八年级数学上册1_1_2探索勾股定理教案新版北师大版

合集下载

北师大版八年级数学上册:1.1《探索勾股定理 》教案

北师大版八年级数学上册:1.1《探索勾股定理 》教案

北师大版八年级数学上册:1.1《探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容是八年级数学上册的开篇,主要让学生了解勾股定理的证明过程,培养学生的逻辑思维能力和探索精神。

教材通过引入古希腊人证明勾股定理的故事,引导学生学习运用几何图形和数学逻辑来证明这个重要的数学定理。

二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,对几何图形的认知和推理能力有所提高。

但勾股定理的证明过程涉及到较复杂的逻辑推理,对学生来说是一个较大的挑战。

因此,在教学过程中,需要关注学生的学习反馈,适时给予引导和帮助。

三. 教学目标1.让学生了解勾股定理的证明过程,理解并掌握勾股定理的证明方法。

2.培养学生的逻辑思维能力和探索精神,提高学生运用几何图形和数学逻辑解决问题的能力。

3.激发学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。

四. 教学重难点1.勾股定理的证明过程及证明方法的掌握。

2.逻辑推理能力的培养,如何将问题转化为几何图形进行证明。

五. 教学方法1.采用问题驱动的教学方法,引导学生思考和探索勾股定理的证明过程。

2.运用几何图形和数学逻辑,进行直观演示和推理,帮助学生理解和掌握勾股定理。

3.分组讨论和合作探究,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学材料,如PPT、黑板、几何图形等。

2.设计好教学问题和活动,准备好相关的解答和反馈。

七. 教学过程1.导入(5分钟)通过引入古希腊人证明勾股定理的故事,激发学生的学习兴趣,引导学生思考和探索勾股定理的证明过程。

2.呈现(10分钟)呈现勾股定理的证明过程,运用几何图形和数学逻辑进行直观演示和推理。

在此过程中,关注学生的学习反馈,适时给予引导和帮助。

3.操练(10分钟)学生分组讨论和合作探究,运用几何图形和数学逻辑尝试证明勾股定理。

教师巡回指导,解答学生的问题,并提供反馈。

4.巩固(10分钟)针对学生的证明过程,进行总结和点评,帮助学生巩固所学内容。

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计2

北师大版八年级数学上册:1.1《探索勾股定理 》教学设计2

北师大版八年级数学上册:1.1《探索勾股定理》教学设计2一. 教材分析《探索勾股定理》这一节的内容,主要让学生通过实践活动,探索并证明勾股定理。

教材通过生动有趣的故事引入,引导学生通过观察、操作、猜想、验证等数学活动,探索并理解勾股定理。

这一节内容既有利于培养学生的动手操作能力,也有利于培养学生的探究能力。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于证明勾股定理,他们可能还没有接触过。

因此,在教学过程中,我需要引导学生通过实践活动,自己去探索并证明勾股定理。

三. 教学目标1.了解勾股定理的发现过程,感受数学的探究过程。

2.能够通过实践活动,探索并证明勾股定理。

3.培养学生的动手操作能力和探究能力。

四. 教学重难点1.教学重点:让学生通过实践活动,探索并证明勾股定理。

2.教学难点:如何引导学生自己发现并证明勾股定理。

五. 教学方法1.启发式教学法:通过问题引导,激发学生的思考。

2.实践活动法:让学生通过实际操作,自己去探索并证明勾股定理。

六. 教学准备1.准备一些直角三角形和直角三角形的斜边,让学生在课堂上进行测量。

2.准备一些相关的多媒体教学资料,帮助学生更好地理解勾股定理。

七. 教学过程1.导入(5分钟)通过一个有趣的故事,引出勾股定理。

让学生了解到,勾股定理是我国古代数学家毕达哥拉斯发现的。

2.呈现(5分钟)呈现一组直角三角形,让学生进行测量,观察并猜想勾股定理。

3.操练(10分钟)让学生分组进行实践活动,每组选取一个直角三角形,用尺子测量其三条边的长度,然后计算出斜边的平方是否等于两个直角边的平方和。

通过实践活动,让学生自己验证勾股定理。

4.巩固(10分钟)让学生用自己的语言,描述一下勾股定理的内容。

并通过一些例子,让学生运用勾股定理进行计算。

5.拓展(10分钟)让学生思考,如果一个直角三角形的两条直角边长度相等,那么斜边的长度会是多少?引导学生进一步探究勾股定理的变体。

北师大版数学八年级上册(教案):1.1.2探索勾股定理

北师大版数学八年级上册(教案):1.1.2探索勾股定理
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和计算方法这两个重点。对于难点部分,如理解直角三角形三边关系的内在联系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过拼图法或面积法来演示勾股定理的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
本节课将围绕勾股定理的探索和应用展开,旨在帮助学生掌握勾股定理的基本概念和运用方法,提高学生的逻辑思维能力和解决问题的能力。
二、核心素养目标
1.培养学生的逻辑思维能力:通过探索勾股定理的过程,使学生能够运用归纳、推理等数学思维方法,理解直角三角形三边之间的关系,提高逻辑推理能力。
2.提升学生的空间想象能力:借助实际测量和图形观察,培养学生对直角三角形的空间想象能力,为后续几何学习打下基础。
举例:在实际问题中,如测量树的高度,学生可能会忽略使用勾股定理来解决,或者在面对非直角三角形时误用定理。教师需要通过具体的例子和练习,帮助学生识别和突破这一难
同学们,今天我们将要学习的是《探索勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量直角三角形斜边长度的情况?”(如测量墙角到地面的距离)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。

北师大版八年级数学上册:1.1《探索勾股定理》教学设计

北师大版八年级数学上册:1.1《探索勾股定理》教学设计

北师大版八年级数学上册:1.1《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是北师大版八年级数学上册第一章《几何初步》的第一节内容。

本节内容通过探究直角三角形三边的关系,引入勾股定理,是学生学习几何的重要基础。

教材以我国古代数学家赵爽的弦图作为探究勾股定理的载体,让学生经历探究过程,感悟数学的证明过程,体会数形结合的数学思想。

二. 学情分析学生在七年级已经学习了相似三角形的性质,能够识别直角三角形,并了解其性质。

但对于证明勾股定理,他们可能还没有直观的感受。

因此,在教学过程中,需要引导学生通过实际操作,逐步理解并证明勾股定理。

三. 教学目标1.了解勾股定理的发现过程,感受数学家探索勾股定理的艰辛。

2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。

3.培养学生的观察能力、操作能力、推理能力,提升学生解决问题的能力。

四. 教学重难点1.重点:勾股定理的证明过程。

2.难点:理解并证明勾股定理。

五. 教学方法采用问题驱动法、合作学习法、数形结合法等教学方法,引导学生通过观察、操作、推理等过程,探索并证明勾股定理。

六. 教学准备1.准备相关的教学课件、视频等教学资源。

2.准备直角三角形模型、拼图等教具。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,为新课的学习做好铺垫。

例如:什么是直角三角形?直角三角形有哪些性质?2.呈现(10分钟)展示勾股定理的背景知识,介绍赵爽的弦图,让学生了解勾股定理的来源。

同时,提出探究问题:如何证明勾股定理?3.操练(15分钟)让学生分组进行讨论,每组尝试用拼图或者模型来证明勾股定理。

教师巡回指导,引导学生发现证明勾股定理的关键。

4.巩固(10分钟)学生汇报各自的证明过程,教师点评并总结。

同时,让学生回答一些与勾股定理相关的问题,加深对勾股定理的理解。

5.拓展(10分钟)让学生运用勾股定理解决实际问题,例如:计算一个直角三角形的两条直角边长。

八年级数学上册 1.1 探索勾股定理教案1 (新版)北师大版

八年级数学上册 1.1 探索勾股定理教案1 (新版)北师大版

探索勾股定理教学目标:知识与技能1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

过程与方法让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法. 情感与态度在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:观察图1-2,正方形A 中有_______个小方格,即A 的面积为______个单位。

正方形B 中有_______个小方格,即A 的面积为______个单位。

正方形C 中有_______个小方格,即A 的面积为______个单位。

你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C ,接着提出图1—1中的A.B,C 的关系呢?做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

议一议图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

北师大版 八年数学 上册 第一、二章教案

北师大版 八年数学 上册 第一、二章教案

A的面积B的面积C 左图16 9 25
A
如果这条
那么需要多长的钢索?
B C
说明:钝角三角形和锐角三角形都不能满足勾股定理。

我方侦察员小王在距离东西向公路
222
①这个零件符合要求吗?②能否求
最短路程是多少?
如果把这根芦苇垂直拉向岸边,它的顶端恰好能到达思考水池深度和芦苇高度之间的关系?怎么设呢?与勾股定理之间有怎样的
如图,一个长方体盒子的长、宽、高分别为8cm,8cm,12cm,一只蚂确定几何体上的最短路线,先将立体图形展开成平面图形,注意展开方式,
=
中的双重非负性:

到帐篷支撑竿底部

都是某一个小。

北师大版八年级数学上册1.1.2探索勾股定理教学设计

北师大版八年级数学上册1.1.2探索勾股定理教学设计
(5)鼓励小组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学策略:
(1)注重启发式教学,引导学生主动探究、发现问题,提高他们的逻辑思维能力;
(2)关注学生的个别差异,因材施教,使每个学生都能在原有基础上得到提高;
(3)创设轻松愉快的学习氛围,让学生在愉悦的情感体验中,降低学习难度;
(4)强化反馈机制,及时了解学生的学习情况,调整教学进度和策略;
(2)课本习题1.1.2中第4题,要求学生运用勾股定理解决几何作图问题,培养空间想象能力;
(3)根据课堂例题,自编一道涉及勾股定理的题目,要求学生独立完成,提高解题技巧。
2.选做题:
(1)课本习题1.1.2中第5题,要求学生运用勾股定理解决实际问题,提高分析问题和解决问题的能力;
(2)课本习题1.1.2中第6题,要求学生探索勾股定理在生活中的应用,培养数学思维。
在教学过程中,教师应关注学生的个体差异,尊重他们的学习兴趣和需求,创设轻松愉快的学习氛围,使学生在愉悦的情感体验中,积极主动地参与学习。同时,教师还应关注学生的思想品德教育,引导他们形成正确的价值观,为他们的全面发展奠定基础。
二、学情分析
八年级学生已经在之前的学习中掌握了直角三角形的基本概念和性质,具备了一定的几何图形识别和判断能力。在此基础上,他们对勾股定理的探索将更具挑战性和趣味性。然而,由于勾股定理涉及平方运算和抽象的逻辑推理,部分学生对这部分内容的理解和应用可能会存在困难。因此,在教学过程中,教师应关注以下几点:
(2)讲解勾股定理的推导过程,从特殊到一般,让学生理解定理的来源;
(3)结合实际例题,讲解勾股定理的应用,如计算斜边长度、判断直角三角形等。
(三)学生小组讨论
1.教学活动设计:
学生分成小组,针对勾股定理的推导和应用进行讨论,分享各自的观点和心得。

八年级数学上册 1.1 探索勾股定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

八年级数学上册 1.1 探索勾股定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

课题:1.1 探索勾股定理(1)教学目标:1.引导学生经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.引导学生探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力.教学重点:了解勾股定理的由来,并能用它来解决一些简单的问题.教学难点:勾股定理的发现.课前准备:多媒体课件、三角板.教学设计:一、创设情境,自然引入引导语:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500多年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理.师:(板书课题)探索勾股定理(1)设计意图:问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题.学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了.这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”.二、设问质疑,合作探究探究一师:你能发现下图中等腰直角三角形ABC有什么性质吗?等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1.(图中每个小方格代表一个单位面积)正方形A中含有______个小方格,即A的面积是______个单位面积;正方形B中含有______个小方格,即B的面积是______个单位面积;正方形C中含有______个小方格,即C的面积是______个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)请将上述结果填入下表,你能发现正方形A,B,C的面积关系吗?A的面积(单位面积) B的面积(单位面积)C的面积(单位面积)图1图2图3生:我们从上面的图中更进一步验证了等腰直角三角形直角边的平方和等于斜边的平方.学生交流后形成共识,教师板书,A+B=C.师:原来著名的哲学家毕达哥拉斯,他在朋友家地板砖的启发下,也发现了这个结论.并且还做了更为深入的研究,你知道是什么吗?生:等腰直角三角形有上述性质,其他的直角三角形是否也有这个性质呢?师:的确如此,想知道结果吗?我们不妨寻着大哲学家的足迹,也做更深入的探究.设计意图:通过让学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方,让学生亲历发现、探究结论的过程,也有利于培养学生的语言表达能力,体会数形结合的思想.探究二师:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A′、B′、C′的面积,看看能得出什么结论.预设:生1:从图中不难观察出A、B两个正方形分别含有4个小方格和9个小方格;A′、B′两个正方形分别含有9个小方格和25个小方格.生2:正方形C的面积可看作虚线标出的正方形的面积减去四个直角三角形的面积,即5×5-4×12×2×3=13.所以正方形A的面积+正方形B的面积等于正方形C的面积,即4+9=13.生3:用同样的方法计算C′的面积可得8×8-4×12×3×5=64-30=34.所以正方形A′的面积+正方形B′的面积=正方形C′的面积.师:三个正方形之间的面积关系能用直角三角形的三边关系表示吗?在同学的交流回答的基础上,师板书:勾股定理:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形两直角边和斜边,那么a2+b2=c2.设计意图:. 使学生感受方法的技巧获得掌握知识的快感,这对于学生良好思维品质的形成有重要作用.数学小史:(投影出示)师:当时大哲学家也发现并进一步深入探究的也正是这个结论,看似平淡无奇的现象有时却隐藏着深刻的道理.我们也应该向大哲学家学习,认真体验生活,努力发现生活中存在的各种奥秘.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.“勾三,股四,弦五”正是直角三角形三边关系的重要体现.不仅如此,我们汉代的赵爽曾用2002年在召开的国际数学家大会的徽标的图案如右图证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.设计意图:此处主要是让学生对数学的一些历史有所了解,并让他们知道,我国在数学的发展史上占有非常重要的作用,培养学生的爱国热情,激励他们更加努力的学习,争取长大后也能为国争光.?225100三、思维训练,应用新知例1(投影出示)如图所示,一棵大树在一次强烈台风中于离地面9m 处折断倒下,树顶落在离树根12m 处. 大树在折断之前高多少?解:设树倒下部分的面积为x m∵树倒下后与地面正好构成一个直角三角形 ∴222912x=+225811442=+=x∴15=x (m )∴大树在折断前的高度为:24915=+(m)例2 (投影出示)小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?解:我们通常所说的29英寸和74厘米的电视机,是指其荧屏的对角线的长度,而不是其荧屏的长和宽,同时,荧屏的边框遮盖了一部分,所以实际测量存在一些误差.设计意图:例题学习其目的是巩固新知,通过老师的扳演,强调格式步骤.通过引例的探究,让学生知道勾股定理在现实生活中的应用非常多,同时也让学生明白如何利用勾股定理来解题,尤其是解题过程如何书写.基础题型练习:1.求下列图形中未知正方形的面积或未知边的长度(口答)2.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从 一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米3.如图,在△ABC 中,cm AC AB 10==,AC BD ⊥于点D 且cm CD 2=,则BC 的长是 ( )A .cm 6B .cm 5C .210cmD .8cm4.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是cm 2.设计意图:通过练习,进一步加深了学生对勾股定理的理解和应用,也让学生知道了如何运用所学知识服务于解题中来. 在这里通过具体的实际问题,使学生学数学、用数学的意识得到强化.使学生创造性的将数学知识应用于实践,并在实践中获得创造的成功感.更重要的是学生的创造性思维在实践中得到了锻炼. 四、交流心得,学习反思 1.你这节课的主要收获是什么?2.在探索和验证定理的过程中,我们运用了哪些方法?设计意图:梳理本节课的重要方法和知识点,加深对本节知识的理解.让学生在总结 的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧 解难让学生对知识形成正向迁移 .从而构建出合理的知识体系,养成良好的学习习惯. 五、达标检测,反馈矫正1.已知三组数据:①2,3,4;②3,4,5;③5,12,13.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有.(填序号)2.如图,△ABC 是等边三角形,cm AB 4=,则BC 边上的高AD 等于.3. 如图,某某路与某某路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在某某路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为第2题图 第3题图DA7cmCB第4题图A .600mB .500mC .400mD .300m4.一直角三角形的两边长分别为3和4.则第三边的长的平方为( ) A .25B .7 C .5 D .25或75.如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.设计意图:本节课主要任务是探索勾股定理,所以检测设计三个较为简单的题目,可以提升学生学习信心,培养学生的学习兴趣.及时反馈,了解学生对本节课知识的掌握情况,让学生在独立自主解答问题的过程中,进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.教师要及时巡视,根据学生的完成情况有针对性的进行讲解. 六、布置作业,落实目标 必做题:P 7 第1、2、3 题.选做题:印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.注:花离原位二尺远指两花之间的距离.设计意图:A组题目为必做题,一方面可以了解学生对本节课所学内容的掌握情况,同时也可以培养学生快速准确解答问题的能力. B组问题为学有余力的同学设计,努力使每个学生在课堂上都有所发展,也充分利用课堂时间提高了优秀生解决问题的能力,如课上不能完成,可作为课后作业 ,分层次布置作业,使不同层次的学生得到不同的发展.第5题图第2题图第3题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1.1.2探索勾股定理
教学目标:
1.掌握用面积法如何验证勾股定理,并能应用勾股定理解决一些实际问题. 2.经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想. 教学重点与难点:
重点:应用勾股定理解决简单的实际问题. 难点:用面积法验证勾股定理. 课前准备:
教师准备:多媒体课件.
学生准备:四个全等的直角三角形. 教学过程:
一、创设情境,引入主题
师:伽菲尔德是美国第二十任总统,同样他也是一名卓越的数学家,1876年4月1日,他在《新英格兰教育日志》上发表了对勾股定理的证明,他的方法直观、简捷、易懂、明了,人们为了纪念他就把这一证法称为“总统”证法.
问题1:你能说出勾股定理的内容吗?
问题2:伽菲尔德是利用图1验证了勾股定理,你也能利用它验证勾股定理吗?
处理方式:问题1学生可以直接回答,对于问题2学生解决还有一定的难度,教师可先不作出解答,让学生带着疑惑走进课堂.
【教师板书课题:1.1探索勾股定理(2)】
设计意图:上节课仅仅是通过测量和数格子的方法,对具体的直角三角形进行探索发现了勾股定理,对一般的直角三角形仍需进行验证.巧妙引用“总统证法”引出如何验证勾股定理,激起学生的好奇心,点燃学生的求知欲,以景激情,以情促思,引领学生不断探索,不断深入.
二、合作交流,共同验证 活动一:拼图验证勾股定理
活动内容:如图2,是四个全等的直角三角形,两直角边分别为a 和b ,斜边为c.
请你
a
b
b
图1
开动脑筋,用它们拼出一个正方形,对勾股定理进行验证.
处理方式:不要限制学生的思维,留给学生充分的时间和空间,鼓励学生经过尝试、合作、交流、探索多样的拼图方法.教师可参与到学生的讨论中,发现同学们不足的地方,给予提示和指导,之后利用实物投影展示学生的成果,从中选择两种拼图方法为下面进行勾股定理的证明作准备.(课件动画展示拼图过程)
问题1:图3中正方形ABCD 的边长是 ,正方形ABCD 的面积可表示为 .
问题2:图3中正方形ABCD 由四个全等的直角三角形和一个正方形组成,因此正方形
ABCD 的面积还可以表示为 .
问题3:观察两种表示方法,它们表示的是同一个图形,所以结果应 . 问题4:现在,你能验证勾股定理吗? 问题5:利用图4如何验证勾股定理?
处理方式:学生借助问题1、2小组讨论交流各自的表示方法,对比发现两种计算图3面积的结果存在相等的关系,从而化简得出a 2
+b 2
=c 2
成立. 教师巡视,多注意有困难的学生,给出适当的提示和帮助. 对于问题5,学生先独立探究,再小组交流,最后请一位同学上台讲解验证过程.
设计意图:设计这个活动,让学生体会数形结合的思想,通过探究图形的构成,亲身验证勾股定理的正确性,学生的动手、动脑能力得到了加强.图3、图4都能够证明勾股定理,并且这两个图形的证明方法类似,因此师生共同来完成一个即可,剩下的一个由学生独立证明,目的是学以致用,以实践操作强化对知识的理解
.
b
图2
b
b
b
b b
a
a B 图3
图4
C
活动二:拓宽视野,深入了解勾股定理的证法
师:用图4验证勾股定理的方法,据记载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的.事实上,勾股定理的证明方法十分丰富,几千年来,人们已经发现了400多种,其中有一类方法尤为独特,单靠移动几个图形就能直观地证出了勾股定理,被誉为“无字的证明”,我们来欣赏几种!(课件出示)
问题:同学们,你能利用美国总统伽菲德所拼的图形验证勾股定理吗? 处理方式:在教师的介绍下,学生通过欣赏几幅图片,了解中外古人对勾股定理证明的研究.学生尝试独立利用图5验证勾股定理,然后在班内交流展示,教师对学生的方法进行适当的指导.
设计意图:介绍中外古代人们对勾股定理证明的研究,特别
是勾股定理的无字证明,从另一个角度让学生感受勾股定理的证明思路,体会拼图方法的多样性,激发学生的学习兴趣.让学生验证总统证法的正确性,希望学生能关注知识、方法之间的内在联系,通过学生自身的实践活动加深对勾股定理的理解.
活动三:探究只有直角三角形才满足a 2
+b 2
=c 2
.
师:我们已经验证了直角三角形满足的关系,那么锐角三角形和钝角三角形也满足这个关系吗?观察图6,判断图中三角形的三边长是否满足a 2
+b 2
=c 2
.
问题1:利用数格子的方法计算图中正方形的面积分别是多少?
问题2:比较正方形的面积,锐角三角形的三边长满足的关系是什么?钝角三角形的三
a
b
c
b
c a
图6
a
b
图5
边长满足的关系是什么?
处理方式:学生独立进行计算、观察、比较,然后班内交流,师生共同得出结论:锐角三角形中,a 2
+b 2
<c 2
;钝角三角形中,a 2
+b 2
>c 2
;只有直角三角形才满足a 2
+b 2
=c 2
.
设计意图:学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a ,b,c 不满足a 2
+b 2
=c 2
这个结论,学生可以加深对勾股定理的认识,也为下一节直角三角形的判别打下基础.
三、典例解析,形成能力
例:我方侦察员小王在距离东西向公路400m 处侦察,发现一辆敌方汽车在公路上疾驶,他赶紧拿出红外测距仪,测得汽车与他相距400m ,10s 后,汽车与他相距500m ,你能帮小王计算敌方汽车的速度吗?
处理方式:先让学生独立进行解题,然后找一位同学交流自己的解题思路,最后教师利用课件展示规范的解题过程.
解:由勾股定理,得AB 2
=BC 2
+AC 2
,即5002
=BC 2
+4002
,所以BC =300.
敌方汽车10s 行驶了300m ,则1h 行驶的距离为108000m ,所以它行驶的速度为108km/h.
设计意图:为了巩固所学的勾股定理知识,教师逐步引导学生初步运用勾股定理解决实际的问题;强化应用的意识,在应用中体会勾股定理的价值.
四、巩固训练,深化提高
1.如图7,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行 米.
2.如图8是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M 、O 、Q 三城市的沿江高速,已知沿江高速的建设成本是5000万元/千米,该沿江高速的造价预计是多少?
处理方式:学生在练习本上独立完成,完成后各小组组长负责纠正本组完成的题目,最后老师重点讲解.
设计意图: 在例题的基础上进行拓展,培养学生将实际问题转化为数学问题的能力,运用勾股定理解决实际问题的能力
.
图7
图8
五、师生交流,知识升华
同学们,通过这节课的学习相信大家收获颇丰,谁愿意与大家一起分享分享? 学生分享自己的收获.
设计意图:在紧张而热烈的学习之余,需要静下心来,反思自己所学的内容,这是一个对知识沉淀、吸收的过程.在畅谈自己的收获中,不断强化对知识的识记、理解与领悟;同样其他学生在倾听别人的想法、意见、收获的同时,不断丰富自己的知识,取长补短、共同提高.
六、分层挑战,当堂达标 A 组:
1.若△ABC 中,∠C=90°, (1)若a =5,c =13,则b = .
(2)若a :b =3:4,c =20,则a = ,b = . (3)若a =8,c=b +4,则b = ,c = .
2.学校升国旗的一名国旗手发现旗杆上的绳子垂到地面还多1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,旗杆的高是 .
3.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米,小明到达的终止点与原出发点的距离为 米.
B 组:
4.已知直角三角形两边长分别为3和4,则第三边的平方为 .
5.如图,长方形纸片ABCD 中,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =CD =8,BC =AD =10,求EC 的长.
处理方式:由于学生学习程度不一样,设计了两种不同层次的题型,学生可选择适合自己的题组独立完成,完成之后,组内交流、展示结果,师生根据完成的情况,及时给予点评、纠正.
第3题图
A
B
D F
E
C
第5题图
设计意图:当堂检测可及时获知学生对所学知识的掌握情况,落实本课的学习目标.分层设计可让不同程度的同学最大限度地发挥他们的潜力,树立学生学好数学的信心.
七、布置作业,课外延伸
基础题:课本第6页习题1.2 第1、2题.
拓展题:从网上收集有关勾股定理的资料,撰写小论文,与同伴进行交流.
设计意图:及时作业是巩固课堂学习的重要环节,收集资料、整理资料、网络学习是未来公民的基本素质,鼓励学生上网搜集资料,整理成文是发现学生聪明才智的好机会.
板书设计:。

相关文档
最新文档