE的长度为()
A.1B.C.D.2
10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:
①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,。

相关文档
最新文档