2020新高考数学大题目每日一练6套6周经典汇编
2020年普通高等学校招生全国统一考试模拟六数学理试题Word版含答案

2017年普通高等学校招生全国统一考试模拟试题数学(理科)(六)第丨卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A = {xI(x-2)(x +1) <0},5 = {x G ZI-1 <^< 1},则=A. {—1,0}B. {0,1}C. {—1,0,1}D. {—1,2} 2•方程〃 + 6x +13 = 0的一个根是A. —3 + 2i B・ 3 + 2/ C. —2 + 3/ D・ 2 + 3z3.已知f(x)是定义在R上的偶函数,且在区间(-co,0)上单调递增,若实数"满足/(2M)>/(-V2),实数"的取值范围是A. B.4.如图,设区域Z) = {(^.y)IO<A:<l,O<y<l},向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线y = ^与y =X2所围成阴影区域内的概率是A. -B. -C.丄D.-6 3 2 35.执行如图所示的程序框图,若输出的5 = 86,则判断框内的正整数的值为A.7B. 6,7C. 6,7,8D. &95=1*=■0.6.向量讥满足p +片=2辰,且(方―可门=0,则方』的夹角的余弦值为j=r+2*A. 0B. -C. -D.—3 2 2G古束)第II 卷 (非选择题共90分)二.填空题:本大题共4小题,每小题5分,共20分.10.在体积为*的三棱锥S 一 ABC 中.AB = BC = 2.ZABC = 120 ,SA = SC 9且平面 SAC 丄平面ABC 9若该三棱锥的四个顶点都在同一球面上,则该球的体积为2 211.已知点人迅是双曲线C$-计=1(“>0小>0)的左、右焦点,0为坐标原点,点P 在双曲线C 的右支上,且满足再鸟= 引13|啓则双曲线C 的离心率的取值范围为A. (1,+co)B.1 — 11 — xL X G (—2 ),则函数 g(X)= f(X)-COS7TX 在区间[0,8] 3/(x-2),xe[2,+oo) 内所有零点的和为 A. 16 B. 30 C. 327. 已知等差数列{©}中,S “为其前"项和,若= an 2+4“+a—4(d w R),记数列、孑、n “的前项和为人,则心=&已知aj^c 均为正数,且(d+c)(Z? + c) = 2,则a + 2b+3c 的最小值是A. y/2B. 2>/2C. 4D. 89•某几何体的三视图如下图所示,且该几何体的体积为 芈则正视图和的值为A” B. 2 亦C. £2D.- 320逅兀A. -----------3B.芈C. 20龙 D&12•已知函数/(兀)=彳D. 40C.D.\+y-2<013.已知满足约束条件x-2y-2<0,若2x+y + A:>0恒成立,则实数斤的取值范2x-y+2>0围为________________ .14.若(1 — 2x) = a()+ ciyX + • • • +(x € R) 9则q + 2d? + …+ 201 厶勺仍= _______ •2 215.已知点A,F分别是椭圆C:-^- + p- = l(«>/7>0)的上顶点和左焦点,若AF与圆O:x2+y2=4相切于点T,且点T是线段AF靠近点A的三等分点,则椭圆C的标准方程为________________ .16.若数列{①}满足a2一% > a3 -①> 5 -佝> …〉冷+1 -则称数列{。
2020届高考数学百题精炼系列6(文理合卷) 精品

2020届高考数学百题精炼系列63. 下列结论错误的...是 ( )A .命题“若p ,则q ”与命题“若,q ⌝则p ⌝”互为逆否命题;B .命题:[0,1],1xp x e ∀∈≥,命题2:,10,q x R x x ∃∈++<则p q ∨为真; C .“若22,am bm <则a b <”的逆命题为真命题;D .若q p ∨为假命题,则p 、q 均为假命题.【答案】C【分析】根据命题的知识逐个进行判断即可。
【解析】根据四种命题的构成规律,选项A 中的结论是正确的;选项B 中的命题p 是真命题,命题q 是假命题,故p q ∨为真命题,选项B 中的结论正确;当0m =时,22a b am bm <⇒=,故选项C 中的结论不正确;选项D 中的结论正确。
【考点】常用逻辑用语 【点评】本题属于以考查知识点为主的试题,要求考生对常用逻辑用语的基础知识有较为全面的掌握。
4.求曲线2y x =与y x =所围成图形的面积,其中正确的是( )A.12()S x x dx=-⎰B.12()S x x dx=-⎰C.12()S y y dy=-⎰D.10()S y y dy=-⎰【答案】B【分析】根据定积分的几何意义,确定积分限和被积函数。
【解析】两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[]0,1上,2x x≥,故求曲线2y x=与y x=所围成图形的面12()S x x dx=-⎰。
6.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是()正视图侧视图俯视图O thhtOhtOO thA .B .C .D . 【答案】B【分析】可以直接根据变化率的含义求解,也可以求出函数的解析式进行判断。
【解析】容器是一个倒置的圆锥,由于水是均匀注入的,故水面高度随时间变化的变化率逐渐减少,表现在函数图象的切线上就是其切线的斜率逐渐减少,正确选项B 。
2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第六章 数列 Word版含解析.doc

第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ). A .1盏 B .3盏 C .5盏 D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________.解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①②显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .解析 (1)设数列{}n x 的公比为q ,由已知0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=, 因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以1n n T b b b b =++++=13n n n n ---⨯+⨯+⨯++-⨯++⨯① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯②-①②,得132(n n n T n ----=⨯++++-+⨯=1132(21n n n---+--所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =. 又3123S a a a =++()2117174a q qa =++==,得114a =,所以78132a a q ==.故填32.解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n=,()12n n n S +=,()()112222122311nk kSn n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足1111+n k n kn nn ka aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列. 解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-, 从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N ,使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α; 则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=. 所以()3211311k k k a aα----==,()2311223315111k k k k k a a a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列.2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析(1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k kb na -关于*k ∈N 单调递减.从而{}112211ma x ,,,1n n n c b a n b a n b an b a n=---=-=-, 将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …, (){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++…()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A. 第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时.(1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N .(2)由()111l n 1n n n nx x x x +++=++>,得()()21111114222ln1nnn nn n n nx x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N …. (3)因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x x xx x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。
2021高考数学复习测试大题规范练6套

ax2-1
(1)解:函数 f(x)的定义域为(-∞ ,0)∪(0,+∞ ),f′(x)=
.
bx2
ax2-1
当 a≤0 时,f′(x)=
<0,f(x)在(-∞ ,0),(0,+∞ )上分别递减.
bx2
1
1
( )( ) a x-
ax2-1
当 a>0 时,f′(x)=
=
bx2
a x+ bx2
a ,
令 f′(x)>0,得 x<-
障维护费两种,对生产线设定维护周期为 20 天,即从开工运行到第 20 天(k∈N*)进行正常
维护,正常维护费为 2 千元/周期;在每个维护周期内,若生产线能连续运行,则不收取保 障维护费;若生产线不能连续运行,则收取保障维护费,保障维护费在一个维护周期内只收
费一次,第一个需保障维护的周期收费为 1 千元,在后面的维护周期中,如出现保障维护,
(1)证明:A1D⊥平面 ABC; (2)求二面角 B1-A1B-C1 的余弦值. (1)证明:连接 BD,易知△ ABC 是等边三角形,且 D 为 AC 的中点,则 BD⊥AC, 因为侧面 ACC1A1⊥底面 ABC,侧面 ACC1A1∩ 底面 ABC=AC,BD⊂底面 ABC,
所以 BD⊥侧面 ACC1A1,因为 A1D⊂侧面 ACC1A1,所以 BD⊥A1D, 因为 A1B= 6,BD= 3,所以 A1D= A1B2-BD2= 3, 因为 AD=1,AA1=2,所以 A1D2+AD2=AA21,所以 A1D⊥AC, 因为 AC∩ BD=D,所以 A1D⊥底面 ABC. (2)解:由(1)可知,A1D,AD,BD 两两垂直,所以以 D 为原点,以 BD,AD,A1D 所 在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系,
【每日一练】经典高考数学基础训练(1)(含参考答案)

【每日一练】经典高考数学基础训练(1)(含参考答案)一.选择题:1.复数i 1i,321-=+=z z ,则21z z z ⋅=在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限2.在等比数列{an }中,已知,11=a 84=a ,则=5aA .16B .16或-16C .32D .32或-32 3.已知向量a =(x ,1),b =(3,6),a ⊥b ,则实数x 的值为A .12B .2-C .2D .21-4.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为A .30x y -+=B .30x y --=C .10x y +-=D .30x y ++=5.已知函数()f x 是定义在R 上的奇函数,当0>x 时,()2x f x =,则(2)f -=( )A .14 B .4- C .41-D .46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图, 则甲.乙两人这几场比赛得分的中位数之和是A .62B .63C .64D .65 7.下列函数中最小正周期不为π的是A .x x x f cos sin )(⋅=B .g (x )=tan (2π+x )C .x x x f 22cos sin )(-=D .x x x cos sin )(+=ϕ8.命题“,11a b a b >->-若则”的否命题是A .,11a b a b >-≤-若则B .若b a ≥,则11-<-b aC .,11a b a b ≤-≤-若则D .,11a b a b <-<-若则 9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视 图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______. 三.解答题:已知()sin f x x x =∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.答案11.()11,- 12.52 13.7 14.1-<c 或2>c 三.解答题:解:(1)∵()x x x f cos 3sin +=⎪⎪⎭⎫⎝⎛+=x x cos 23sin 212 …… 2分 ⎪⎭⎫⎝⎛+=3sincos 3cossin 2ππx x …… 4分 ⎪⎭⎫⎝⎛+=3sin 2πx . …… 6分 ∴2T π=. …… 8分 (2) 当13sin =⎪⎭⎫⎝⎛+πx 时, )(x f 取得最大值, 其值为2 . ……10分 此时232x k πππ+=+,即26x k ππ=+∈k (Z ). ……12分。
【每日一练】经典高考数学基础训练(8)(含参考答案)

【每日一练】经典高考数学基础训练(8)(含参考答案)一、选择题:1.已知集合{}10,1,-=M ,{}N x x a b a b A a b ==∈≠,,且,则集合M 与集合N 的关系是 A .M =N B .M N C .M N D .M ∩N =∅ 2.设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, A .0 B .1 C .2 D .33.已知命题;25sin ,:=∈∃x R x p 使.01,:2>++∈∀x x R x q 都有命题给出下列结论: ①命题“q p ∧”是真命题②命题“q p ⌝∧”是假命题 ③命题“q p ∨⌝”是真命题;④命题“q p ⌝∨⌝”是假命题 其中正确的是A .②④B .②③C .③④D .①②③ 4.已知α∈(2π,π),sin α=53,则tan(4πα+)等于 A .71 B .7 C .- 71 D .-7 5.下面是一个算法的程序框图,当输入的x 值为3时, 输出y 的结果恰好是31,则?处的关系式是 A .3x y = B .x y -=3 C .x y 3= D .31x y = 6.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=A .23-B .32-C .32D .23 8.为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像A .向左平移π个长度单位B .向右平移π个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.函数|lg |)(x x x f -=在定义域上零点个数为A .1B .2C .3D .410.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为A .1B .21C .31D .61 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=12.已知抛物线1)0(222222=->=b y a x p px y 与双曲线)0,0(>>b a 有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为A .215+B .12+C .13+D .2122+ 二、填空题:13.已知向量和的夹角为120°,且||=2,||=5,则(2-)·=_____14.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 .15.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}c a n +(0≠c )也是等比数列,则n S 等于 .16.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n ; 其中正确命题的序号是 。
【每日一练】经典高考数学基础训练(9)(含参考答案)

【每日一练】经典高考数学基础训练(9)(含参考答案)一、选择题:1.已知命题,则的否定形式为( )A .B .C .D .2.已知,则的值等于( )A .B .C .D .3.函数的零点所在的大致区间是( )A .B .C .D .4.已知函数,则的值是( )A .B .C .D .5.已知向量,若,则实数的值是( )A .B .C .D .6.在等差数列中,若,则的值为( )A .24B .22C .20D .18 7.若,则下列不等式:①;②;③;④中,正确的不等式是( )A .①②B .②③C .①④D .③④8.若函数在内有极小值,则实数的取值范围是( )A .B .C .D .9.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间(分)的函数关系表示的图象只可能是()10.若实数满足,则的最大值是( )A .0B .1C .D . 9二、填空题:11.准线方程为的抛物线的标准方程是 .12. 已知△ABC 中,角A 、B 、C 的对边分别为,且,那么 .13.过点的直线将圆分成两段弧,其中的劣弧最短时,直线 的方程为 .14.已知函数,在下列四个命题中:①的最小正周期是;②的图象可由的图象向右平移个单位得到;③若,且,则;④直线是函数图象的一条对称轴。
其中正确命题的序号是 (把你认为正确命题的序号都填上).三、解答题:记函数的定义域为集合A,函数的定义域为集合B.(1)求A∩B和A∪B;(含参考答案)一、选择题:1.已知命题,则的否定形式为( )(2)若,求实数的取值范围.答案一、选择题:CABCC ACDBD二、选择题:11.;12.;13.;14.③④三、解答题17.解:(1)依题意,得,………2分,……………………………………………4分∴A∩B,…………………………………………6分A∪B=R.……………………………………………………………………………8分(2)由,得,而,∴,∴.……12分。
【每日一练】经典高考数学基础训练(3)(含参考答案)

【每日一练】经典高考数学基础训练(3)(含参考答案)一、选择题:1.设集合{ EMBED Equation.DSMT4 |{2,1,0,1,2},{|12},()S T x R x S T =--=∈+≤= S 则CA .B .C .D .2.已知向量,若与共线,则等于A .B .C .D .43.函数在=1处的导数等于A .2B .3C .4D .54.设:,:关于的方程有实数根,则是的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数的最小正周期为,则该函数的图象A .关于点对称B .关于直线对称C .关于点对称D .关于直线对称6.一个四边形的四个内角成等差数列,最小角为,则最大角为A .B .C .D .7.函数的零点所在的区间是A .B .C .D .8.函数的值域是A .B .C .D .9.如果我们定义一种运算: 已知函数,那么函数的大致图象是10.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定二、填空题:11.函数的单调减区间是;12.定义在R上的奇函数f(x)满足,若则________;13.知抛物线和双曲线都经过点,它们在轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是.14.设是等比数列的前项和,对于等比数列,有真命题若成等差数列,则成等差数列。
请将命题补充完整,使它也是真命题,命题若成等差数列,则成等差数列(只要一个符合要求的答案即可) 三、解答题已知数列是等差数列,且,是数列的前项和.() 求数列的通项公式及前项和;() 若数列满足,且是数列的前项和,求与.答案一、选择题1.B2.A3.C4.A5.B 6。
A 7.B 8.D 9.B 10.A10.设每支笔x元,每本书y元,有二、填空题:11.(-1,1)12. -1 13.14.案不唯一三、解答题:解:()设数列的公差为,由题意可知:,解得:…………………………3分∴……………………………………5分…………………………………………7分() ………………………………9分……12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
第二组 [80,110)
4
第三组 [110,140)
4
第四组 [140,170)
6
第五组 [170,200)
5
第六组 [200,230)
4
第七组 [230,260)
3
第八组 [260,290]
1
①该市某中学利用每周日的时间进行社会实践活动,以公布的 AQI 为标准,如果
AQI 小于 180,则去进行社会实践活动,以统计数据中的频率为概率,求该校周
星期四(立体几何) ____年____月____日 【题目 4】 如图所示,在四棱锥 P-ABCD 中,PC⊥底面 ABCD,四边形 ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E 是 PB 的中点.
(1)求证:平面 EAC⊥平面 PBC; (2)若二面角 P-AC-E 的余弦值为 6,求直线 PA 与平面 EAC 所成角的正弦值.
3
星期五(函数与导数) ____年____月____日 【题目 5】 已知函数 f(x)=ex-a-aln x.
xx (1)当 a=0 时,求函数 f(x)的单调区间; (2)若函数 f(x)在 x=1 处取得极大值,求实数 a 的取值范围.
星期六(解析几何) ____年____月____日
【题目 6】
星期五(解析几何) ____年____月____日
【题目 5】
已知椭圆 C:ax22+by22=1(a>b>0)的短轴长为 4
2,离心率为1. 3
(1)求椭圆 C 的标准方程;
(2)设椭圆 C 的左、右焦点分别为 F1,F2,左、右顶点分别为 A,B,点 M,N 为
椭圆 C 上位于 x 轴上方的两点,且 F1M∥F2N,直线 F1M 的斜率为 2 6,记直线
星期三(概率与统计) ____年____月____日
【题目 3】 艾滋病是一种危害性极大的传染病,由感染艾滋病病毒(HIV 病毒)引
起,它把人体免疫系统中最重要的 CD4-T 淋巴细胞作为主要攻击目标,使人体
丧失免疫功能.下表是 2011~2018 年我国艾滋病病毒累计感染人数统计表:
年份
2011 2012 2013 2014 2015 2016 2017 2018
星期一(三角函数、解三角形) ____年____月____日 【题目 1】 (开放题)在△ABC 中,a=2 3,b=6,________,求△ABC 的周长 l 及面积 S△ABC. 在①A=30°,②C=30°,③B=60°这三个条件中任选一个,补充在上面问题中并 对其进行求解. 注:如果选择多个条件分别解答,按第一个解答计分.
8
8
8
-
感染人数.参数数据: 42≈6.48;∑i=1yi=449.6,∑i=1xiyi=2 319.5,
∑
i=1
(yi-y)2
=46.2,参考公式:相关系数 r=
n
-
-
∑
i=1
(xi-x)(yi-y)
,
n
-
n
-∑i=1Fra bibliotek(xi-x)2∑i=1
(yi-y)2
n
-
-
回归方程y^=b^ x+a^ 中,b-=∑i=1
22
星期四(概率与统计) ____年____月____日
【题目 4】 资料表明,近几年来,某市雾霾治理取得了很大成效,空气质量与前
几年相比得到了很大改善.该市设有 9 个监测站点监测空气质量指数(AQI),其中
在轻度污染区、中度污染区、重度污染区分别设有 2,5,2 个监测站点,以 9 个
站点测得的 AQI 的平均值为依据,播报该市的空气质量.
4 (1)求 sin C; (2)当 c=2a,且 b=3 7时,求 a.
星期三(概率与统计) ____年____月____日 【题目 3】 某市在 2019 年 2 月份的高三期末考试中对数学成绩数据统计显示, 全市 10 000 名学生的成绩服从正态分布 N(120,25).现某校随机抽取了 50 名学 生的数学成绩分析,结果这 50 名学生的成绩全部介于 85 分至 145 分之间,现将 结果按如下方式分为 6 组,第一组[85,95),第二组[95,105),…,第六组[135, 145],得到如图所示的频率分布直方图.
星期二(数列) ____年____月____日 【题目 2】 若数列{an}的前 n 项和为 Sn,首项 a1>0 且 2Sn=a2n+an(n∈N*). (1)求数列{an}的通项公式; (2)若 an>0,令 bn=an(a4n+2),数列{bn}的前 n 项和为 Tn,若 Tn<m 恒成立,m∈Z, 求 m 的最小值.
星期四(概率与统计) ____年____月____日 【题目 4】 某商家对他所经销的一种商品的日销售量(单位:吨)进行统计,最近 50 天的统计结果如下表:
日销售量 1 1.5 2 天数 10 25 15 频率 0.2 a b
若以上表中频率作为概率,且每天的销售量相互独立. (1)求 5 天中该种商品恰好有两天的销售量为 1.5 吨的概率; (2)已知每吨该商品的销售利润为 2 千元,X 表示该种商品某两天销售利润的和(单 位:千元),求 X 的分布列和数学期望.
星期一(数列) ____年____月____日 【题目 1】 已知{an}是公差不为 0 的等差数列,且满足 a1=2,a1,a3,a7 成等比 数列. (1)求数列{an}的通项公式; (2)设 bn=an+2an,求数列{bn}的前 n 项和 Sn.
星期二(三角函数、解三角形) ____年____月____日 【题目 2】 在锐角△ABC 中,角 A,B,C 所对的边分别为 a,b,c.已知 cos 2C =-3.
AM,BN 的斜率分别为 k1,k2,求 3k1+2k2 的值.
星期六(函数与导数) ____年____月____日
1
【题目 6】
已知函数 f(x)=x2-aln x 的图象在点 2
1,f 2
2
处的切线斜率为 0.
(1)求函数 f(x)的单调区间;
(2)若 g(x)=f(x)+1mx 在区间(1,+∞)上没有零点,求实数 m 的取值范围. 2
星期一(三角函数、解三角形) ____年____月____日
【题目 1】 在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,若 m=
-cos
A,sin 2
A 2
,n=
cos
A,sin 2
A 2
,且 m·n=1.
2
(1)求角 A 的大小;
(2)若 a=2 3,三角形面积 S= 3,求 b+c 的值.
(1)试估计该校数学成绩的平均分数; (2)若从这 50 名学生中成绩在 125 分(含 125 分)以上的同学中任意抽取 3 人,该 3 人在全市前 13 名的人数记为 X,求 X 的分布列和数学期望. 附:若 X~N(μ,σ2),则 P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4, P(μ-3σ<X<μ+3σ)=0.997 4.
【题目 1】
已知函数 f(x)=cos 2x+sin
2x-π 6
.
(1)求函数 f(x)的最小正周期;
(2)若α∈
0,π 2
,f(α)=1,求
cos
2α.
3
星期二(数列) ____年____月____日 【题目 2】 已知等比数列{an}的前 n 项和为 Sn,公比 q>1,且 a2+1 为 a1,a3 的 等差中项,S3=14. (1)求数列{an}的通项公式; (2)记 bn=an·log2an,求数列{bn}的前 n 项和 Tn.
日去进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把该市的空气质量作为一个评价指标,
从当月的空气质量监测数据中抽取 3 天的数据进行评价,设抽取到的 AQI 不小于
180 的天数为 X,求 X 的分布列及数学期望.
星期五(解析几何) ____年____月____日 【题目 5】 已知椭圆ax22+by22=1(a>b>0)上的点到右焦点 F(c,0)的最大距离是 2+ 1,且 1, 2a,4c 成等比数列. (1)求椭圆的方程; (2)过点 F 且与 x 轴不垂直的直线 l 与椭圆交于 A,B 两点,线段 AB 的中垂线交 x 轴于点 M(m,0),求实数 m 的取值范围.
星期二(数列) ____年____月____日
【题目 2】 (开放题)在①b1+b3=a2,②a4=b4,③S5=-25 这三个条件中任选一 个,补充在下面问题中,若问题中的 k 存在,求 k 的值;若 k 不存在,说明理由. 设等差数列{an}的前 n 项和为 Sn,{bn}是等比数列,________,b1=a5,b2=3, b5=-81,是否存在 k,使得 Sk>Sk+1,且 Sk+1<Sk+2? 注:如果选择多个条件分别解答,按第一个解答计分.
____年____月____日
【题目 6】 已知函数 f(x)=(a-x)ex-1,x∈R.
(1)求函数 f(x)的单调区间及极值;
(2)设
g(x)=(x-t)2+
ln
x-m t
2 ,当
a=1
时,存在
x1∈(-∞,+∞),x2∈(0,
+∞),使方程 f(x1)=g(x2)成立,求实数 m 的最小值.
(xi-x)(yi-y) ^ - ^ -
n
-
,a=y-bx.
∑
i=1
(xi-x)2
星期四(立体几何) ____年____月____日 【题目 4】 如图,四边形 ABCD 是菱形,EA⊥平面 ABCD,EF∥AC,CF∥平面 BDE,G 是 AB 中点.