详细介绍Linux文件I-O的基本情况

合集下载

文件IO操作opencloseread与write函数详解

文件IO操作opencloseread与write函数详解

文件I/O操作open(),close(),read()和write()函数详解1. open()函数功能描述:用于打开或创建文件,在打开或创建文件时能够指定文件的属性及用户的权限等各类参数。

所需头文件:#include <sys/>,#include <sys/>,#include <>函数原型:int open(const char *pathname,int flags,int perms)参数:pathname:被打开的文件名(可包括途径名如"dev/ttyS0")flags:文件打开方式,O_RDONL Y:以只读方式打开文件O_WRONL Y:以只写方式打开文件O_RDWR:以读写方式打开文件O_CREAT:若是改文件不存在,就创建一个新的文件,并用第三个参数为其设置权限O_EXCL:若是利用O_CREAT时文件存在,那么返回错误消息。

这一参数可测试文件是不是存在。

现在open是原子操作,避免多个进程同时创建同一个文件O_NOCTTY:利用本参数时,假设文件为终端,那么该终端可不能成为挪用open()的那个进程的操纵终端O_TRUNC:若文件已经存在,那么会删除文件中的全部原有数据,并且设置文件大小为0 O_APPEND:以添加方式打开文件,在打开文件的同时,文件指针指向文件的末尾,即将写入的数据添加到文件的末尾O_NONBLOCK: 若是pathname指的是一个FIFO、一个块特殊文件或一个字符特殊文件,那么此选择项为此文件的本次打开操作和后续的I/O操作设置非阻塞方式。

O_SYNC:使每次write都等到物理I/O操作完成。

O_RSYNC:read 等待所有写入同一区域的写操作完成后再进行在open()函数中,falgs参数可以通过“|”组合构成,但前3个标准常量(O_RDONL Y,O_WRONL Y,和O_RDWR)不能互相组合。

linux ioctl系统调用的原理-概述说明以及解释

linux ioctl系统调用的原理-概述说明以及解释

linux ioctl系统调用的原理-概述说明以及解释1.引言1.1 概述概述在计算机领域中,ioctl(I/O控制)系统调用是一种用于控制设备的通用接口。

它提供了一种与设备进行交互的方法,允许用户态程序向内核发送各种命令和请求。

ioctl系统调用的设计初衷是为了解决不具有标准化接口的设备的控制问题。

由于不同设备的功能和控制接口可能各不相同,ioctl系统调用提供了一种统一的方式来访问和控制这些设备。

无论是字符设备、块设备还是网络设备,都可以通过ioctl系统调用进行操作和控制。

与其他系统调用相比,ioctl系统调用具有很大的灵活性和通用性。

它的参数非常灵活,可以接受不同的请求和命令,并且可以传递任意类型和大小的数据。

这种设计使得ioctl系统调用能够适用于各种不同的设备和需求,为开发者提供了更多的自由度。

在实际应用中,ioctl系统调用被广泛用于设备驱动程序的开发和应用程序的交互。

例如,在Linux中,网络设备的配置和参数设置、字符设备的状态查询和控制、磁盘驱动的性能优化等都离不开ioctl系统调用。

本文将深入探讨ioctl系统调用的原理和实现机制,帮助读者更好地理解和应用它。

我们将首先介绍ioctl系统调用的基本概念和作用,然后详细讲解ioctl系统调用的调用方式和参数。

最后,我们将探讨ioctl系统调用的实现原理,并进一步探讨其优势和应用场景以及未来的研究和发展方向。

通过本文的阅读,读者将能够全面了解ioctl系统调用的作用和原理,掌握其使用方法和技巧,为开发者在设备控制和通信领域提供重要的参考和指导。

无论是初学者还是有一定经验的开发者,都可以从中获得启发和收益。

让我们一起深入研究和探索ioctl系统调用的奥秘吧!1.2文章结构文章结构部分的内容可以从以下几个方面进行描述:1.2 文章结构本文将按照以下结构进行论述:1. 引言:首先我们会对文章的主题进行简要的概述,介绍Linux ioctl 系统调用的基本概念和作用,以及本文的目的。

linux系统磁盘io极限值

linux系统磁盘io极限值

linux系统磁盘io极限值Linux系统的磁盘IO性能是系统性能的重要组成部分,磁盘IO 性能的优化可以提高系统的整体性能。

本文将介绍Linux系统磁盘IO的基本知识和如何确定磁盘IO的极限值。

一、磁盘IO基本知识磁盘IO是指计算机向磁盘读取数据或写入数据的过程。

在Linux 系统中,磁盘IO分为同步IO和异步IO两种方式。

同步IO是指读写操作需要等待数据传输完成才能返回,异步IO则是读写操作可以立即返回,数据传输过程在后台进行。

磁盘IO的性能参数有多个,包括吞吐量、响应时间、IOPS等。

其中,吞吐量是指单位时间内传输的数据量,响应时间是指IO操作的延迟时间,IOPS(每秒IO操作数)是指在一秒钟内可以完成的随机IO操作数量。

二、确定磁盘IO极限值确定磁盘IO极限值可以通过两个指标:吞吐量和IOPS。

一方面,吞吐量可以反映磁盘IO的总体性能,另一方面,IOPS可以反映磁盘IO的响应速度。

1. 磁盘吞吐量的测量方法磁盘吞吐量可以通过dd命令测量。

dd命令可以读写指定大小的数据块,可以用于测试磁盘的读写速度。

例如,使用以下命令可以测试磁盘的写入速度:dd if=/dev/zero of=test bs=1M count=1000其中,if参数指定输入文件为/dev/zero,of参数指定输出文件为test,bs参数指定每次读写的块大小,count参数指定读写的块数。

完成写入后,可以使用以下命令测试磁盘的读取速度:dd if=test of=/dev/null bs=1M count=1000其中,if参数指定输入文件为test,of参数指定输出文件为/dev/null,bs参数和count参数的含义与上述相同。

2. 磁盘IOPS的测量方法磁盘IOPS可以通过fio命令测量。

fio是一个灵活的IO测试工具,可以模拟不同的IO场景,并提供多种测试参数,包括随机读写、顺序读写、混合读写等。

例如,使用以下命令可以测试磁盘的随机读写IOPS:fio --name=randwrite --ioengine=sync --rw=randwrite--bs=4k --numjobs=32 --size=100M --runtime=60 --time_based 其中,name参数指定测试任务名称,ioengine参数指定IO引擎,rw参数指定读写模式,bs参数指定每次读写的块大小,numjobs参数指定并发读写任务数,size参数指定测试数据大小,runtime参数指定测试的运行时间,time_based参数指定测试按时间计算。

linux设备驱动之pci设备的IO和内存

linux设备驱动之pci设备的IO和内存

linux设备驱动之pci设备的I/O和内存------------------------------------------Pci设备的I/O和内存是一个比较复杂的问题.如下的总线结构:在上图的总线结构中,ethernet设备和pci-pci bridge的同类型资源空间必须要是pci bus0的一个子集例如,pci bus 0的I/O端口资源是0x00CC~0x01CC. Ethernet设备的I/O范围的是0x00CC~0x0xE0.那么pci-pci bridge的I/O端口范围就必须要在0x0xE0~0x01CC之间. 同样,SCSI和VIDEO同类型资源必须要是pci_bus1的子集.pci bus1上有一个pci桥,对应的资源也就是它所连桥上的资源.即pci_bus->self.也就是说,下层总线的资源是它上层总线资源的子集。

上层总线资源是下层总线资源的父集。

其实,每个PCI设备的资源地始地址都是由操作系统设置的.在x86上,都由bios设置好了.假若没有bios的时候,我们应该怎么去设置设备的资源起始范围呢?可能在pci枚举完成之后:1:从根总线开始,设置根总线的资源范围是从0开始,到0xFFFF或者0xFFFFFFFF的最大范围. 2:对其它的设备,可往其资源寄存器全部写入1,就可以求得该资源项的类型和长度.3:设备从根总线的资源那里分得对应长度的资源.4:如果设备是pci-pci bridge,则递归配置它.可能有人会有这样迷惑,对应于上图,如果pci-pci bridge的资源大小是N.而SCSI和video资源范围超过了N怎么办呢?我们必须要注意一点,总线的区间是可以自已设定的,而设备资源的区间是在设计的时候就已经确定好了.也就是说,我们可以更改pci device区间的起始地址,但我们不能改变它的大小.因此,出现了上面所说的这种情况.可能是由bios在处理PCI的时候出现了BUG.我们需要调整总线的资源区间.其实对于pci_bus的资源范围就是它的过滤窗口.对于过滤窗口的作用,我们在枚举的时候分析的很清楚了.CPU访问PC过程是这样的(只有一个根总线和pci-pci bridge过滤窗口功能打开的情况): 1:cpu向pci发出一个I/O请求.首先经过根总线.它会判断是否在它的资源范围内.如果在它的范围,它就会丢向总线所在的每一个设备.包括pci bridge. 如果没有在根总线的资源范围,则不会处理这个请求.2:如果pci设备判断该地址属于它的资源范围,则处理后发出应答4:pci bridge接收到这个请求,它会判断I/O地址是否在它的资源范围内.如果在它的范围,它会把它丢到它的下层子线.5:下层总线经过经过相同的处理后,就会找到这个PCI设备了一个PCI设备访问其它PCI设备或者其它外设的过程:1:首先这个PCI发出一个请求,这个请求会在总线上广播2:如果要请求的设备是在同级总线,就会产生应答3:请求的设备不是在同层总线,就会进行pci bridge.pci桥判断该请求不在它的范围内(目的地不是它下层的设备),就会将它丢向上层.4:这样辗转之后,就能找到对应的设备了经过这样的分析过来,相信对pci bridge的过滤窗口有更深的理解了.Linux中使用struct resource的结构来表示I/O端口或者是设备内存。

linux IO操作

linux IO操作

淮海工学院计算工程学院实验报告书课程名: Linux程序设计题目:实验二:文件I/O操作班级:学号:姓名:评语:成绩:指导教师:批阅时间:年月日一、目的与要求1)掌握Linux中系统调用、文件描述符的基本概念;2)掌握文件I/O的基本系统调用,如open, read, write, lseek, close等;二、实验内容或题目将源文件中最后10KB字节拷贝到目标文件中;三、实验步骤与源程序#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<fcntl.h>#include<sys/types.h>#include<sys/stat.h>#define BUFSIZE 1024#define SRC "/home/hf/hf/src"#define DST "/home/hf/hf/dst"#define OFFSET 10240int main(int argc,char* argv[]){int fd1,fd2;int len;char buffer[BUFSIZE];if ((fd1=open(SRC,O_RDONLY))<=0){perror("Can't open source file");exit(1);}if ((fd2=open(DST,O_CREAT|O_TRUNC|O_WRONLY,0644))<=0) {perror("Can't open source file");exit(-1);}lseek(fd1,-OFFSET,SEEK_END);while((len=read(fd1,buffer,BUFSIZE))>0) {write(fd2,buffer,len);}close(fd1);close(fd2);}四、测试数据与实验结果(可以抓图粘贴)(1)、首先在源文件src写入内容(2)、运行编写的程序文件11109110(3)、查看目的文件dst五、思考题1)文件进行拷贝操作时,程序设置缓冲大小对文件读写效率有何影响?如何确定缓冲大小?请使用代码验证?答:设置缓冲区的大小,然后在缓冲区写入一定大小的数据,然后进行一次性写入。

linux中iotop实现原理

linux中iotop实现原理

linux中iotop实现原理iotop是一个基于Linux系统的I/O监控工具,旨在帮助用户发现和分析系统中的I/O瓶颈和问题。

实现原理:当用户在Linux系统中执行iotop命令时,iotop工具会读取/proc目录下的I/O统计信息,并使用这些数据进行分析和显示。

具体来说,iotop会使用以下两个文件来获取I/O统计信息:1. /proc/diskstats:该文件中包含了磁盘的I/O统计信息,包括每个磁盘的读写操作次数、读写字节数、块设备队列长度等数据。

2. /proc/self/io:该文件中包含了当前进程的I/O统计信息,包括进程的读写操作次数、读写字节数、读写操作等待时间等数据。

通过读取这些文件,iotop可以获得系统中每个进程的I/O使用情况(包括磁盘的I/O使用情况),并将其按照I/O使用率进行排序和显示。

同时,iotop还可以通过参数的设置,实现不同维度的I/O监控,例如:-显示每个进程的I/O使用情况(默认模式);-显示每个磁盘的I/O使用情况(使用-d参数);-显示I/O使用情况的累计值(使用-a参数);-显示I/O使用情况的实时变化(使用-P参数)等。

总之,iotop通过读取系统中的I/O统计信息,结合各种参数的设置,实现了对系统中I/O使用情况的全面监控和分析。

总结:Iotop工具是一个基于Linux系统的I/O监控工具,通过读取/proc目录下的I/O统计信息来实现对系统中I/O使用情况的全面监控和分析。

其主要实现原理是通过读取/proc/diskstats和/proc/self/io等文件来获取系统中每个进程和磁盘的I/O使用情况,并将其排序和显示。

同时,通过参数的设置,可以实现不同维度的I/O监控。

Linux操作系统的基础知识大全

Linux操作系统的基础知识大全

Linux操作系统的基础知识大全对于初学Linux的新手来说,掌握基础知识尤为重要。

下面由店铺整理了Linux操作系统的基础知识大全的相关知识,希望对你有帮助。

Linux操作系统基础知识大全:计算机概述1.计算机接收用户输入指令数据,经过cpu数据与逻辑单元运算处理后,产生或储存成有用的信息--->I/O设备+cpu+处理信息=计算机.2.计算机五大单元:I/O单元内存单元 cpu内部控制单元 cpu内部算术逻辑单元3.cpu中含有指令集->RISC,精简指令集,指令执行时间短性能好->arm系列等.->CISC,复杂指令集,指令处理任务内容丰富->x86系列等.4.主板将所有的设备连接在一起,重要的组件是芯片组->Intel系列cpu主板芯片组->俩个桥接器控制各组件的通信->北桥负责连接速度较快的cpu,内存与显卡等组件. –>南桥负责连接速度较慢的外设。

5.AMD系列cpu为了加速cpu与内存的通信,将内存的控制组件集成在cpu中.这与Intel不同。

6.主板的各组件cpu 内存磁盘设备(IDE/SATA) 总线芯片组显卡接口(PCI-Express) 适配卡7.cpu的外频指的是cpu与外部组件进行数据传输或运算时的速度,倍频则是cpu内部用来加速工作性能的一个倍数,俩者相乘才是cpu的频率8.cpu超频指的是将cpu的外频或倍频通过主板的设定功能更改成更高的频率,倍频出厂时就设置好了,所以通常改的是cpu的外频.9.北桥的总线称为系统总线,是内存的传输主要信道所以速度快.南桥的总线则是I/O总线,用于联系外设.10.北桥所支持的频率我们称为前端总线速度(FSB),每次传送的位数则是总线宽度,每秒可传送的最大数据量->FSB*总线宽度。

11.cpu每次能够处理的数据量称为字组大小,计算机的32/64位设置便是由cpu解析的字组大小而来.12.pc内存的主要组件为动态随机访问内存(Dynamic Random Access Memory),断电数据消失->SDRAM同步动态随机访问内存->DDR SDRAM(double data rate)13.SRAM(Static random accdss memory)静态随机访问内存可集成在cpu内部的作为高速缓存(L2 cache).14.BIOS(basic input output system)是一套开机读取的程序写在主板的ROM中,现在随着计算机的发展,BIOS需要更新所以现在BIOS写在flash memory或eeprom中.15.主板上的各组件参数写在一个cmos芯片中,通过BIOS读取和更新数据.16.显卡(vga graphics array),北桥连接,随着组件的升级,数据传送的频宽原来越大目前的规格是PCI-Express.17.硬盘由许多的盘片,机械手臂,磁头,主轴马达所组成,数据写在磁性盘片上,读写通过机械手臂上的磁头(head)来完成,主轴马达让盘片转动,机械手臂伸展让磁头在盘面上进行读写操作.18.盘面上有多个同心圆绘制的图形,而从圆心以放射状的方式分割出的最小的存储单位就是扇区,每个扇区大小为512bytes,扇区组成的圆就是一个磁道,多盘片上,所有盘面上的磁道可以组成一个柱面,柱面是分割磁盘的最小单位.head*cylinder*sector*512bytes19.硬盘与主机的传输接口(ide sata scsi)ide接口可以接俩个IDE 设备,需要调整跳针设定主从磁盘.sata接口传输速度快易于安装散热装置,scsi接口的硬盘在控制上含有一块处理器运算速度快而且不会耗费cpu资源.20.主板上的芯片组负责计算机所有设备的通信,cpu通过I/O地址识别设备,各设备通过IRQ中断信道告知cpu该设备工作的状态信息以便于cpu进行分配任务.21.CMOS记载主板上的各种重要参数,如system time,cpu频率和电压,各项设备的I/O地址与IRQ中断等,记录这些需要电所以主板上才有电池.BIOS为写入某一闪存活eeprom的程序,开机执行时加载cmos中参数,尝试调用储存设备中的开机程序,进一步进入操作系统中.22.操作系统是管理和控制计算机系统中的软硬件资源,有效利用计算机的软硬件资源为用户提供一个功能强大,稳定的工作环境,从而为计算机和用户之间起到接口作用的一组程序.23.os提供了程序接口和用户接口,程序接口是程序员通过系统调用操作kernel控制硬件运行,编写的应用程序是操作系统提供的开发接口,所有只能运行在该操作系统之上.用户接口则用于用户与计算机交互,可通过GUI和CLI,其中CLI是命令行接口,需配置shell命令解释器,shell也是运行os之上的应用Linux操作系统基础知识大全:linux的规则与安装1.linux os是多用户多任务的操作系统,是类unix操作系统.linux 有内核版本与发行版本.2.linux之前unix的历史,贝尔实验室mulitics系统->ken thompson的unics(汇编)->ritchie写出unix内核(c语言).->bill joy 写出unix分支bsd--只适合自己计算机硬件,无法再其他架构运行(如不能再x86上运行)->minix系统x86架构的类unix系统->torvalds 写出linux内核.3.POSIX(portable operating system interface)可携式操作系统接口,用于规范内核与应用程序之间的接口.4.GNU与GPL,gnu项目和psf自由软件基金会,GPL通用公共许可证.linux是gnu项目所以开源,而当前的redhat等公司卖linux 发行版本卖的不是系统而是卖的服务.5.为了规范linux发行版本的差异,有fhs和lsb规范,所以各大linux发行版本不同的只是开发商的开发的管理工具和定制的软件不同.6.linux下一切皆文件,设备的访问入口也是以文件的形式存放,由目的单一的小程序组成,组合小程序完成复杂的任务,配置文件保存为TXT文本.7.硬件在linux中的文件名, IDE硬盘/dev/hd[a-d], sata或scsi硬盘/dev/sd[a-p].磁盘的第一个扇区保存俩个重要信息,主引导分区MBR[master boot record],446bytes,分区表记录硬盘分区状态有64bytes.系统开机会读取加载mbr,分区表只有64bytes,所以只能容纳4个分区,称为主分区或扩展分区.扩张分区的目的是利用额外的扇区来记录分区信息,扩展分区之下的分区称为逻辑分区.扩展分区只能有一个.8.MBR安装引导加载程序的地方,boot loader安装在这,boot loader是读取内核文件来执行的软件.具有的功能提供选择菜单载入内核文件转交其他loader.9.开机流程,BIOS读取cmos上的参数,读取加载mbr中的boot loader,进入操作系统.引导加载程序可以安装在mbr和引导扇区.10.每个分区都有自己的引导扇区,可开机的内核文件放置在各分区,loader只能识别自己分区的内核文件和其他的loader.loader可以将管理权交给另一个管理程序.11.window和linux的磁盘分区.windows下我们可以通过盘符划分磁盘.假设Windows下只有c可以当做盘符.那我们怎么划分区呢?我们可以在c盘建一个文件夹,然后把其他的分区装入到这个文件夹中,当我们访问我们在c盘建的文件夹是实际上访问的是这个分区。

linux io读写命令

linux io读写命令

linux io读写命令Linux文件I/O操作是指在Linux系统中对文件进行读取、写入和管理的一系列操作。

这些操作包括打开文件、读取文件内容、写入文件内容、关闭文件以及对文件属性进行管理等。

下面将详细介绍Linux文件I/O操作的基本原理和常用函数。

一、文件描述符在Linux中,每个打开的文件都会分配一个唯一的文件描述符(file descriptor),用于标识该文件。

文件描述符是一个非负整数,它代表了进程与文件之间的联系。

在C语言中,文件描述符一般使用整型变量来表示。

二、文件打开和关闭1、打开文件:要对文件进行读取或写入操作,首先需要使用open()函数打开文件,并将返回的文件描述符保存起来。

open()函数的原型如下所示:int open(const char*pathname, int flags); 其中,pathname表示要打开的文件路径,flags表示打开文件时的方式和选项,比如O_RDONLY表示只读方式打开,O_WRONLY表示只写方式打开,O_RDWR 表示读写方式打开等。

open()函数返回一个文件描述符,如果出错则返回-1。

2、关闭文件:在不再需要使用某个文件时,应该使用close()函数关闭文件。

close()函数的原型如下所示:int close(int fd); 其中,fd为要关闭的文件描述符。

关闭文件后,该文件描述符将不再可用,可以被重新利用。

三、文件读写操作1、读取文件:使用read()函数从已打开的文件中读取数据。

read()函数的原型如下所示:ssize_t read(int fd, void *buf, size_t count); 其中,fd为要读取的文件描述符,buf为存放读取数据的缓冲区,count为要读取的字节数。

read()函数返回实际读取的字节数,如果出错则返回-1。

2、写入文件:使用write()函数向已打开的文件中写入数据。

write()函数的原型如下所示:ssize_t write(int fd, const void *buf, size_t count); 其中,fd为要写入的文件描述符,buf为待写入数据的缓冲区,count为要写入的字节数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详细介绍Linux文件I/O的基本情况
文件描述符(File Descriptor)
a small, nonnegative integer for use in subsequent system calls (read(2), write(2), lseek(2), fcntl(2), etc.) ($man 2 open). 一个程序开始运行时一般会有3个已经打开的文件描述符:
0 :STDIN_FIFLENO,标准输入stdin
1 :STDOUT_FILENO,标准输出stdout
2 :STDERR_FILENO,标准错误stderror
fd原理
fd从0开始, 查找最小的未被使用的描述符, 把文件表指针与文件表描述符建立对应关系(VS pid是一直向上涨,满了再回来找)
文件描述符就是一个int, 用于代表一个打开的文件, 但是文件的管理信息不能够不是存放在文件描述符中,当使用open()函数打开一个文件时, OS会将文件的相关信息加载到文件表等数据结构中, 但出于安全和效率等因素的考虑, 文件表等数据结构并不适合直接操作, 而是给该结构指定一个编号, 使用编号来进行操作, 该编号就是文件描述符
OS会为每个进程内部维护一张文件描述符总表, 当有新的文件描述符需求时, 会去总表中查找最小的未被使用的描述符返回, 文件描述符虽然是int类型, 但其实是非负整数, 也就是0~OPEN_MAX(当前系统中为1024), 其中0,1,2已被系统占用,分别表示stdin, stdout,stderror
使用close()关闭fd时, 就是将fd和文件表结构之间的对应关系从总表中移除, 但不一定会删除文件表结构, 只有当文件表没有与其他任何fd对应时(也就是一个文件表可以同时对应多个fd)才会删除文件表, close()也不会改变文件描述符本身的整数值, 只会让该文件描述符无法代表一个文件而已
duplicate fdVS copy fd:dup是把old_fd对应的文件表指针复制给new_fd, 而不是int new_fd=old_fd
UNIX使用三种数据结构描述打开的文件:每个进程中用于描述当前进程打开文件的文件。

相关文档
最新文档