2020-2021学年江苏省兴化市八年级下学期期末数学试题有答案-精品试卷

合集下载

【全国校级联考】江苏省兴化市顾庄学区三校2020-2021学年八年级下学期期末考试数学试题

【全国校级联考】江苏省兴化市顾庄学区三校2020-2021学年八年级下学期期末考试数学试题

【全国校级联考】江苏省兴化市顾庄学区三校2020-2021学年八年级下学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1a 的取值范围是( )A .a <1B .a≤1C .a≥1D .a >1 2.分式11x --可变形为( ) A .11x -- B .11x + C .11x -+ D .11x - 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( )A .在⊙A 外B .在⊙A 上C .在⊙A 内D .不确定 4.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 5.肥城市刘台“桃花节”观赏人数逐年增加,据有关部门统计,2021年约为20万人次,预计到2021年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是 A .20(1+2x )=28.8B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.8 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题7.当a =_____时,分式32a a +-的值为-4. 8.分式25y x 和52y x 的最简公分母是______.9.比较大小:11(填“﹤”,“=”,“﹥”).10.写出以3,5-为根且二次项系数为1的一元二次方程是________.11.当1<P <22的值为______.12.已知y 是x 的反比例函数,且当x =2时,y =-3. 则当y =2时,x =_____.13.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____. 14.如图,已知⊙O 的半径为5,点P 是弦AB 上的一动点,且弦AB 的长为8.则OP 的取值范围为________.15.用配方法求得代数式2367x x +-的最小值是______.16.若直角三角形的两边a 、b 是方程27120x x -+=的两个根,则该直角三角形的内切圆的半径r = _____.三、解答题17.计算:(1;(2)012017222-⨯ 18.解方程:(1)3(3)0x x x +-+=;(2)22216=224x x x x x -+-+--.19.先化简,再求值:2222()a b ab b a a a--÷-,其中 20.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?21.已知反比例函数1k y x -=的图像经过点A (2,-4). (1)求k 的值;(2)它的图像在第 象限内,在各象限内,y 随x 增大而 ;(填变化情况)(3)当-2 ≤ x ≤-12时,求y 的取值范围. 22.如图,已知BC 是⊙O 的直径,A 是⊙O 上一点,AD ⊥BC ,垂足为D ,=,BE 交AD 于点F .(1)∠AC B 与∠BAD 相等吗?为什么?(2)判断△FAB 的形状,并说明理由.23.某花卉中心销售一批兰花,每盆进价100 元,售价140 元,平均每天售出20 盆.春节来临之际,为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1 元,每天可多售出2 盆.要使得每天利润达到1200元,则每盆兰花售价应定为多少元?24.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.25.如图,在△ABC中,⊙O经过A、B两点,圆心O在BC边上,且⊙O与BC边交于点E,在BC上截取CF=AC,连接AF交⊙O 于点D,若点D恰好是BE的中点.(1)求证:AC是⊙O的切线;(2)若BF=17,DF=13,求⊙O的半径r;(3)若∠ABC=30°,动直线l从与点A、O重合的位置开始绕点O顺时针旋转,到与OC重合时停止,设直线l与AC的交点为F,点Q为OF的中点,过点F作FG⊥BC于G,连接AQ、QG.请问在旋转过程中,∠AQG的大小是否变化?若不变,求出∠AQG的度数;若变化,请说明理由.26.如图1,正方形ABCD顶点A、B在函数y=kx(k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为3,求点D的纵坐标;(2)如图2,当k=8时,分别求出正方形A′B′C′D′的顶点A′、B′ 两点的坐标;(3)当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,求k的取值范围.参考答案1.C【解析】【分析】由二次根式有意义的条件可知a-1≥0,解不等式即可.【详解】由题意a-1≥0解得a ≥1故选C.【点睛】本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.2.D【分析】根据分式的性质逐项进行化简即可,注意负号的作用.【详解】1111=1(1)11x x x x -==----+- 故选项A 、B 、C 均错误,选项D 正确,故选:D .【点睛】本题考查分式的性质,涉及带负号的化简,是基础考点,亦是易错点,掌握相关知识是解题关键.3.A【解析】∵O 为原点,点P 的坐标为(3,4),∴=5.∵O 的半径为4,∴OP>r ,∴点P 在圆外。

2020-2021学年初中数学八年级下学期期末常考题(选择题30题)

2020-2021学年初中数学八年级下学期期末常考题(选择题30题)

2020-2021学年初中数学八年级下学期期末常考题(选择题30题)一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±22.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或54.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.7.16的平方根是()A.4B.±4C.﹣4D.±88.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<59.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣310.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>011.﹣3的绝对值是()A.3B.﹣3C.D.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x513.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.1816.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>217.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.2119.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤920.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3 21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位2020-2021学年初中数学八年级下学期期末常考题(选择题30题)参考答案与试题解析一.选择题(共30小题)1.8的立方根是()A.3B.±3C.2D.±2【分析】直接根据立方根的定义求解.【解答】解:8的立方根为2.故选:C.【点评】本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.2.在﹣3.5,,0,,﹣,﹣3,0.5151151115…(相邻两个5之间依次多一个1)中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣3.5是有限小数,属于有理数;是分数,属于有理数;0是整数,属于有理数;,是有限小数,属于有理数;无理数有,,0.5151151115…(相邻两个5之间依次多一个1)共3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A.﹣5B.5C.﹣13D.﹣13或5【分析】直接利用多项式乘法去括号,进而合并同类项求出答案.【解答】解:∵(x+a)(x+b)=x2﹣13x+36,∴x2+(a+b)x+ab=x2﹣13x+36,∴a+b=﹣13.故选:C.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.4.一块正方形的瓷砖边长为cm,它的边长大约在()A.4cm﹣5cm之间B.5cm﹣6cm之间C.6cm﹣7cm之间D.7cm﹣8cm之间【分析】利用算术平方根的性质进行估算即可.【解答】解:∵49<55<64,∴7<8,故选:D.【点评】本题主要考查了估算无理数的大小,利用算术平方根的性质估算是解答此题的关键.5.下面是某同学在一次测验中的计算摘录,其中正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【分析】计算出各个小题中式子的正确结果,然后对照即可得到哪个选项是正确的.【解答】解:∵3x3•(﹣2x2)=﹣6x5,故①正确;∵4a3b÷(﹣2a2b)=﹣2a,故②正确;∵(a3)2=a6,故③错误;∵(﹣a)3÷(﹣a)=a2,故④错误;故选:B.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.6.若2x=3,8y=6,则2x﹣3y的值为()A.B.﹣2C.D.【分析】利用同底数幂的除法法则进行计算即可.【解答】解:∵8y=6,∴23y=6,∵2x=3,∴2x﹣3y=2x÷23y=3÷6=,故选:A.【点评】此题主要考查了同底数幂的除法,关键是掌握a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).7.16的平方根是()A.4B.±4C.﹣4D.±8【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.8.若m=﹣4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【解答】解:∵36<40<49,∴6<<7,∴2<﹣4<3.故选:B.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.下列说法不正确的是()A.的平方根是B.﹣9是81的一个平方根C.0.2的算术平方根是0.04D.﹣27的立方根是﹣3【分析】根据平方根的意义,可判断A、B,根据算术平方根的意义.可判断C,根据立方根的意义,可判断D.【解答】解:A、,故A选项正确;B、=﹣9,故B选项正确;C、=0.2,故C选项错误;D、=﹣3,故D选项正确;故选:C.【点评】本题考查了立方根,平方运算是求平方根的关键,立方运算是解立方根的关键.10.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用有理数的运算是解题关键.11.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列运算正确的是()A.x6÷x2=x3B.(3x)2=3x2C.(x2)3=x5D.x2•x3=x5【分析】根据同底数幂的除法法则:底数不变,指数相减,及同底数幂的乘法以及幂的乘方与积的乘方法则进行运算,然后即可作出判断.【解答】解:A、x6÷x2=x4,故本选项错误;B、(3x)2=9x2,故本选项错误;C、(x2)3=x6,故本选项错误;D、x2•x3=x5,故本选项正确.故选:D.【点评】本题考查同底数幂的除法、同底数幂的乘法及幂的乘方与积的乘方的知识,其中幂的乘方是易混淆知识点,一定要记准法则才能做题.13.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间【分析】由<<求解可得.【解答】解:∵<<,∴4<<5,∴估计65的立方根大小在4与5之间,故选:C.【点评】本题主要考查估算无理数的大小,解题的关键是掌握估算无理数大小的思维方法:用有理数逼近无理数,求无理数的近似值.14.在3.14,,﹣,,π这几个数中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:=3,﹣,π是无理数,共有2个,故选:B.【点评】此题主要考查了无理数.解题的关键是掌握无理数的定义,明确初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.有一个数轴转换器,原理如图所示,则当输入的x为64时,输出的y是()A.8B.C.D.18【分析】根据算术平方根,即可解答.【解答】解:64的算术平方根是8,8的算术平方根是.故选:B.【点评】本题考查了算术平方根,解决本题的根据是熟记算术平方根的定义.16.不等式1﹣x<3的解集为()A.x>﹣2B.x<﹣2C.x<2D.x>2【分析】不等式移项合并,把x系数化为1,即可求出解集.【解答】解:不等式整理得:﹣x<2,解得:x>﹣2,故选:A.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.17.已知a<b,下列不等式中错误的是()A.a+z<b+z B.﹣4a>﹣4b C.2a<2b D.a﹣c>b﹣c 【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵a<b,∴a+z<b+z,故本选项不符合题意;B、∵a<b,∴﹣4a>﹣4b,故本选项不符合题意;C、∵a<b,∴2a<2b,故本选项不符合题意;D、∵a<b,∴a﹣c<b﹣c,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,能熟记不等式的性质是解此题的关键,注意:不等式的性质有:①不等式的两边都加或减同一个数或式子,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.18.在一次“疫情防护”知识竞赛中,竞赛题共25道,选对得4分,不选或选错扣2分,得分不低于60分得奖,那么得奖至少应选对的题数是()A.18B.19C.20D.21【分析】设应选对的题数是x道,根据“得分不低于60分”列出不等式,再解即可.【解答】解:设应选对的题数是x道,由题意得:4x﹣2(25﹣x)≥60,解得:x≥18,∴至少应选对的题数是19,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.19.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8C.8≤b<9D.8≤b≤9【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题要根据整数解的取值情况分情况讨论结果,取出合理的答案.20.如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【解答】解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.21.小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°【分析】根据平行线的性质和三角形的内外角关系即可求解.【解答】解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.【点评】本题考查了平行线的性质和三角形的内外角关系.解题的关键是能够正确找出角度的关系得出答案.22.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.【分析】根据点到直线的距离的定义,可得答案.【解答】解:由题意得PQ⊥a,P到a的距离是PQ垂线段的长,故选:C.【点评】本题考查了点到直线的距离,点到直线的距离是解题关键.23.如图,∠1和∠2是直线____和直线____被直线____所截得到的____.应选()A.a,b,c,同旁内角B.a,c,b,同位角C.a,b,c,同位角D.c,b,a,同位角【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解:∠1和∠2是直线b和直线c被直线a所截得到的同位角,故选:D.【点评】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.24.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选:A.【点评】本题主要考查了平行线的判定方法.这是以后做题的基础.要求学生熟练掌握.25.下列语句是命题的是()(1)两点之间,线段最短(2)如果两个角的和是90度,那么这两个角互余(3)如果x2>0,那么x>0吗?(4)过直线外一点作已知直线的垂线A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)【分析】根据命题的定义分别对四个语句进行判断即可.【解答】解:(1)两点之间,线段最短,对问题做出了判断,是命题,符合题意;(2)如果两个角的和是90度,那么这两个角互余,对问题做出了判断,是命题,符合题意;(3)如果x2>0,那么x>0吗?是疑问句,不是命题,不符合题意;(4)过直线外一点作已知直线的垂线是陈述句,不是命题,命题有(1)(2),故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.26.直线AB、CD、EF相交于O,则∠1+∠2+∠3=()A.90°B.120°C.180°D.140°【分析】根据对顶角相等可得∠4=∠3,再根据平角的定义解答.【解答】解:如图,∠4=∠3,∵∠2+∠1+∠4=180°,∴∠1+∠2+∠3=180°.故选:C.【点评】本题考查了对顶角相等的性质,平角的定义,准确识图是解题的关键.27.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为()A.20°B.30°C.40°D.50°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵直线a∥b,∴∠1+∠BCA+∠2+∠BAC=180°,∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.故选:C.【点评】此题主要考查了平行线的性质,正确掌握平行线的性质是解题关键.28.在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A 不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.29.为了了解2019年我校560名七年级学生期末考试的数学成绩,从中随机抽取了200名学生的数学成绩进行分析,下列说法正确的是()A.2019年我校七年级学生是总体B.样本容量是560C.60名七年级学生是总体的一个样本D.每一名七年级学生的数学成绩是个体【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、2019年我校560名七年级学生期末考试的数学成绩是总体,故A不符合题意;B.样本容量是200,故B不符合题意;C、200名七年级学生的数学成绩是一个样本,故C不符合题意;D、每一名七年级学生的数学成绩是个体,故D符合题意;故选:D.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体30.点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),那么平移方式是()A.先向左平移1个单位,再向下平移2个单位B.先向右平移1个单位,再向下平移2个单位C.先向左平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向上平移2个单位【分析】根据向左平移横坐标减,向上平移纵坐标加解答.【解答】解:∵点M(3,﹣1)经过平移到达点N,N的坐标为(2,1),∴平移方式是先向左平移1个单位,再向上平移2个单位.故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.。

2020-2021八年级下学期期末考试数学试题含答案

2020-2021八年级下学期期末考试数学试题含答案

一.选择题.(本大题共12小题,每小题3分,共36分. 在每小题给出的四个选项中只有一项是符合要求的,请将正确答案的序号填入对应题目后的括号内) 1. 化简分式xyx x-2的结果是( ) A .y x -1B .yx 11- C .21y x - D .yxy -12. 下列各式中,与xy 的值相等的是( )A.22++x y B. xy --55 C. x y33-- D.22x y3.三角形的重心是三角形三条( )的交点A .中线B .高C .角平分线 D.垂直平分线 4. 等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A.7B.6C.5D.45.某住宅小区六月份中1日至6日每天用水量变化情 况如图所示,那么这6天的平均用水量是( ) A.30吨 B.31吨 C.32吨 D.33吨6.下列命题错误的是( ) A.平行四边形的对角相等 B.对角线互相垂直的四边形是菱形 C.两条对角线相等的平行四边形是矩形第5题图第7题图D.等腰梯形的对角线相等7.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC中,边长为无理数的边数有( )条边。

A.0 B.1 C.2 D.38.轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为( ) 小时。

A. B. C. D.k在同一坐标系内的图象相交,其中k<0,9.若函数y=k(3-x)与y=x则交点在( )A.第一、三象限B.第四象限C.第二、四象限D.第二象限10.期末考试后,小军和小海谈起自己班的数学考试成绩,小军说:“我们班同学有一半人考80分以上,其他同学都在80分以下。

”,小海说:“我们班同学大部分考在85分到90分之间喔。

”小军和小海所说的话分别针对( )A.平均数、众数B.平均数、极差C.中位数、方差D.中位数、众数第11题图11.如图,EF 过矩形ABCD 对角线的交点O ,且分别 交AB 、CD 于E 、F ,那么阴影部分的面积是矩 形ABCD 的面积的( ) A. B. C. D.12. 从1开始的自然数按如图所示的规则排列,现有一个 三角形框架在图中上下或左右移动,使每次恰有九个数 在此三角形内,则这九个数的和可以为( ) A.2011 B.2012 C.2013 D.2014二、填空题(本题有6小题,每小题3分,共18分)请将正确答案填写在题中横线上。

2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)

2020-2021学年第二学期期末教学质量检测八年级下册人教版数学试卷(五)(word版 含答案)

绝密★启用前2020-2021学年第二学期期末教学质量检测八年级数学试题(五)满分150考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.在函数y =1x +中,自变量x 的取值范围是( ) A .x≥-1B .x >-1C .x <-1D .x≤-12.下列计算正确的是 ( ) A .3+9=12B .36=18⨯C .5+20=35D .2814=2÷3.如图,直线y =-x +2与x 轴交于点A ,则点A 的坐标是( )A .(2,0)B .(0,2)C .(1,1)D .(2,2)4.若代数式2k-在实数范围内有意义,则一次函数(2)2y k x k =--+的图象可能是( )A .B .C .D .5.下列运算正确的是( ) A .422xy y x -= B .()2239x x -=- C .()32528a a -=-D .642a a a ÷=6.如图所示,直线y x b =-+与直线2y x =都经过点()1,2--A ,则方程组2y x by x =-+⎧⎨=⎩的解为( )试卷第2页,总6页A .12x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =-⎧⎨=-⎩7.某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是( )A .50,8B .50,50C .49,50D .49,88.已知(,)A m n ,(,)B a b ,且6AB =,若33(,)22C m n ,33(,)22D a b ,则CD 的长为( ) A .4B .9C .272D .839.以下列各组数据中,能构成直角三角形的是( ) A .2)3)4B .3)4)7C .5)12)13D .1)2)310.已知平面上四点A)0)0))B)10)0))C)12)6))D)2)6),直线y=mx)3m+6将四边形ABCD 分成面积相等的两部分,则m 的值为( ) A .13B .)1C .2D .1211.若一个四边形的两条对角线相等,则称这个四边形为对角线四边形.下列图形不是对角线四边形的是( ) A .平行四边形B .矩形C .正方形D .等腰梯形12.下列命题中,属于假命题的是( ). A .等角的余角相等B .在同一平面内垂直于同一条直线的两直线平行C .相等的角是对顶角D .有一个角是60°的等腰三角形是等边三角形第II 卷(非选择题)二、填空题13.若一次函数y=)a+3)x+a)3不经过第二象限,则a 的取值范围是________) 14.观察勾股数:3、4、5;8、6、10;15、8、17……则顺次第6组勾股数是_____. 15.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.16.如图,一次函数y kx b =+(0k <)的图象经过点A .当3y <时,x 的取值范围是________.17.如图,在四边形ABCD 中,//,6,16AD BC AD BC ==, E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从 点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形.则t 的值为_________.18.当x_________时,分式23x -有意义.三、解答题19.小亮和爸爸登山,两人距离地面的高度y (米)与小亮登山时间x (分)之间的函数图象分别如图中折线OA AC -和线段DE 所示,根据函数图象进行以下探究:试卷第4页,总6页(1)爸爸开始登山时距离地面___________米,登山的速度是每分钟___________米. (2)求爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式. (3)小亮和爸爸什么时候相遇?求出相遇的时间.(4)若小亮提速后,他登山的速度是爸爸速度的3倍,问小亮登山多长时间时开始提速?20.如图,P 为正方形ABCD 的对称中心,正方形ABCD的边长为10,tan 3ABO ∠=,直线OP 交AB 于N ,DC 于M ,点H 从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM 方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A 、D 、P 的坐标; (2)求)HCR 面积S 与t 的函数关系式; (3)当t 为何值时,)ANO 与)DMR 相似?(4)求以A 、B 、C 、R 为顶点的四边形是梯形时t 的值. 21.已知,如图,AB ∥CD)(1)则图①中的∠1+∠2的度数是180°.(2)则图②中的∠1+∠2+∠3的度数是多少?解:如图⑤,过点E作EF∥AB(为了解题的需要,添加的线叫做辅助线,辅助线常常画成虚线).所以∠1+∠AEF=180°.因为AB∥CD,所以CD∥EF.所以∠FEC+∠3=180°.所以∠1+∠2+∠3=360°.认真阅读(2)的解题过程,求图③中∠1+∠2+∠3+∠4的度数是多少?探究图④中∠1+∠2+∠3+∠4+…+∠n的度数是多少?22.如图,已知直线L1经过点A(﹣1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)23.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70.设购买B种电器x件,购买两种电器所需费用为y元.(1)y与x的函数关系式为:(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.24.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?25.计算或化简:(101)3+-(2)+⎝试卷第6页,总6页参考答案1.B【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x+1≥0且1+x≠0,解得x≥-1且x≠-1自变量x的取值范围是x>-1.故选B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.C【解析】【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对D进行判断.【详解】A.3,所以A选项错误;B. 原式=B选项错误;C. 原式D. 原式故选C.【点睛】本题考查二次根式的加、减、乘、除运算,熟练掌握二次根式的加减乘除运算是解决此题的关键.3.A【分析】答案第2页,总17页一次函数y =kx +b (k≠0,且k ,b 为常数)的图象是一条直线.令y=0,即可得到图象与x 轴的交点. 【详解】解:直线2y x =-+中,令0y =.则02x =-+. 解得2x =. ∴(2,0)A . 故选:A . 【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y =kx +b (k≠0,且k ,b 为常数)与x 轴的交点坐标是(−bk,0),与y 轴的交点坐标是(0,b ). 4.C 【分析】根据二次根式有意义的条件和分式有意义的条件得到2k <,则20k -<,20k -+>,然后根据一次函数与系数的关系可判断一次函数的位置,从而可对各选项进行判断. 【详解】在实数范围内有意义, ∴20k ->, ∴2k <,∴20k -<,20k -+>,∴一次函数(2)2y k x k =--+的图象经过第一、二、四象限, 故选:C . 【点睛】本题考查了一次函数的图形和性质,解题的关键是熟练掌握一次函数图形与系数之间的关系. 5.D 【分析】根据整式的加减、完全平方公式、积的乘方、同底数幂的除法逐项判断即可. 【详解】A 、4xy 与2y 不是同类项,不可合并,此项错误B 、()22369x x x -=-+,此项错误 C 、()3232362(2)()8a a a -=-⋅=-,此项错误D 、64642a a a a -÷==,此项正确 故选:D . 【点睛】本题考查了整式的加减、完全平方公式、积的乘方、同底数幂的除法,熟记各运算法则是解题关键. 6.B 【分析】 方程组2y x by x =-+⎧⎨=⎩的解即为直线y x b =-+与直线2y x =的交点坐标.根据图象交点坐标直接判断即可. 【详解】解:∵直线y x b =-+与直线2y x =都经过点A (-1,-2),∴方程组2y x b y x =-+⎧⎨=⎩的解为12x y =-⎧⎨=-⎩,故选:B 【点睛】本题考查了一次函数与二元一次方程组的关系,主要考查学生的观察图形的能力和理解能力,题目比较典型,是一道比较容易出错的题目. 7.B 【解析】 【分析】把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数. 【详解】解:要求一组数据的中位数,答案第4页,总17页把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50, 即众数是50, 故选:B. 【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 8.B 【解析】 【分析】根据勾股定理求出两点间的距离,进而得22m a)(n b)36-+-=(,然后代入CD=CD. 【详解】解:∵(,)A m n ,(,)B a b ,且6AB =, ∴6=, 则22m a)(n b)36-+-=(, 又∵33(,)22C m n ,33(,)22D a b ,=9, 故选:B. 【点睛】本题考查的是用勾股定理求两点间的距离,求出22m a)(n b)36-+-=(是解题的关键. 9.C【分析】根据勾股定理逆定理逐项计算判断即可.【详解】详解: A. )22+32=13≠42)) 2,3,4不能构成直角三角形;B. )32+42=25≠72)) 3,4,7不能构成直角三角形;C. )52+122=169=132)) 5,12,13能构成直角三角形;D. )12+22=5≠32)) 1,2,3不能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a )b )c 表示三角形的三条边,如果a 2+b 2=c 2,那么这个三角形是直角三角形.10.B【解析】如图,∵A(0,0),B (10,0),C (12,6),D (2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C 、D 的纵坐标相同,∴AB∥CD 且AB=CD ,∴四边形ABCD 是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P 的坐标是(6,3),∵直线y=mx ﹣3m+6将四边形ABCD 分成面积相等的两部分,∴直线y=mx ﹣3m+6经过点P ,∴6m﹣3m+6=3,解得m=﹣1.故选B .【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.11.A【解析】)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))A)12.C【详解】A 、等角的余角相等,正确;B 、在同一平面内垂直于同一条直线的两直线平行,正确;C 、相等的两个角不一定是对顶角,因此C 选项是假命题,D 、有一个角是60°的等腰三角形是等边三角形,正确,故选C.13.a≤-3【解析】∵一次函数y=(a+3)x+a ﹣3的图象不经过第二象限,)a+3<0,a -3≤0解得a<-3, a≤3)所以a<-3.故答案是:a≤-3)14.48,14,50.【详解】试题分析:观察所给数据的特点可知,每个数都可以用第n 组的组数n 表示,第一个数是()211n +-,第2个数是()21n +,第3个数是()211n ++,按照此规律即可写出第6组勾股数是48,14,50.故答案为48,14,50.考点:数字的规律变化类问题.15.135【解析】【分析】根据勾股定理可得AC 的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+(2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.16.x >2【详解】解:由图象可得,当3y =时,2x =,且y 随x 的增大而减小,则当3y <时,2x >故答案为:2x >.17.1秒或3.5秒【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】∵E 是BC 的中点,∴BE=CE=12BC=8,①当Q运动到E和B之间,设运动时间为t,则得:3t−8=6−t,解得:t=3.5;②当Q运动到E和C之间,设运动时间为t,则得:8−3t=6−t,解得:t=1,∴当运动时间t为1秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.18.≠3【分析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.19.(1)100,10;(2)y=10x+100;(3)小亮登山6.5分钟时与爸爸相遇;(4)小亮登山1.5分钟时开始提速.【分析】(1)由图象可知爸爸开始登山时距地面100米,用爸爸登山的路程除以登山的时间即可求速度;(2)根据函数图象上两点D (0,100),E (20,300),用待定系数法可求解析式; (3)把B 点纵坐标代入(2)中解析式,求出m 即可;(4)根据提速后的速度是爸爸的3倍,求出速度,再求出开始提速到相遇的时间即可.【详解】解:(1)由图象可知,爸爸开始登山时距离地面100米, 爸爸登山的速度为:3001001020-=(米/分); 故答案为100,10;(2)设DE 的解析式为y=kx+b,把D (0,100),E (20,300)代入得, 10030020b k b=⎧⎨=+⎩, 解得,10010b k =⎧⎨=⎩∴爸爸登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式为:y=10x+100; (3)把y=165代入y=10x+100得,165=10m+100,解得,m=6.5,∴小亮登山6.5分钟时与爸爸相遇;(4)∵小亮提速后,他登山的速度是爸爸速度的3倍,∴小亮提速后的速度为30米/分,16515530-=(分), 6.5-5=1.5(分),∴小亮登山1.5分钟时开始提速.【点睛】本题考查一次函数的应用,解题的关键是读懂图象,利用数形结合的数学思想,找出所求问题需要的条件.20.(1)C (4,1),D (3,4),P (2,2);(2)2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩;(3)2t =或3;(4) 4.5t =或134或13 【分析】(1)过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,由tan ∠ABO =3可知3OA OB =,设OA =3x ,则OB =x ,再根据正方形ABCD,利用勾股定理可求出OA 及OB 的长,由全等三角形的判定定理可得出△AOB ≌△BEC ≌△DF A ,故可得出CD 的坐标,利用中点坐标公式即可得出P 点坐标;(2)由RH 速度为1,且∠ROH =45°,可知tan ∠ROH =1,故RH 始终垂直于x 轴,RH =OH =t ,设△HCR 的边RH 的高为h ,4h t =-,再由三角形的面积公式即可得出结论;(3)过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,求出M 、N 两点坐标,再分∠DRM =45°和∠MDR =45°两种情况进行讨论;(4)分情况进行讨论,顶边和底边分别为BC 、AR ,此时BC ∥AR ,结合已知和已证求出R 点的坐标,求出t 即可;顶边、底边分别为CR 、AB ,此时CR ∥AB ,结合已知和已证求出R 点的坐标,求出t 即可.【详解】解:(1)如图,过点D 作DF ⊥y 轴于点F ,作CE ⊥x 轴于点E ,连接AC ,∵tan ∠ABO =3, ∴3OA OB=, ∴设OB =x ,则OA =3x ,∵正方形ABCD,∴△AOB 中222OA OB AB +=,即2229x x +=,解得:1x =,∴OA =3,OB =1,∴A (0,3),∵∠OAB +∠ABO =90°,∠ABO +∠CBE =90°,∠CBE +∠BCE =90°,∴∠OAB =∠CBE ,∠ABO =∠BCE ,在△AOB 与△BEC 中,OAB CBE AB BCABO BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOB ≌△BEC ,同理可得,△AOB ≌△BEC ≌△DF A ,∴BE =DE =3,CE =AF =1,∴C (4,1),D (3,4),∵P 为正方形ABCD 的对称中心,∴P 是AC 的中点,∴点P (0+42,312+),即P (2,2), 故C (4,1),D (3,4),P (2,2);(2)∵RH 速度为1,且∠ROH =45°,∴tan ∠ROH =1,∴RH 始终垂直于x 轴,∴RH =OH =t ,设△HCR 的边RH 的高为h , 则4h t =-, ∴211422HCR S h t t t =⋅⋅=-+⋅,∴2212(04)212(4)2t t t S t t t ⎧-+<≤⎪⎪=⎨⎪-->⎪⎩; (3)如图,过点N 作NE ⊥AO 于点E ,过点M 作MS ⊥x 轴于点S ,过点A 作AF ⊥MS 于点F ,由(1)可得:B (1,0),∴直线AB 的解析式为:33y x =-+;直线OP 的解析式为:y x =,联立33y x y x =-+⎧⎨=⎩, 解得:3434x y ⎧=⎪⎪⎨⎪=⎪⎩, 直线CD 的解析式为:313y x =-+,联立313y x y x=-+⎧⎨=⎩, 解得:134134x y ⎧=⎪⎪⎨⎪=⎪⎩∴M (134,134),∴44ON OM ==∵4DM =,4AN ==, 当∠MDR =45°时,∵∠AON =45°,∴∠MDR =∠AON ,∵AN ∥DM ,∴∠ANO =∠DMP ,∴△ANO ∽△RMD , ∴MR AN DM NO ==,解得:MR =,则OR OM MR =-=,则2t =,同理可得:当∠DRM =45°时,t =3,△ANO 与△DMR 相似,综上可知:t =2或3时当△ANO 与△DMR 相似;(4)以A 、B 、C 、R 为顶点的梯形,有三种可能:①顶边和底边分别为BC 、AR ,此时BC ∥AR .如图3,延长AD ,交OM 于点R ,则AD 的斜率为1tan 3BAO ∠=, ∴则直线AD 为:33x y =+, ∴则R 坐标为(4.5,4.5),∴则此时四边形ABCR 为直角梯形,则t =4.5;②顶边、底边分别为CR 、AB ,此时CR ∥AB ,且R 与M 重合,四边形ABCR 为梯形. 则CD 的斜率=-3,且直线CD 过点C ,∴直线CD 为:y -1=-3•(x -4),即y =-3x +13,∵OM 与CD 交于点M (即R ),∴点M (134,134),∴OM =, ∴134t =, ③当AC ∥BR 时,可求得AC 解析式为:132x y =-+,BR 解析式为:2122x y =-+, 联立:2122x y y x⎧=-+⎪⎨⎪=⎩,可求得R 坐标为(13,13), 此时13t =, 综上所述: 4.5t =或134或13. 【点睛】本题考查相似三角形的判定和性质,涉及到全等三角形的判定和性质、二次不等式,正方形的性质及梯形的判定定理,解答此题时要注意分类讨论,不要漏解.21.540°;(n -1)•180°.【分析】分别过C ,D 作CE)AB ,DF)AB ,则CE)DF)CD ,根据平行线的性质即可得到结论;根据角的个数n 与角的和之间的关系是(n -1)•180°,于是得到)1+)2+)3+)4+…+)n 的度数=(n -1)•180°.【详解】如图),分别过E ,F 作GE)AB ,HF)AB ,则AB)EG)FH)CD ,))A +)AEG =)GEF +)HFE =)C +)CFH =180°,))1+)2+)3+)4=)A +)AEG+)GEF +)HFE+)C +)CFH =540°=3×180°;由(1)(2)可得角的个数n 与角的和之间的关系是(n -1)•180°,))1+)2+)3+)4+…+)n 的度数为(n -1)•180°.【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键. 22.(1)y =x +1;(2)m 的值为1或﹣3.【分析】(1)根据待定系数法即可求解.(2)根据三角形的面积公式分点P 在点A 的右侧时与点P 在点A 的左侧分别求解即可.【详解】解:(1)设直线L 1的解析式为y =kx +b ,∵直线L 1经过点A (﹣1,0)与点B (2,3),∴023k b k b -+=⎧⎨+=⎩, 解得11k b =⎧⎨=⎩. 所以直线L 1的解析式为y =x +1.(2)当点P 在点A 的右侧时,AP =m ﹣(﹣1)=m +1,有S △APB =12×(m +1)×3=3, 解得:m =1.此时点P 的坐标为(1,0).当点P 在点A 的左侧时,AP =﹣1﹣m ,有S △APB =12×|﹣m ﹣1|×3=3,解得:m =﹣3, 此时,点P 的坐标为(﹣3,0).综上所述,m 的值为1或﹣3.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知待定系数法的应用.23.(1)y=-20x+1890(x 为整数且0≤x ≤21);(2)费用最省的方案为购买A 种电器11件,B种电器10件,此时所需费用为1690元.【分析】(1)设购买B种电器x件,则购买A种电器(21-x)件,根据“总费用=A种电器的单价×购买A种电器数量+B种电器的单价×购买B种电器数量”即可得出y关于x的函数关系式;(2)根据购买B种电器的数量少于A种电器的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【详解】解:(1)设购买B种电器x件,则购买A种电器(21-x)件,由已知得:y=70x+90(21-x)化简得,y=-20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21-x,解得:x<10.5.∵y=-20x+1890中-20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种电器11件,B种电器10件,此时所需费用为1690元.【点睛】本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是:(1)根据数量关系列出y关于x的函数关系式;(2)根据数量关系列出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(不等式或函数关系式)是关键.24.选择乙.【解析】【分析】由形体、口才、专业水平、创新能力按照4:6:5:5的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,【详解】形体、口才、专业水平、创新能力按照4:6:5:5的比确定,则甲的平均成绩为8649069659254655⨯+⨯+⨯+⨯+++=91.2.乙的平均成绩为9248869559354655⨯+⨯+⨯+⨯+++4+6+5+5=91.8.答案第16页,总17页乙的成绩比甲的高,所以应该录取乙.【点睛】本题考查加权平均数,熟练掌握计算方法是解题的关键.25.(1)4;(2)4.5【分析】(1)根据二次根式的乘法运算法则,零指数幂运算法则,绝对值的性质对各项进行化简,最后相加减即可;(2)先化为最简二次根式,最后根据平方差公式进行简便运算.【详解】解:(1)原式1321343=-+=-+=;(2)原式(333 4.52222⎛+=⨯⨯=⎝⎭==.【点睛】本题考查二次根式的混合运算,熟练掌握其运算法则是解题的关键,第(2)可利用平方差公式进行简便计算.。

2020-2021学年八年级数学下学期期末考试含答案

2020-2021学年八年级数学下学期期末考试含答案

…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________八年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:沪科版八下全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列二次根式中的最简二次根式是 A .12B .8C .30D .122.一元二次方程2x 2−4x +1=0的根的情况是A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根3.如图,菱形ABCD 的两条对角线相交于O ,若AC =8,BD =6,则菱形ABCD 的周长是A .48B .24C .20D .454.如图,以Rt △ABC 为直径分别向外作半圆,若S 1=10,S 3=8,则S 2=A .2B .6C .2D .65.在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的 A .中位数B .方差C .平均数D .众数6.如图,已知四边形ABCD 是平行四边形,E 在对角线AC 上,AE =2EC ,F 在边AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则平行四边形ABCD 的面积是A .4B .6C .8D .97.已知在四边形ABCD 中,AD ∥BC ,对角线AC 与BD 相交于点O ,AO =CO ,如果添加下列一个条件后,就能判定这个四边形是菱形的是 A .BO =DO B .AB =BCC .AB =CDD .AB ∥CD8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点E ,F 分别………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…是边AB,BC的中点,则EP PF+的最小值是A.12B.1C.3D.29.如图:已知四边形ABCD是平行四边形,下列结论中不正确的是A.当AB=BC时,它是菱形B.当∠ABC=90°时,它是矩形C.当AC=BD时,它是正方形D.当AC⊥BD时,它是菱形10.如图,某小区有一长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道,则人行道的宽度为A.2米B.1米C.8米或1米D.8米第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)11.若m=22n n-+-+5,则m n=___________.12.如图是由16个边长为1的正方形拼成的图案,任意连接这些小格点的三个顶点可得到一些三角形.与A,B点构成直角三角形ABC的顶点C的位置有___________个.13.数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为m,众数为n,则m+n=___________.14.如图,已知正方形ABCD的边长为42,点E在对角线BD上,且BE BC=,连接CE,点P是线段CE上的一个动点,过点P作PQ⊥BC于点Q,PR BE⊥于点R,则PQ PR+的值是___________.三、(本大题共2小题,每小题8分,满分16分)15.解下列方程(1)(3x+2)2=4;(2)3x2+1=4x.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________16.规定新运算符号“☆”的运算规则为a ☆b =ab +33b-.例如:(-2)☆1=(-2)×1+331-. (1)求27☆3的值; (2)求(12+3)☆12的值.四、(本大题共2小题,每小题8分,满分16分)17.已知正多边形的一个外角等于18度,求这个正多边形的边数.是否存在一个内角度数为100度的正多边形?如果存在,求出边数;如果不存在,请说明理由.18.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN =17;(2)在图②中,以格点为顶点,画正方形ABCD ,使它的面积为13.五、(本大题共2小题,每小题10分,满分20分) 19.已知关于x 的一元二次方程22+2(+1)+1=0x m x m -.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为1x ,2x ,且满足221212+=16+x x x x ,求实数m 的值. 20.已知:如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AF =CE .求证:(1)△ABE ≌△CDF ; (2)ED ∥BF .六、(本题满分12分)21.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B '的位置,AB'与CD 交于点E ,已知AB =8,AD =4,请完成下列问题: (1)求证:△ACE 是等腰三角形; (2)求重叠部分(△ACE )的面积;(3)点P 为线段AC 上任一点,PG AE ⊥于G ,PH EC ⊥ 于H .求PG PH +的值,并说明理由.七、(本题满分12分)22.在2020年4月举办的“爱我湖滨,书香校园”系列活动中,两组学生分别代表初一、二年参加知识竞赛,成绩统计如表所示;(1)甲组成绩的中位数是 分,乙组成绩的众数是 分; (2)请根据你学过的统计知识,判断这两个小组在这次竞赛中成绩谁优谁次,并说明理由.八、(本题满分14分)………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.已知两个共一个顶点的正方形ABCD、正方形CEFG,连接AC、FC、AF,M是AF的中点,连接MB、ME.(1)如图①,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图①,若CB = 4,CE = 7,求BM、ME的长;(3)如图②,当∠BCE = 45°时,求证:BM = ME.。

2020-2021学年八年级下学期期末数学试题(1)79

2020-2021学年八年级下学期期末数学试题(1)79

江苏省泰州市兴化市2020-2021学年八年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-(-6)等于()A.-6 B.6 C.16D.±62.下列图案中是轴对称图形的是()A.B.C.D.3.下列调查中,适合用普查方式的是()A.夏季冷饮市场上某种冰淇淋的质量B.某品牌灯泡的使用寿命C.某校九年级三班学生的视力D.公民保护环境的意识4.下列计算正确的是()A.m6•m2=m12B.m6÷m2=m3C.(mn)5=5mnD.(m2)3=m65.下列式子从左至右变形不正确的是()A.ab=a2b2++B.ab=4a4bC.23b-=-23bD.a2b--=a2b6.已知点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数2019yx=-的图像上,当x1<x2<0<x3时,y1、y2、y3的大小关系()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题7.169的算术平方根是______.8.某病毒的直径为0.00000016m,用科学计数法表示为______________.9.若代数式x22x1+-在实数范围内有意义,则实数x的取值范围是______.10.一个正n边形的一个外角等于72°,则n的值等于_____.11.如图,点A在反比例函数kyx=的图像上,AB⊥x轴,垂足为B,且4∆=AOBS,则k =_____ .12.若1x =,则代数式221x x ++的值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =6,AB =10,点D 、E 、F 是三边的中点,则△DEF 的周长是______.14.如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.15.已知关于x 的分式方程1m x +=1的解是非负数,则m 的取值范围是_____.162018a a -=,则22018a -=______.三、解答题17.化简或计算:(1)(π-2019)0+112-⎛⎫ ⎪⎝⎭; (2)(x +2y )2-4y (x +y ).18.(1)解方程:2x 2+=3x 2-; (2)因式分解:2x 2-8.19. 先化简,再求值:(x +2-5x 2-)•x 2x 3-+,其中x =320.某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.21.(1)把下面的证明补充完整已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.证明:∵AB∥CD(已知)∴∠BEF+∠DFE=180°(______),∵EG平分∠BEF,FG平分∠DFE(已知),∴______,______(______),∴∠GEF+∠GFE=12(∠BEF+∠DFE)(______),∴∠GEF+∠GFE=12×180°=90°(______),在△EGF中,∠GEF+∠GFE+∠G=180°(______),∴∠G=180°-90°=90°(等式性质),∴EG⊥FG(______).(2)请用文字语言写出(1)所证命题:______.22.某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?23.如图,在Rt△ABC中,∠C=90°,AC=16,BC=12,AB的垂直平分线分别交AB、AC于点D、E.求AB、EC的长.24.先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.请你利用上述定理解决下面的问题:(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);(2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;(3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.25.在正方形ABCD中.(1)如图1,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,试判断AE与BF的数量关系,并说明理由;(2)如图2,点E、F、G、H分别在边BC、CD、DA、AB上,EG、FH相交于点O,∠GOH=90°,且EG=7,求FH的长;(3)如图3,点E、F分别在BC、CD上,AE、BF相交于点O,∠AOB=90°,若AB=5,图中阴影部分的面积与正方形的面积之比为4:5,求△ABO的周长.26.已知,反比例函数y=2x的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.(1)求这个一次函数的表达式;(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.参考答案1.B【解析】【分析】根据相反数的概念解答即可.【详解】解:-(-6)=6.故选:B.【点睛】本题主要考查相反数的概念,属于应知应会题型,熟知定义是关键.2.D【分析】根据轴对称图形的概念求解即可.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,据此解答即可.【详解】解:A、夏季冷饮市场上某种冰淇淋的质量,适合抽样调查,故本选项错误;B、某品牌灯泡的使用寿命,适合抽样调查,故本选项错误;C、某校九年级三班学生的视力,适合全面调查,故本选项正确;D 、调查公民保护环境的意识,适合抽样调查,故本选项错误.故选:C .【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.D【分析】分别根据同底数幂的乘法和除法法则、分式的乘方和幂的乘方法则计算各项即得答案.【详解】解:A 、原式=m 8 ≠m 12,所以本选项不符合题意;B 、原式=m 4≠m 3,所以本选项不符合题意;C 、原式=55m n ≠5m n,所以本选项不符合题意; D 、原式=m 6,所以本选项符合题意.故选:D .【点睛】此题考查了分式的乘方,同底数幂的乘法,幂的乘方以及同底数幂的除法等运算法则,熟练掌握幂的运算性质是解本题的关键.5.A【分析】根据分式的基本性质逐项判断即得答案.【详解】解:A 、由分式的基本性质可知:a b ≠22a b ++,所以本选项符合题意; B 、a b =44a b,变形正确,所以本选项不符合题意; C 、23b-=-23b ,变形正确,所以本选项不符合题意; D 、22a a b b-=-,变形正确,所以本选项不符合题意. 故选:A .【点睛】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 6.C【分析】 在反比例函数2019y x=-的图象在二四象限,根据x 1<x 2<0<x 3,可以确定点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)所在象限,根据反比例函数的图象和性质,可以确定y 1、y 2、y 3的大小关系.【详解】 ∵反比例函数2019y x=-的图象在二、四象限,在每个象限内y 随x 的增大而增大, 又∵x 1<x 2<0<x 3,∴点1(x ,1)y 和2(x ,2)y 在第二象限、而3(x ,3)y 在第四象限,于是有:0<1y <2y ,而3y <0,因此,3y <1y <2y ,故选:C .【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特点,先根据题意判断出函数图象在二、四象限是解答此题的关键.7.13【分析】根据算术平方根的定义解答即可.【详解】.故答案为:13.【点睛】此题主要考查了算术平方根的定义:如果一个数的平方等于A ,那么这个数就叫做A 的平方根,其中非负的平方根叫做这个数的算术平方根.8.1.6×10-7m.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:0.00000016m=1.6×10-7m . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.x ≠12【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案.【详解】 解:∵代数式221x x +-在实数范围内有意义,∴2x -1≠0,解得:x ≠12. 故答案为:x ≠12. 【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.10.5.【分析】可以利用多边形的外角和定理求解.【详解】解:∵正n 边形的一个外角为72°,∴n 的值为360°÷72°=5.故答案为:5【点睛】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.11.8【分析】由AOB S =4,根据反比例函数的比例系数k 的几何意义得到142k =,然后去绝对值即可得。

2020-2021学年八年级下学期期末数学试题58

2020-2021学年八年级下学期期末数学试题58

江苏兴化市北郊中心中学2020-2021学年八年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是中心对称图形的是()A.B.C.D.2.为了解2021年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2021年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.下列计算正确的是()A B C D=4.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 5.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=Fs(S≠0),这个函数的图象大致是()A.B.C.D.6.下列说法:()1矩形的对角线互相垂直且平分;()2菱形的四边相等;()3一组对边平行,另一组对边相等的四边形是平行四边形;()4正方形的对角线相等,并且互相垂直平分.其中正确的个数是()A .1个B .2个C .3个D .4个二、填空题 7.在英文单词 believe 中,字母“e”出现的频率是_______.8.在分式2x x+中,当x=___时分式没有意义.9.当x≤2=________10.已知 |1|0-=b ,那么()2016a b +的值为____________.11.若关于x 的一元二次方程x 2﹣2x+4m=0有实数根,则m 的取值范围是_____. 12.若关于x 的方程1222x m x x -=+--产生增根,那么 m 的值是______. 13.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y=21k x--的图象上,则用“<”连接y 1,y 2,y 3的结果为_______.14.如图,边长为6的正方形ABCD 和边长为8的正方形BEFG 排放在一起,1O 和2O 分别是两个正方形的对称中心,则12O BO 的面积为________.15.在□ABCD 中,一角的平分线把一条边分成3 cm 和4 cm 两部分,则□ABCD 的周长为__________.16.如图,在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的正半轴上,且点B (6,2),C (4,0),直线y=2x+1以每秒1个单位长度的速度沿y 轴向下平移,经过______秒该直线可将平行四边形OABC 分成面积相等的两部分.三、解答题17.计算:(1)22)-; (2)2111a a a +-+-.18.解方程: (1)2124111x x x +=+--; (2)(x ﹣2)2=2x ﹣4. 19.先化简再求值:2221(1)11m m m m m --÷---+,其中m 是方程22016x x -=的解. 20.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了 名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.在四边形ABCD 中,AB//CD ,∠B=∠D .(1)求证:四边形ABCD 为平行四边形;(2)若点P 为对角线AC 上的一点,PE ⊥AB 于E ,PF ⊥AD 于F ,且PE=PF,求证:四边形ABCD 是菱形.22.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路 米;(2)求原计划每小时抢修道路多少米?23.先观察下列等式,再回答问题:=1+1=2;1 2=212;=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n 为正整数)表示的等式,并用所学知识证明.24.码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.(1)求这个反比例函数的表达式;(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.如图,在平面直角坐标系xOy中,直线y=kx+b与x轴相交于点A,与反比例函数在第一象限内的图像相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线y =kx+b的表达式;(2)求证:ΔOBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图像上一动点,且满足90°-α<∠QOC<α,求点Q的横坐标q的取值范围.参考答案1.C【分析】根据中心对称的定义,结合所给图形逐一判断即可得答案.【详解】A.不是中心对称图形,故该选项不符合题意,B.不是中心对称图形,故该选项不符合题意,C.是中心对称图形,故该选项符合题意,D.不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查了中心对称图形的特点,判断中心对称图形的关键是寻找对称中心,旋转180°后与原图形能够重合.2.D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2021年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.3.A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解:A. , 此选项正确;B. ,此选项错误;C. 此选项错误;D. ,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.4.C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x2﹣2x=5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x2﹣2x+1=6∴(x﹣1)2=6.故选:C.【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键. 5.C【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.B【解析】【分析】根据矩形的性质可得(1)错误;根据菱形的性质可得(2)正确;根据平行四边形的判定可得(3)错误;根据正方形的性质可得(4)正确;【详解】(1)矩形的对角线相等且互相平分,故(1)错误;(2)菱形的四边相等,故(2)正确;(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.故选:B.【点睛】此题考查的知识点是特殊的四边形,解题关键是掌握正方形、菱形、矩形的特点.7.3 7【分析】先求出英文单词believe总的字母个数和e的个数,再根据握频率=频数数据总和进行计算即可.【详解】∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是37;故答案为:3 7 .【点睛】此题考查频数与频率,解题关键在于掌握频率的计算公式即可. 8.-2.【详解】根据分式无意义,分母等于0得,2+x=0,解得x=﹣2,故答案为﹣2.9.2-x【详解】2x -,∵x≤2,∴原式=2-x.10.1【分析】根据非负数的性质先求出a 与b 的值,再根据有理数的乘方运算进一步计算即可.【详解】|1|0-=b ,∴20a +=,10b -=,∴2a =-,1b =,∴()()20162016=21=1a b +-+,故答案为:1.【点睛】本题主要考查了非负数的性质以及有理数的乘方运算,熟练掌握相关概念是解题关键. 11.m≤14【分析】由关于x 的一元二次方程x 2﹣2x +4m =0有实数根,可知b 2﹣4ac ≥0,据此列不等式求解即可.【详解】解:由题意得,4-4×1×4m ≥0解之得m ≤14故答案为m ≤14. 【点睛】。

江苏省泰州市兴化市2020-2021年八年级下学期期末数学试题(word版 含答案)

江苏省泰州市兴化市2020-2021年八年级下学期期末数学试题(word版 含答案)
【详解】
解:如图,连接 ,
正方形 的边长为6, 是 的中点,

是等边三角形,


在 和 中, ,


在 中, , ,
在 和 中, ,


在 中, ,
,即 ,
解得 ,

,即 ,
在 和 中, ,








故答案为: .
【点睛】
本题考查了正方形的性质、勾股定理、三角形全等的判定定理与性质、等边三角形的性质等知识点,通过作辅助线,构造全等三角形是解题关键.
【详解】
∵反比例函数 的图象在每一个象限内,y随x的增大而增大,
∴m+2<0,
∴m<-2.
故答案为:m<-2.
【点睛】
此题考查反比例函数的性质,解题关键在于掌握当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.
11.
【分析】
根据“当年产量 上年产量 (1 平均年增长率ห้องสมุดไป่ตู้”列方程即可得.
15.24
【分析】
连接 ,先根据 求出 的长,再在 中,利用勾股定理可得 的长,然后利用垂径定理即可得.
【详解】
解:如图,连接 ,
的直径 ,

, ,



故答案为:24.
【点睛】
本题考查了勾股定理、垂径定理,熟练掌握垂径定理是解题关键.
16.
【分析】
连接 ,先证出 ,从而可得 ,利用直角三角形的性质、勾股定理可得 ,再证出 ,从而可得 ,利用直角三角形的性质、勾股定理可得 ,然后证出 ,从而可得 ,最后根据线段的和差、等量代换即可得.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新下学期期末学业质量测试八年级数学试卷注意:1.本试卷共4页,满分为150分,考试时间为120分钟.2.考生答题前,务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置.3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共有6小题,每小题3分,共18分)1.二次根式x -2有意义,则x 的取值范围是( ▲ ) A .2>x B .2<x C .2≥x D .2≤x 2.分式x--11可变形为( ▲ ) A .11--x B .x +-11 C .x +11 D .11-x 3.在平面直角坐标系xoy 中,⊙O 的半径为4,点P 的坐标为(3,4),则点P 的位置为( ▲ ) A.在⊙A 外 B. 在⊙A 上 C. 在⊙A 内 D.不确定 4.对于反比例函数xy 2=,下列说法不正确的是( ▲ ) A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小5.兴化市“菜花节”观赏人数逐年增加,据有关部门统计,2015年约为20万人次,2017年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ▲ ) A .2012)28.8x +=( B .228.81)20x +=(C .2201)28.8x +=(D .220201)201)28.8x x ++++=(( 6.有下列五个命题:①半圆是弧,弧是半圆;②周长相等的两个圆是等圆;③半径相等的两个半圆是等弧;④直径是圆的对称轴;⑤直径平分弦与弦所对的弧. 其中正确的有( ▲ ) A .1个 B .2个 C . 3个 D . 4个二、填空题(本大题共有10小题,每小题3分,共30分)7.当a = ▲ 时,分式32a a +-的值为-4.8.分式25x y 和52xy 的最简公分母是 ▲ . 9.比较大小:1(填“﹤”,“=”,“﹥”).10.以3、-5为根且二次项系数为1的一元二次方程是 ▲ . 11.当1<P <2时,代数式22)2()1(p p -+-的值为 ▲ .12. 已知y 是x 的反比例函数,且当x =2时,y =-3. 则当y =2时,x = ▲ .13.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 ▲ .14.如图,已知⊙O 的半径为5,点P 是弦AB 上的一动点,且弦AB 的长为8.则OP 的取值范围为 ▲ . 15. 用配方法求得代数式2367x x +-的最小值是 ▲ .16.若直角三角形的两边a 、b 是方程27120x x -+=的两个根,则该直角三角形的内切圆的半径r =▲ .【来源:21·世纪·教育·网】三、解答题(本大题共有10小题,共102分.解答时应写出必要的步骤)17.(本题满分12分) 计算:(1⎛ ⎝ (2)012017222-⨯;18.(本题满分8分)解方程:(1)0)3(3=+-+x x x . (2)41622222-=-+-+-x x x x x .19.(本题满分8分)先化简,再求值:)2(222ab ab a a b a --÷-,其中32+=a ,32-=b .20.(本题满分8分)小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(第14题图)21.(本题满分10分)已知反比例函数1kyx-=的图像经过点A(2,-4).(1)求k的值;(2)它的图像在第▲象限内,在各象限内,y随x增大而▲;(填变化情况)(3)当-2 ≤ x ≤-12时,求y的取值范围.22.(本题满分10分)如图,已知BC是⊙O的直径,A是⊙O上一点,AD⊥BC,垂足为D,⌒AE=⌒AB,BE交AD于点F.(1)∠ACB与∠BAD相等吗?为什么?(2)判断△FAB的形状,并说明理由.CB(第22题图)23.(本题满分10分)花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?24.(本题满分10分)关于x的二次方程21)220k x kx-++=(.(1)求证:无论k 为何值,方程总有实数根.(2)设1x 、2x 是方程21)220k x kx -++=(的两个根,记S =2112x x x x +12x x ++,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.25.(本题满分12分)如图,在△ABC 中,⊙O 经过A 、B 两点,圆心O 在BC 边上,且⊙O 与BC 边交于点E ,在BC 上截取CF=AC ,连接AF 交⊙O 于点D ,若点D 恰好是⌒BE 的中点. (1)求证:AC 是⊙O 的切线;(2)若BF=17,DF=13,求⊙O 的半径r ;(3)若∠ABC=30°,动直线l 从与点A 、O 重合的位置开始绕点O 顺时针旋转,到与OC 重合时停止,设直线l 与AC 的交点为F ,点Q 为OF 的中点,过点F 作FG ⊥BC 于G ,连接AQ 、QG .请问在旋转过程中,∠AQG 的大小是否变化?若不变,求出∠AQG 的度数;若变化,请说明理由.BB(第25题图) (备用图) 26.(本题满分14分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为3,求点D 的纵坐标;(2)如图2,当k=8时,分别求出正方形A ′B ′C ′D ′的顶点A ′、B ′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A ′B ′C ′D ′有重叠部分时,求k 的取值范围.图1 图221·世纪*教育网(第26题图)八年级期末考试参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.D ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.1; 8.510x ; 9. ﹥; 10. 01522=-+x x ; 11.1; 12.-3; 13.-2; 14. 3≤OP ≤5; 15.-10; 16. 1或71- 三、解答题(共10题,102分.下列答案仅供参考........,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)原式=335--(3分,每对1个得1分)=5-(3分); (2)(本小题6分)原式=122122++-+(4分,每对1个得1分)=32(2分). 18.(本题满分8分)(1)(本小题4分)(3)1)0x x +-=((2分),13x =-,21x =(2分). (2)(本小题4分)22(2)(2)16x x --+=(2分),2x =-,(1分).检验,2x =-是原方程的增根,所以原方程无解。

(1分) 19.(本题满分8分) 原式=2)())a b a b a a a b +-⋅-(((2分)=a ba b+-(2分),当32+=a ,32-=b 时,原式=23(2分)=23(2分)。

20. (本题满分8分)假设能买到相同数量的软面本和硬面本,设软面本每本x 元,则硬面本每本(x+1.2)元(1分),根据题意可得方程:12211.2x x =+(3分),解得:x=1.6(1分),经检验:x=1.6是原分式方程的解(1分),12÷1.6=7.5,∵7.5不是整数,不符合题意(1分).答:不能买到相同的两种笔记本(1分).21.(本题满分10分)(1)(本小题2分)18k -=-(1分),所以9k =(1分); (2)(本小题4分)二、四,增大(每空2分);(3)(本小题4分)反比例函数表达式为8y x=-(1分),当2-=x 时,4y =(1分),当21-=x 时,16y =(1分),所以,当212-≤≤-x 时,416y ≤≤(1分).22.(本题满分10分)(1)(本小题5分)因为BC 是⊙O 的直径,所以∠CAB=90°, 所以∠ABD+∠ACB=90°(2分),因为AD⊥BC,所以∠ABD+∠BAD=90°(2分),所以∠ACB=∠BAD(1分);(2)(本小题5分)△FAB是等腰三角形(1分)。

因为⌒AE=⌒AB,所以∠ACB=∠BAD,(2分)又∠ACB=∠BAD,所以∠BAD=∠ABF,所以△FAB是等腰三角形(2分).23.(本题满分10分)设每盆兰花售价定为x元,可以达到1200元的利润,则据题意得,(x-100)[20+2(140-x)]=1200(4分),解得x=120或x=130(4分),因为为扩大销量,增加利润,所以x=130舍去(1分),答:要使刚刚利润达到1200元,每盆兰花售价为120元(1分).24.(本题满分10分)(1)(本小题4分)△=(2k)²-4×2(k-1)=4k²-8k+8=4(k-1) ²+4>0(3分),所以不论k为何值,方程总有实根(1分);(2)(本小题6分)∵x₁+x₂=-2k/ k-1 ,x₁ x₂=2 /k-1, (1分)∴s= (x₁²+x₂²)/x₁ x₂+(x₁+x₂ )=[ ( x₁+x₂)²-2 x₁ x₂ ]/ x₁ x₂+(x₁+x₂)=(4k²-8k+4)/2(k-1)=2(1分),k²-3k+2=0(2分),所以k₁=1,k₂=2(1分),∵方程为一元二次方程,k-1≠0 ∴k₁=1 应舍去,∴S的值能为2,此时k的值为2(1分).25.(本题满分12分)(1)(本小题4分)证明:连接OA、OD,如图,∵D为弧BE的中点,∴∠BOD=∠DOE =90°(1分),∴∠D+∠OFD=90°,∵AC=FC,OA=OD,∴∠CAF=∠CFA,∠OAD=∠D(1分),而∠CFA=∠OFD,∴∠OAD+∠CAF=90°,即∠OAC=90°(1分),∴OA⊥AC,∴AC是⊙O切线(1分);(2)(本小题4分)OD=r,OF=17﹣r(1分),在Rt△DOF中,r2+(17﹣r)2=132(2分),解得r=5(舍去),r=12(1分);即⊙O的半径r为12(1分);(3)(本小题4分)在旋转过程中∠AQG的大小不变(1分).∵∠OAC=90°.∵HG⊥BC,∴∠OGH=90°.∵点Q是OH的中点,∴AQ=OQ=HQ=GQ(1分).∴点A、O、G、H在以点Q为圆心,QO为半径的圆上(1分),∴∠AQG=2∠AOG(1分).∵∠ABC=30°,∴∠AOC=60°.∴∠AQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°(1分).26.(本题满分14分)(1)(本小题4分)过点A作AE⊥y轴于点E,则∠AED=90°.∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°∴∠ODC+∠EDA=90°.∵∠ODC+∠OCD=90°,∴∠EDA=∠OCD.证得△AED′≌△DOC(AAS)(2分).∴OD=EA(1分)∴点D的纵坐标为3(1分);(2)(本小题5分)过点B⊥x轴于点F,同理△BFC≌△COD.∴OD=EA=FB, DE=OC=BF., ∴OE=OF(2分).设OD′=a,OC′=b,同上可得EA′=FC′=OD′=a,ED′=FB′=OC′=b, 即点A′(a,a+b),点B′(a+b,b).∵点A′、B′在反比例函数y=8/x的图象上,有a(a+b)=8, b(a+b)=8(2分),解得a=b=2或a=b=-2(舍去).∴A′、B′两点的坐标分别为(2,4),(4,2)(1分);(3)(本小题5分)∵点A′(2,4),点B′(4,2),点C′(2,0),点D′(0,2),根据待定系数法求得直线A′B′解析式为y=﹣x+6(1分),直线C′D′解析式为y=﹣x+2(1分).设点A的坐标为(m,2m),点D坐标为(0,n).当A点在直线C′D′上时,有2m=﹣m+2,解得:m=23,此时点A的坐标为(23,43),∴k=23×43=89(1分),当点D在直线A′B′上时,有n=6,此时点A的坐标为(6,12),∴k=6×12=72(1分).综上可知:当变化的正方形ABCD与(2)中的正方形A′B′C′D′有重叠部分时,k的取值范围为89≤x≤72(1分).。

相关文档
最新文档