分式-中考复习
备战九年级中考数学一轮复习第3课 分式(全国通用)

由题知x≠0,当x=2时,x- 4x 4 =0
x
∴x的值只能取1.当x=1时,原式=
1
1
2
=-1
14.(202X·贵州)计算: x 2 =____1____. x2 x2
15.化简:x2 1 x 1 =___x-__1___. xx
c 16.计算: c2 a2c =___2_a_3___.
B. x < y 33
D.-3x<-3y
考点3 分式化简求值
4
11.(202X·湘潭)若 y 3 ,则 x y =___7_____.
x7
x
12.【例3】(202X·深圳)先化简,再求值:
a2
a
1 2a 1
2
3a a 1
,其中,a=2.
解:原式
a 1
a 12
2a
23 a 1
a
a 1
a 12
x2 4xy 4 y2
yx
1
x 2y2
x 2y x2 y2
x2y x yx y
1 x 2y 2x 3y
xy xy
由题x=cos 30°×12 -2
=3
2
×23
2
3+=33,2y=(π-3)013-1
32
将x=3,y=-2代入,得原式=
=0.
=1-3=
2a94=.(210952X,·滨a5州=)12视16察,下…列,各根式据:其a中1=的23规,律a可2=得53an,=a_n3_2=_2_1n_70_11_,_n1
是__x_≠_-__1__.
考点2 分式的基本性质
9.【例2】(202X·河北)若a≠b,则下列分式化简正确的是( D )
2021年中考复习数与式-第04讲 分式(教师版)A4

分式一.分式的概念及性质1.分式分概念:一般地,用A,B表示两个整式A B÷就可以表示成AB的形式.如果B中含有字母,式子AB就叫做分式.(1)分式有意义的条件:分式的分母不为零.(2)分式的值为零的条件:分式的分子为零且分母不为零.(3)分式值为正的条件分式的分子分母符号相同(两种情况).(4)分式值为负的条件:分式的分子分母符号不同(两种情况).2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.二.分式的综合运算1.分式的乘除法(1)分式的乘除法:b d bda c ac⋅=,b d bc bca c a d ad÷=⋅=.(a、b、c、d既可以表示数,也可以表示单项式/多项式等)(2)分式的约分和通分:关键是先分解因式.分式的约分:利用分式的基本性质,约去分式的分子与分母的公因式,分式的值不变.最简分式:分子与分母没有公因式.分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,把几个异分母的分式化成同分母的分式,不改变分式的值.最简公分母:“各个分母”和“所有因式”的最高次幂的积.(3)分式的乘方法则:分式乘方要把分子、分母分别乘方.2.分式的加减法:(1)同分母的分式相加减,分母不变,分子相加减,a b a bc c c±±=.(2)异分母的分式相加减,先通分,变为同分母分式,再加减,b d bc ad bc ada c ac ac ac±±=±=.3.分式的综合运算法则:先乘方,再乘除,最后加减,遇到括号先算括号里面的.知识精讲三.分式的化简与求值分式的化简求值分为有条件和无条件两类.有条件化简求值指导思想:瞄准目标,抓住条件,依据条件推导目标,根据目标变换条件.方法点拨1.分式的化简与求值常用方法和技巧:(1)分步或者分组通分;(2)拆项相消或拆分变形;(3)整体代入;(4)取倒数或者利用倒数关系;(5)换元;(6)先约分后通分2.通分技巧:分步通分,分组通分,先约分后再通分,换元后通分等.一.考点:分式的性质、分式的混合运算及化简求值二.重难点:分式的混合运算及化简求值三.易错点:1.分式的分母中含有根号时,根号下的代数式一定是负的.题模一:分式的基本知识例1.1.1要使3x -+121x -有意义,则x 应满足( )A .12≤x ≤3B .x ≤3且x ≠12C .12<x <3D .12<x ≤3 【答案】D 【解析】根据题意得:30210x x -≥⎧⎨->⎩,解得:12<x≤3.故选D .例1.1.2若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【答案】1a >【解析】分式值为正的条件:分式的分子分母符号相同,因分子为1,所以分母2-2x x a +也一定为正时满足条件,将式子2-2x x a +变形为2-21-1x x a ++()(),因2210x x -+≥,即当10a ->时,分式的值恒为正例1.1.3当x ____时,分式1412x x 有意义;当x ____时,分式1111x 无意义;当x ____时,分式2224x x x x 的值为0【答案】2x ≠且6x ≠;2x =或1x =;0x =或1x =【解析】该题考查的是分式的性质. 分式有意义要求分母不为0,无意义要求分母为0,分式值为0要求分母不为0且分子为0,三点剖析题模精讲分式1412xx 有意义,则410220x x ⎧-≠⎪-⎨⎪-≠⎩,即4122x x ⎧≠⎪-⎨⎪≠⎩,即242x x -≠⎧⎨≠⎩,解得62x x ≠⎧⎨≠⎩; 分式1111x 无意义,则1101x -=-或10x -=,即111x =-或1x =,解得2x =或1x =; 分式()()()()()()22+22114222x x x x x x x x x x x x -+--==--+-的值为0,则()1020x x x ⎧-=⎪⎨-≠⎪⎩,解得0x =或1x =. 例1.1.4x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【答案】(1)6x =-(2)1x =-或6x =【解析】(1)分式值为0则60x -=且2560x x --≠,得6x =-;(2)要使分式无意义,则分母2560x x --=,得1x =-或6x =题模二:分式的运算及化简求值例1.2.1化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x + D .2y x - 【答案】D 【解析】2244xy y x x --+=2?(2)(2)y x x --=2yx -,故选D .例1.2.2解答下列各题: (1)解方程:;(2)先化简,再求值:,其中a 满足a 2+2a ﹣7=0【解答】解:(1)∵,∴(x ﹣2)2=(x +2)2+16,∴x 2﹣4x +4=x 2+4x +4+16,∴﹣4x =4x +16,∴x =﹣2, 经检验,x =﹣2是方程的增根,故原分式方程无解. (2)原式=[﹣]•=•=,∵a 2+2a ﹣7=0,∴a 2+2a =7,∴原式= 例1.2.3先化简,再求值:(),其中x=2.【答案】【解析】原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.例1.2.4已知实数a 满足a 2+2a-15=0,求11a +-221a a +-÷2(1)(2)21a a a a ++-+的值. 【答案】18【解析】11a +-221a a +-÷2(1)(2)21a a a a ++-+=11a +-2(1)(1)a a a ++-•2(1)(1)(2)a a a -++=11a +-21(1)a a -+=22(1)a +, ∵a 2+2a -15=0,∵(a+1)2=16,∵原式=216=18. 例1.2.5化简计算(式中a ,b ,c 两两不相等)222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+.【答案】0【解析】()()()()()()()()()()()()1111110a b a c b c b a c a c b a b a c b c b a c a c b a c a b b a b c c b c a-+--+--+-++=+++++=------------随练1.1使代数式213x x--有意义的x 的取值范围是____. 【答案】x≥12且x≠3 【解析】根据题意得,2x -1≥0且3-x≠0,解得x≥12且x≠3. 故答案为:x≥12且x≠3.随练1.2如果分式2127a a +-的值是正数,那么a 的取值范围是________.【答案】72a >【解析】该题考察的是分式的性质.∵因为21a +恒0>,又∵分式2127a a +-的值是正随堂练习数,∴270a ->,解得:72a > ,故答案是72a >. 随练1.3先化简,再求值:÷(﹣),其中a=.【答案】6﹣4【解析】原式=÷[﹣]=÷=•=(a ﹣2)2,∵a=,∵原式=(﹣2)2=6﹣4随练 1.4x 取 值时,112122x +++有意义;当x 的值为 ,分式223-1244x x x ++的值为0.【答案】592,,;24x x x ≠-≠-≠-2【解析】分式有意义则分母不为零,所以20x +≠且1202x +≠+,且120122x +≠++,所以592,,;24x x x ≠-≠-≠-分式值为零,则分子为零,且分母不为零,即()22312340x x -=-=且()224420x x x ++=+≠,故2x =.随练1.5当x 取何值时,分式2256x x x --+有意义?【答案】2x ≠±且3x ≠±【解析】间接考虑2560x x -+=,然后排除2560x x -+=的情形即可.()()256230x x x x -+=--=得20x -=或30x -=,2x =±或3x =±故要是分式有意义2x ≠±且3x ≠±即可. 随练1.6若1abc =,求111a b cab a bc b ca c ++++++++的值. 【答案】1 【解析】原式=11111111a ab abc a ab a ab ab a abc ab a abca abc ab ab a ab a a ab ab a ++++=++==++++++++++++++随练1.7已知a ,b ,c 为实数,16ab a b =+,18bc b c =+,110ca c a =+,求分式abcab bc ca++的值. 【答案】112【解析】由16ab a b =+,18bc b c =+,110ca c a =+知a ,b ,c 均不为零,故116a b +=,118b c+=,1110c a +=,解得14a =,12b =,16c =,故原式=1111112a b c=++随练1.8若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【答案】2,4【解析】若使分式1-1m 为整数,只需满足1m -为1的因数即可,即11m -=±,结果为0m =或2m =;分式11m m +-为整数,需要将式子整理为-12-1-1m m m +,即只要2-1m 为整数,11,2m -=±±,因此0,2,1,3m =-.随练1.9已知:y=22699x x x ++-÷233x x x+--x+3,试说明不论x 为任何有意义的值,y 值均不变. 【答案】见解析【解析】本题主要考查了分式的混合运算能力. 先把分子分母分解因式再化简约分即可.证明:y=22699x x x ++-÷233x x x+--x+3=2(3)(3)(3)x x x ++-×(3)3x x x -+-x+3=x -x+3=3. 故不论x 为任何有意义的值,y 值均不变.随练1.10已知0abc ≠,0a b c ++=,则代数式222a b c bc ca ab++的值为__________.【答案】3【解析】由0a b c ++=得()a b c =-+,()b a c =-+,()c a b =-+代入原代数式可得原式()()()22263b c a c a b b c a c b abccaabc b c a a b+++=++=++++++= 作业1若a 使分式241312a a a-++没有意义,那么a 的值是( )A .0B .13-或0 C .2±或0 D .15-或0【答案】D【解析】要使分式无意义,则分母为零即可,故13102a a ++=或20a =,所以15a =-或0a =,故答案为D 选项. 作业2要使分式11x x-有意义,则x 的取值范围是_________. 【答案】0x ≠且1x ≠±【解析】对于多重分式,必须要满足每一重的分母都不为0,首先0x ≠,得0x ≠;其次10x x-≠,课后作业得1x ≠±;故x 的取值范围是0x ≠且1x ≠±作业3化简:()()()222222x yz y zx z xyx y z x yz y z x y zx z x y z xy +-++++--+++---.【答案】0【解析】因为()()()2x y z x yz x y x z +--=+-,()()()2y z x y zy x y y z +++=++()()()2z x y z xy y z z x ---=+-,所以原式=()()()()()()()()()2220x yz y z y zx z x z xy x y x y y z z x -+++--+++=++-.作业4化简:÷﹣的结果为( )A .B .C .D .a【答案】C 【解析】原式=×﹣=﹣=,作业5已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【答案】13【解析】原式右边=()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-==---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=作业6先化简,再求值:222x x x+-2212x x x -++÷211x x -+,其中x 为0<x 的整数.【答案】14【解析】原式=2(2)x x x +-2(1)2x x -+•1(1)(1)x x x ++-=2(2)x x x +-12x x -+=(2)x x x +=12x +,∵x 为0<x 的整数,∵x=1(舍去)或x=2,则x=2时,原式=14. 作业7阅读下面材料,并解答问题.材料:将分式42231x x x 拆分成一个整式与一个分式(分子为整数)的和的形式.由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a )+b则-x 4-x 2+3=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a-1)x 2+(a+b )∵对应任意x ,上述等式均成立,∴113a a b ,∴a=2,b=1∴42231x x x =222(1)(2)11x x x =222(1)(2)1x x x +211x =x 2+2+211x这样,分式42231x x x 被拆分成了一个整式x 2+2与一个分式211x 的和.解答:(1)将分式422681x x x 拆分成一个整式与一个分式(分子为整数)的和的形式. (2)当x ∈(-1,1),试说明422681x x x 的最小值为8.【答案】(1)x 2+7+211x (2)见解析【解析】(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a )+b则-x 4-6x 2+8=(-x 2+1)(x 2+a )+b=-x 4-ax 2+x 2+a+b=-x 4-(a -1)x 2+(a+b )∵对应任意x ,上述等式均成立,∵168a ab ,∵a=7,b=1,∵422681x x x =222(1)(7)11x x x =222(1)(7)1x x x +211x =x 2+7+211x这样,分式422681x x x 被拆分成了一个整式x 2+7与一个分式211x 的和.(2)由422681x x x =x 2+7+211x 知, 对于x 2+7+211x ,当x=0时,这两个式子的和有最小值,最小值为8,即422681x x x 的最小值为8.作业8设x ,y ,z 为互不相等的三个非零实数,且111x y z y z x+=+=+,求xyz 的值. 【答案】1± 【解析】由已知111x y z y z x +=+=+,11x y y z +=+,11y zx y z y zy--=-=得y z zy x y -=-,同理可得,z x zx y z -=-,x y xy z x-=-,所以1y z z x x y zy zx xy x y y z z x ---⋅⋅=⋅⋅=---,即()21xyz =,故1xyz =±。
计算专题——分式综合 2023年九年级数学中考复习

计算专题——分式综合 九年级数学中考复习1.阅读下列材料学习“分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程14ax =-的解为正数,求a 的取值范围.经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于x 的方程,得到方程的解为4x a =+,由题目可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面,还必须0a ≠才行. (1)请回答: 的说法是正确的,正确的理由是 . 完成下列问题: (2)已知关于x 的方程233m xx x-=--的解为非负数,求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解,求n 的值.2.阅读下列材料:关于x 的方程11x c x c +=+的解是1211,(x c x x c==,2x 表示未知数x 的两个实数解,下同);22x c x c +=+的解是122,x c x c ==;33x c x c +=+的解是123,x c x c==. 请观察上述方程与解的特征,比较关于x 的方程(0)m mx c m x c+=+≠与它们的关系,猜想它的解是 .由上述的观察、比较、猜想,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解关于x 的方程: (1)1265x x +=; (2)2211x a x a +=+--; (3)2131462a a x x a+++=-.3.我们把形如(mnx m n m x+=+,n 不为零),且两个解分别为1x m =,2x n =的方程称为“十字分式方程”. 例如65x x +=为十字分式方程,可化为2323x x ⨯+=+,12x ∴=,23x =. 再如78x x +=-为十字分式方程,可化为(1)(7)(1)(7)x x-⨯-+=-+-. 11x ∴=-,27x =-.应用上面的结论解答下列问题: (1)若107x x+=-为十字分式方程,则1x = ,2x = . (2)若十字分式方程45x x -=-的两个解分别为1x a =,2x b =,求1b aa b++的值. (3)若关于x 的十字分式方程232321k k x k x --=--的两个解分别为1x ,212(3,)x k x x >>,求124x x +的值.4.新定义:对非负实数x “四舍五入”到个位数的值记为x <> 即:当n 为非负整数时,如果1122n x n -+,则x n <>=. 反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+ 例如:00.480<>=<>=,0.64 1.491<>=<>=,22<>=, 3.5 4.124<>=<>=,⋯ 试解决下列问题: 填空:①π<>= (π为圆周率);②如果13x <->=,则实数x 的取值范围为 ;③若关于x 的不等式组24130x x a x -⎧-⎪⎨⎪<>->⎩的整数解恰有4个,求a 的取值范围;④关于x 的分式方程112221m x x x -<>+=--有正整数解,求m 的取值范围; ⑤求满足65x x <>=的所有非负实数x 的值.5.定义:若分式M 与分式N 的和等于它们的积,即M +N =MN ,则称分式M 与分式N 互为“关联分式”.如21x x +与21x x -,因为()222422111(1)11x x x x x x x x x x x +==⋅+-+-+-所以21xx +与21xx -互为“关联分式”,其中一个分式是另外一个分式的“关联分式”. (1)分式221a + 分式221a -的“关联分式”(填“是”或“不是”); (2)求分式()02aab a b≠-的“关联分式”; (3)若分式224ab a b -是分式22aa b+的“关联分式”,ab ≠0,求分式222a b ab -的值.6.阅读材料:对于非零实数a ,b ,若关于x 的分式()()x a x b x--的值为零,则解得1x a =,2x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程()ab x a b x +=+,的解为1x a =,2x b =.(1)理解应用:方程22233x x +=+的解为:1x = ,2x = ;(2)知识迁移:若关于x 的方程35x x+=的解为1x a =,2x b =,求22a b +的值;(3)拓展提升:若关于x 的方程41k x x =--的解为1x ,2x ,且121x x =,求k 的值.7.由完全平方公式222()2a b a ab b -=-+可知,222()2a b a b ab +=-+,而2()0a b -,所以,对所有的实数a ,b 都有:222a b ab +,且只有当a b =时,才有等号成立:222a b ab +=. 应用上面的结论解答下列问题:(1)计算21()x x-= ,由此可知221x x + 2(填不等号);(2)已知m ,n 为不相等的两正数,试比较:(1%)(1%)m n ++与(1%)(1%)22m n m n++++的大小;(3)试求分式24224x x x -+的最大值.8.如果两个分式M 与N 的和为常数k ,且k 正整数,则称M 与N 互为“和整分式”,常数k 称为“和整值”.如分式1x M x =+,11N x =+,111x M N x ++==+,则M 与N 互为“和整分式”,“和整值” 1k =.(1)已知分式72x A x -=-,22696x x B x x ++=+-,判断A 与B 是否互为“和整分式”,若不是,请说明理由;若是,请求出“和整值” k ; (2)已知分式342x C x -=-,24G D x =-,C 与D 互为“和整分式”,且“和整值” 3k =,若x 为正整数,分式D 的值为正整数t .①求G 所代表的代数式; ②求x 的值;(3)在(2)的条件下,已知分式353x P x -=-,33mx Q x-=-,且P Q t +=,若该关于x 的方程无解,求实数m 的值.9.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如21,11x x x x -+-这样的分式就是假分式;再如:232,11xx x ++这样的分式就是真分式类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++;再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)下列分式中属于“真分式”的有 ;(填序号)①2x ;②211x x -+;③211x x x -+-(2)将假分式22x x +化为带分式的形式;(3)如果211x x -+的值为整数,求x 的整数值.10.对于形如kx m x+=的分式方程,若k ab =,m a b =+,容易检验1x a =,2x b =是分式方程ab x a b x +=+的解,所以称该分式方程为“易解方程”.例如:23x x+=可化为1212x x ⨯+=+,容易检验11x =,22x =是方程的解,∴23x x +=是“易解方程”:又如65x x +=-可化为(2)(3)23x x --+=--,容易检验13x =-,22x =-是方程的解,∴65x x+=-也是“易解方程”.根据上面的学习解答下列问题: (1)判断56x x+=-是不是“易解方程”,若是“易解方程”,求该方程的解1x ,212()x x x <;若不是,说明理由.(2)若1x m =,2x n =是“易解方程” 34x x -=的两个解,求11m n+的值; (3)设n 为自然数,若关于x 的“易解方程” 223352n nx n x ++=+-的两个解分别为1x ,212()x x x <,求211x x -的值.答案版: 1【解答】解:(1)分式方程的解不能是增根,即不能使分式的分母为0,∴小聪说得对,分式的分母不能为0;(2)233m xx x-=--, 233m xx x +=--, 2(3)m x x +=-, 6x m =+,解为非负数,60m ∴+,即6m -,又30x -≠,63m ∴+≠,即3m ≠-,6m ∴-且3m ≠-;(3)322133x nx x x --+=---, 322(3)x nx x -+-=--, (1)2n x -=,原方程无解, 10n ∴-=或3x =,①当10n -=时,解得1n =; ②当3x =时,解得53n =; 综上所述:当1n =或53n =时原方程无解. 2. 【解答】解:11x c x c +=+的解是121,x c x c==; 22x c x c +=+的解是122,x c x c ==; 33x c x c +=+的解是123,x c x c==; ∴(0)m m x c m x c +=+≠的解是1x c =,2mx c=,故答案为:1x c =,2m x c=; (1)1265x x +=, 1155x x ∴+=+, 15x ∴=,215x =; (2)2211x a x a +=+--, 221111x a x a ∴-+=-+--, 11x a ∴-=-或211x a -=- 1x a ∴=,211a x a +=-; (3)2131462a a x x a +++=-, 2131223a a x x a ++∴+=-, 112323x a x a∴+=++-,112323x a x a∴-+=+-, 23x a ∴-=或123x a-=, 132a x +∴=,2312a x a +=.3.【解答】(1)解:方程107x x+=-是十字分式方程,可化为: (2)(5)(2)(5)x x-⨯-+=-+-, 12x ∴=-,25x =-,故答案为:2-,5-. (2)解:十字分式方程45x x-=-的两个解分别为:1x a =,2x b =, 4ab ∴=-,5a b +=-,∴1b a a b++ 221b a ab+=+,2()21a b ab ab +-=+, 2()21a b ab +=-+, 2(5)14-=--, 294=-. (3)解:方程232321k k x k x --=--是十字分式方程,可化为: (23)1(23)1k k x k k x --+=+--, 当3k >时,2330k k k --=->, 关于x 的十字分式方程232321k k x k x --=--的两个解分别为:1x ,212(3,)x k x x >>,1123x k ∴-=-,21x k -=, 122x k ∴=-,21x k =+ ,∴124224222(1)2111x k k k x k k k +-+++====+++. 4. 【解答】解:①由题意可得:3n <>=; 故答案为:3, ②13x <->=, 2.51 3.5x ∴-<, 3.5 4.5x ∴<; 故答案为:3.5 4.5x <; ③解不等式组得:1x a -<<>, 由不等式组整数解恰有4个得,23a <<>, 故2.5 3.5a <; ④解方程得22x m =-<>, 2m -<>是整数,x 是正整数,21m ∴-<>=或2, 21m -<>=时,2x =是增根,舍去. 22m ∴-<>=, 0m ∴<>=, 00.5m ∴<. ⑤0x ,65x 为整数,设65x k =,k 为整数, 则56x k =, 56k k ∴<>=, 151262k k k ∴-+,0k , 03k ∴, 0k ∴=,1,2,3 则0x =,56,53,52. 5. 【解答】解:(1)+ = = = =, ∴分式是分式的“关联分式”;故答案为:是;(2)设分式的“关联分式”为N,则有,∴,∴,∵ab≠0,∴,∴分式的“关联分式”为;(3)∵分式是分式的“关联分式”,∴∵ab≠0,∴b2=8a2∴,∴.6.【解答】解:(1)abx a bx+=+的解为1x a=,2x b=,∴222233xxx x+=+=+的解为3x=或23x=,故答案为:3,23;(2)35xx+=,5a b∴+=,3ab=,222()225619a b a b ab∴+=+-=-=;(3)41k xx=--可化为2(1)40x k x k-+++=,121x x=,41k∴+=,3k∴=-.7. 【解答】解:(1)4222121()x x x x x -+-=, 2212x x ∴+, 故答案为:42221x x x -+,; (2)(1%)(1%)1%%%%m n m n m n ++=+++⋅, 2(1%)(1%)12%(%)2222m n m n m n m n ++++++=+⋅+,2222()()24242m n m mn n m n mn mn +--=++-=, 又m n ≠, (1%)(1%)(1%)(1%)22m n m n m n ++∴++<++; (3)当0x =时,242024x x x =-+, 当0x ≠时,242222211442422x x x x x x x ==-+-++-,()22242242,x x x x x +==当时等号成立, ∴2421124422x x x =-+-, ∴224212,242x x x x =-+当时的最大值为. 8. 【解答】解:(1)72x A x -=-,22696x x B x x ++=+-, ∴2227697(3)732(2)2262(3)(2)222x x x x x x x x A B x x x x x x x x x -++-+-+-+=+=+=+==-+--+----.A ∴与B 是互为“和整分式”,“和整值” 2k =; (2)①342xC x -=-,24GD x =-, ∴2(34)(2)328(2)(2)(2)(2)(2)(2)x x G x x G C D x x x x x x -++-++=+=-+-+-+, C 与D 互为“和整分式”,且“和整值” 3k =, 223283(2)(2)312x x G x x x ∴+-+=-+=-, 2231232824G x x x x ∴=---+=--;②22(2)24(2)(2)2G x D x x x x -+===--+--,且分式D 的值为正整数t .x 为正整数, 21x ∴-=-或22x -=-, 1(0x x ∴==舍去); (3)由题意可得:2212t D ==-=-, ∴353233x mx P Q x x --+=+=--, ∴35323x mx x --+=-, (3)226m x x ∴--=-, 整理得:(1)4m x -=-, 方程无解, 10m ∴-=或方程有增根3x =, 解得:1m =, 当10m -≠,方程有增根3x =, ∴431m -=-, 解得:73m =, 综上:m 的值为:1或73. 9. 【解答】解:(1)由题意可得:①是“真分式”;②③都是“假分式”. 故答案为:①; (2)2244(2)(2)4422222x x x x x x x x x -++-+===-+++++; (3)212(1)332111x x x x x -+-==-+++, 211x x -+的值为整数, ∴31x +的值为整数, 3∴是(1)x +的倍数, x ∴的整数值为4-、2-、0、2. 10.【解答】解:(1)56x x +=-是“易解方程”,理由: 56x x +=-可化为(5)(1)51x x --+=--, 51-<-, ∴56x x +=-是“易解方程”. ∴方程的解为15x =-,21x =-; (2)1x m =,2x n =是“易解方程” 34x x -=的两个解,3mn ∴-=,4m n =+, 则114433n m m n mn ++===--; (3)设2y x =-,方程可化为(23)23n n y n n y ++=++,2232332n n x n x +-+=+-是“易解方程”, n ∴和23n +是这个方程的解, n 为自然数, 23n n ∴<+, ∴必有12x n -=,2223x n -=+, 12x n ∴=+,225x n =+, ∴21125122x n x n -+-==+.。
2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。
【注意】A 、B 都是整式,B 中含有字母,且B ≠0。
2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。
3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。
(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。
(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。
(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。
【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。
【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。
4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。
分式乘方要把分子、分母分别乘方。
④整数负指数幂:1nn aa-=。
5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。
①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。
【注意】不论是分式的哪种运算,都要先进行因式分解。
6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。
第3节分式-中考数学一轮知识复习PPT课件

3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1
,
请在-1,0,1,2,3 当中选一个合适的数代入求值.
3
中考复习---分式

中考复习――分式一、 中考调研(一)考情播报(1)(2009广东3分)函数1x y x =-自变量x 的取值范围是 .(2) (2010广东6分)先化简,再求值 ()x x x x x 224422+÷+++ ,其中 x =2 .(3)(2011广东3分).使2-x 在实数范围内有意义的x 的取值范围是______ ____.(4)(2012广东 9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果; (2)求使分式+有意义的(x ,y )出现的概率;(3)化简分式+,并求使分式的值为整数的(x ,y )出现的概率.考点:列表法与树状图法;分式有意义的条件;分式的化简求值. (二)命题动向1、 分值:3-5分2、 题型:分式相关题型大多为选择、填空、计算题3、 考点:分式意义、分式的运算,二、 知识梳理概念整式――-分解因式 提公因式 方法(一)有理式 公式法 概念分式 性质 约分运算- 通分分式混合运算 (二)、考点知识梳理 1、分式概念:形如A B(A 、B 是整式,B 中含有字母,且B ≠0)的式子叫做分式.(1)分式有无意义: B ≠0时,分式有意义; B =0时,分式没有意义. (2)分式的值为0: A =0且 B ≠0时, 分式的值为02、分式性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:(0)b m b m a ma⨯=≠⨯ ;(0)b m bm a ma÷=≠÷ . 3、约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
(关键是确定分子分母中的公因式)4、通分:根据分式的基本性质,把异分母的分式化为同分母的分式,这一过程称为分式的通分.(关键是确定n 个分母的最简公分母)5、分式运算; 分式加减:(1)同分母的分式加减: 分母不变,把分子相加减 即a b cc ±= . (2)异分母的分式加减: 先通分,变为同分母的分式,然后相加减 即a c bd±= .分式的乘除法(1)分式乘以分式: 用分子的积作分子,分母的积作分母, 即a cb d ∙= (2)分式除以分式:把除式的分子、分母颠倒位置后与被除式相乘 即ac b d÷=分式的乘方法则: 把分子、分母各自乘方 即()kn m= (0)m ≠分式的混合运算:应先算乘方,再算乘除,进行约分化简后,最后进行加减,遇到有括号的,先算括号里面的,运算结果必须是最简分式或整式.三、中考典例分析例1.若分式15x -有意义,则x 的取值范围是 ( )A. x ≠5B. x >5C. x >-5D. x ≠-5 2.已知114,a b -=则2227a ab b a b ab---+的值等于 ( )A. 6B. -6C. 215D. 27-3.计算22()ab a b-的结果是 . 4.已知分式11x x +-的值为0,那么x 的值为 .变式训练1、(2010玉溪中考)若分式22123b b b ---的值为0,则b 的值为 ( )A.1B.-1C.±1D.2变式训练2、填写下列等式中未知的分子或分母2( (1)()(...........)a b x aba bx x y +-==-类型之二:分式化简与求值 例2.(1)化简:26193x x +-+(2)先化简再求值:22142a a a -+-+,其中3a = (3)先化简再求值:231()11x x x x x x--⋅-+,其中2x =变式训练:(2010红河中考)先化简再求值:22453262a a a a a --÷-+++,选一个使原代数式有意义的数代入求值。
分式与分式方程复习精讲经典中考题目

分式考点1: 分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
1. ( 2011重庆江津, 2,4分)下列式子是分式的是( )A.2x B.1+x x C. y x +2 D. 3x考点2: 分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
基本性质:a b =ambm(m ≠0) (2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
符号法则:ab a b a b -=-=-考点3:分式有意义、值为0的条件1.分式有意义的条件:分母不等于0.2.分式值为0的条件:分子等于0且分母不等于0.1. (2011浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2011浙江杭州,15,4)已知分式235x x x a--+,当x =2时,分式无意义,则a = ,当a <6时,使分式无意义的x 的值共有 个. 3. (2011福建泉州,14,4分)当x = 时,分式22+-x x 的值为零. 4. (2011四川南充市,8,3分) 当8、分式21+-x x 的值为0时,x 的值是( ) (A )0 (B )1 (C )-1 (D )-25. (2011四川内江,15,5分)如果分式23273x x --的值为0,则x 的值应为 .考点4:与分式有关的变形求值题1. (2011江苏苏州,7,3分)已知2111=-b a ,则b a ab -的值是A.21 B.-21C.2D.-2 2. (2011江苏南通,10,3分)设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于A. B. C. D. 3 3. (2011四川乐山15,3分)若m 为正实数,且13m m -=,221m m-则=考点5:分式的运算分式的运算法则-----------分式乘法:a c acb d bd⨯=,分式除法:a c a d adb d bc bc÷=⨯=, 分式乘方 ()nn n a a b b= ,(n 为正整数)同分母分式相加:;c b a c b c a ±=± 异分母分式相加:bdbcad d c b a ±=±1.(2010湖北孝感,6,3分)化简x y x yy x x ⎛⎫--÷ ⎪⎝⎭的结果是____________.2. (2011山东威海,8,3分)计算:211(1)1mm m +÷⋅--的结果是____________. 4. (2011山东临沂,5,3分)化简(x -x 1-x 2)÷(1-x1)的结果是____________.5.(2011四川重庆,21,10分)先化简,再求值:(x -1x -x -2x +1)÷2x 2-xx 2+2x +1,其中x 满足x 2-x -1=0.6 (2011湖南常德,19,6分)先化简,再求值. 221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中7. (2011四川广安,22,8分)先化简22()5525x x x x x x -÷---,然后从不等组23212x x --⎧⎨⎩ ≤的解集中,选取一个你认为符合题意....的x 的值代入求值.8. (2011贵州贵阳,16,8分)在三个整式x 2-1,x 2+2x +1,x 2+x 中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x =2时分式的值.9.(2011重庆市潼南,21,10分)先化简,再求值:2121(1)1a a a a++-⋅+,其中a10.(2011湖北宜昌,16,7分)先将代数式11)(2+⨯+x x x 化简,再从-1,1两数中选取一个适当的数作为x 的值代入求值.11、2011四川广元,17,7分)请先化简(23x x --3x x +)÷29xx -,再选取一个你喜欢的数代入求值.12、2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 .分式方程一、填空:1、有一项工程,甲独做x 天完成,乙独做比甲多用4天完成任务,那么乙独做需要______天完成。
中考数学专题复习题:分式的基本性质

中考数学专题复习题:分式的基本性质一、单项选择题(共7小题)1.下列各式是最简分式的是()A.13B.1x−2C.x2y2xD.2a82.下列各分式的化简正确的是()A.x6x3=x3B.a+xb+x=abC.x2x2=0D.a2−1a−1=a−13.若分式2aba+b 中a,b都扩大到原来的3倍,则分式2aba+b的值是()A.扩大3倍B.缩小3倍C.不变D.扩大6倍4.下列各式中,正确的是()A.a+12a+3=25B.ab=a2abC.−a+1a=−a+1aD.a2−4(a−2)2=a+2a−25.下列等式成立的是()A.1a +2b=3a+bB.abab−b2=aa−bC.22a+b=1a+bD.a−a+b=−aa+b6.若代数式a+1a−1在实数范围内有意义,则实数a的取值范围是()A.a≥1B.a≠1C.a<1D.a=−17.如果把分式x−2y+zxyz中的正数x,y,z都扩大2倍,则分式的值()A.不变B.扩大为原来的两倍C.缩小为原来的14D.缩小为原来的18二、填空题(共4小题)8.分式14x2yz 和16xy2的最简公分母是________.9.不改变分式的值,化简:−0.03x+0.1−0.04x−0.03=________.10.已知y>3,则y2−6y+93−y=________.11.把分式2xx+y中的x、y都扩大两倍,则分式的值________.三、解答题(共4小题)12.不改变分式的值,将下列各分式的分子与分母中各项系数都化为整数:(1)x−0.2y0.8x−5y;(2)m2+n32m 5−2n3.13.根据分式的基本性质填空:(1)x+32x =( )2x2;(2)−am−n=a( ).14.已知a,b实数满足ab=1,若M=11+a +11+b,N=a1+a+b1+b,请你猜想M与N的数量关系,并证明.15.写出下列等式中所缺的分子或分母:(1)1ab =( )ab2c(c≠0)括号内应填入__________;(2)ma−b =( )a2−b2(a≠−b)括号内应填入__________;(3)xx(x−y)=1( )括号内应填入__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
6.[2014·常德] 已知:
2-1 1 4-3+2-1 1 22-12=3;42-32+22-12=5;…
6-5+4-3+2-1
1
计算:62-52+42-32+22-12=____7____;
猜想:
1 =__2_n_+__3__.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
∵sin30°=12,tan60°= 3,
∴14<a<3,且 a 为不等于 0,1 的整数, ∴a=2,∴原式=13.
考点聚焦
杭考探究
当堂检测
右边.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
答案
n+2
1
1
(1)n(n+1)·2n+1 n·2n-(n+1)·2n+1
11 (2)2-21×221
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
方法点析 解决此类规律型问题的基本思路:对所给的简单结论 进行全面而细致的观察、分析、比较,从中发现其变化规 律,并由此猜想一般性的结论,然后利用分式的性质及运 算进行验证.
A.a+2(a≠-2) C.a-2(a≠2)
B.-a+2(a≠2) D.-a-2(a≠-2)
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
4.[2014·十堰] 已知 a2-3a+1=0,则 a+1a-2 的值为 (B )
A. 5-1 B.1 C.-1 D.-5
5.[2014·下城模拟] 当 x=2 时,分式xx-+mm没有意义,则 m=___-__2___.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
变式题 [2013·杭州] 如图 3-1,设 k=甲 乙图 图中 中阴 阴影 影部 部分 分面 面积 积
(a>b>0),则有
(B )
A.k>2 C.12<k<1
图 3-1
B.1<k<2
D.0<k<12
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
当堂检测
x2-4 1.[2014·广州] 计算 x-2 ,结果是
2ab,得 a+2b=6ab,再将待求式子变形为42a(ba-+32(ba)+-2b5a)b,再
代入即可.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
解:方法一:∵1a+21b=3, ∴24aab--5a3ba+ -46bb=22-21b3+211ba+-1a52
5 2×3-2 1 =2-3×3=-2.
方法点析 分式的化简求值,一般是根据分式混合运算的顺序先 化简,再代入(有时需要整体代入)求值,但注意字母的取 值一定要使原分式有意义,而不是只看化简后的式子.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
x
1
变式题 [2014·苏州] 先化简,再求值:x2-1÷(1+x-1),
其中 x= 2-1.
考点聚焦
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
【归纳总结】
分式的 基本性质
约分
A A·M A÷M B=B·M=B÷M(其中 A,B,M 都是整 式,且 M___≠__0___) 把一个分式的分子、分母的_公__因__式___
约去,使分式化为最简分式(即分子、 分母没有_公__因__式___的分式)
通分 将异分母分式化为同分母分式
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
思路点津
观察分子:3,4,5,6,…递增,依此规
律,第 n 个等式的分子为 n+2;观察分母:1×2×23,2×3×23,
3×4×24,4×5×25,…,依次规律,第 n 个等式的分母为 n(n+
1)·2n+1.这样便获得第 n 个等式的左边,再根据规律分拆等式的
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式 考点2 分式的基本性质
1.[2014·无锡] 分式2-2 x可变形为( D )
A.2+2 x B.-2+2 x C.x-2 2 D.-x-2 2
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
m2-16 m+4 2.[2012·杭州] 化简3m-12得____3____. 3.[2014·郴州] 若ab=12,则a+b b=____32____.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式 【知识树】
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
杭考探究
探究一 分式的化简、求值
Байду номын сангаас
2x
x2-x
x
例 1 [2014·上城一模] 化简:(x-1-x2-2x+1)÷x2-1,
并回答:原代数式的值能等于 1 吗?为什么?
思路点津 先将分子、分母分解因式,将除法转化为乘 法,然后确定是先通分或约分,还是用分配律分别相乘.
(B )
A.x-2 B.x+2 C.x-2 4 D.x+x 2
|x|-3 2.[2014·凉山州] 分式 x+3 的值为零,则 x 的值为(
A
)
A.3 B.-3 C.±3 D.任意实数
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
4
1
3.[2014·杭州] 若(a2-4+2-a)·w=1,则 w=(
D
)
的加减
分式 的乘除
ac±bc=__a_±_c_b___;ab±cd=_a_d_b±_d_b_c__ ab·cd=___ba_dc____;ab÷cd=____ab_dc___
分式的 混合运算
在分式的混合运算中,应先算乘除,再算加 减.如果有括号,先算括号里面的.分式的 结果一定要化成__最__简____分式或___整__式___
第3课时 分式
第3课时┃ 分式
考点聚焦
考点1 分式的有关概念
1.[2014·江干模拟] 当 x=3 时,分式xx- +ab没有意义,则 b=___-__3___.
2.[2014·毕节]
x2-1 若分式 x-1 的值为 0,则 x 的值为(
C
)
A.0 B.1 C.-1 D.±1
考点聚焦
杭考探究
当堂检测
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
变式题 [2014·泰州] 已知 a2+3ab+b2=0(a≠0,b≠ 0),则代数式ba+ba的值等于__-__3____.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
探究三 分式的创新与应用
例 3 [2014·黄石] 观察下列等式:
3
1
1
第一个等式:a1=1×2×22=1×2-2×22
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
方法二:∵1a+21b=3, ∴a+2b=6ab, ∴24aab--5a3ba+ -46bb=24a(ba-+32(ba)+-25ba)b =24a×b6-ab3×-65aabb=-12.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
方法点析 分式条件求值题解法思路:
值.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
思路点津
思路一:根据分式的基本性质,将式子
24aab--5a3ba+ -46bb分子、分母同除以 2ab,得22- 21b3+211ab+-a152,再将已知代
入即可.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
思路点津
思路二:根据等式的性质,在已知两边同乘
杭考探究
当堂检测
第3课时┃ 分式
解
:
原
式
=
x (x+1)(x-1)
÷
x-1+1 x-1
=
(x+1)x(x-1)·x-x 1=x+1 1.
当 x= 2-1 时,原式= 2+11-1= 12= 22.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式 探究二 分式的条件求值
11
2a-5ab+4b
例 2 [2014·内江] 已知a+2b=3,求代数式4ab-3a-6b的
第3课时┃ 分式
【归纳总结】 1.A,B 表示两个整式,形如AB的代数式,当 B 中含有__字__母____ 且___B_≠__0__时,叫分式. 2.对于分式AB,当 B=0 时,分式__没__有____意义;当 B≠0 时, 分式____有____意义. 3.若分式的值为 0,则当分子___为__0___且分母__不__为__0__时才 成立.
7.[2014·拱墅二模] 先化简,再求代数式的值:(a-2 1-
a+2 a a2-1)÷a-1,其中
sin230°<a<tan260°,请你取一个合适的整
数作为 a 的值代入求值.
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
解:原式=[a-2 1-(a+1a)+(2a-1)]·a-a 1 =2((aa++11))-((a-a+1)2)·a-a 1=a+1 1.
4
1
1
第二个等式:a2=2×3×23=2×22-3×23
5
1
1
第三个等式:a3=3×4×24=3×23-4×24
6
1
1
第四个等式:a4=4×5×25=4×24-5×25
考点聚焦
杭考探究
当堂检测
第3课时┃ 分式
按上述规律,回答以下问题: (1)用含 n 的代数式表示第 n 个等式:an=____________= ____________________________; (2)式子 a1+a2+a3+…+a20=________.