2021届全国天一大联考新高考模拟试卷(七)数学(理科)
2021届全国天一大联考新高考模拟试卷(一)数学(理)试题

2021届全国天一大联考新高考模拟试卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(共12小题,每小题5分,共60分)1.2{|6510}M x x x =-+=,{|1}P x ax ==,若P M ⊆,则a 的取值集合为( ) A. {}2 B. {}3C. {}2,3D. {}0,2,3【答案】D 【解析】 【分析】求出11,32M ⎧⎫=⎨⎬⎩⎭,由{|1}P x ax ==,P M ⊆,可得P ∅=,13P ⎧⎫=⎨⎬⎩⎭或12P ⎧⎫=⎨⎬⎩⎭,由此能求出a 取值集合.【详解】211{|6510},32M x x x ⎧⎫=-+==⎨⎬⎩⎭,{|1}P x ax ==,P M ⊆,P ∅∴=,13P ⎧⎫=⎨⎬⎩⎭或12P ⎧⎫=⎨⎬⎩⎭,0a ∴=或3a =或2a =.a ∴的取值集合为{}0,2,3.故选D .【点睛】本题主要考查集合子集的定义,以及集合空集的定义,意在考查对基础知识的掌握与应用,属于基础题. 2.若复数()122aia R i+∈-的实部和虚部相等,则实数a 的值为( ) A. 1B. 1-C. 16D. 16-【答案】C 【解析】 【分析】直接利用复数代数形式的乘除运算化简,再结合已知条件即可求出实数a 的值.【详解】∵复数()()()()12212221422255ai i ai a ai i i i +++-+==+--+的实部和虚部相等, ∴221455a a -+=,解得a 16=. 故选C .【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可. 【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立, 当αβ⊥时,l β⊥不一定成立, 即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B.【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.4.在区间上随机取两个数,x y,记1p为事件“12x y+≥”的概率,2p为事件“12x y-≤”的概率,3p为事件“12xy≤”的概率,则()A. 123p p p<< B.231p p p<<C. 312p p p<< D.321p p p<<【答案】B【解析】【详解】因为,[0,1]x y∈,对事件“12x y+≥”,如图(1)阴影部分,对事件“12x y-≤”,如图(2)阴影部分,对为事件“12xy≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p<<.(1)(2)(3)考点:几何概型.5.已知数列{}n a的首项为1,第2项为3,前n项和为n S,当整数1n>时,()1112n n nS S S S+-+=+恒成立,则15S 等于 A. 210 B. 211C. 224D. 225【答案】D 【解析】 【分析】结合题目条件,计算公差,证明该数列为等差数列,计算通项,结合等差数列前n 项和公式,计算结果,即可.【详解】结合()1112n n n S S S S +-+=+可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,所以()12121n a n n =+⋅-=-,所以1529a =所以()()11515152911522522a a S ++⋅===,故选D .【点睛】本道题考查了等差数列的通项计算方法,考查了等差数列前n 项和计算方法,难度中等. 6.函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A. B. C.D.【答案】D 【解析】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.7.已知椭圆C :22143x y +=的左右顶点分别为A 、B ,F 为椭圆C 的右焦点,圆224x y +=上有一个动点P ,P 不同于A 、B 两点,直线P A 与椭圆C 交于点Q ,则PBQF k k 的取值范围是( )A. 33044⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭,, B. ()3004⎛⎫-∞-⋃ ⎪⎝⎭,, C. ()()101-∞-,,D. ()()001-∞⋃,,【答案】D 【解析】 【分析】椭圆焦点在x 轴上,由P 在圆224x y +=,则PA PB ⊥,有11,PB PB PA QF QF PA k k k k k k =-=-⋅,设(2cos )Q θθ,求出223(1cos )4cos 2cos 2QF PAk k θθθ-⋅=+-,令cos (1,1)t θ=∈-,224223(1)PB QF k t t k t +-=--,分离常数,求解得出结论.【详解】椭圆C :22143x y +=的左右顶点分别为(2,0),(2,0)A B -,右焦点(1,0)F ,点P 圆224x y +=上且不同于,A B ,11,1,,PB PB PA PB PA QF QF PAk PA PB k k k k k k k ∴⊥⋅=-∴=-=-⋅,设(2cos )Q θθ,223(1cos )2cos 22cos 14cos 2cos 2QF PAk k θθθθθθθ-⋅=⋅=+-+- 令cos (1,1)t θ=∈-,222242222(1)14213(1)31331PB QF k t t t t k t t t +--++=-=⋅=+⋅--- 1111,210,12t t t -<<-<-<<--,(,1)PBQFk k ∈-∞且不等于0. 故选:D.【点睛】本题考查了椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、三角函数求值、函数的性质、换元方法,考查了推理能力和计算能力,属于难题.8.已知实数,x y 满足1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列关系式中恒成立的是( ) A. tan tan x y >B. ()()22ln 2ln 1x y +>+ C.11x y> D. 33x y >【答案】D 【解析】 【分析】根据题意,由指数函数的性质分析可得x >y ,据此结合函数的单调性分析选项,综合即可得答案. 【详解】根据题意,实数x ,y 满足(12)x <(12)y ,则x >y ,依次分析选项:对于A ,y=tanx 在其定义域上不是单调函数,故tanx >tany 不一定成立,不符合题意;对于B ,若0>x>y ,则x 2+2>y 2+2不成立,故ln (x 2+2)>ln (y 2+2)不一定成立,不符合题意;对于C ,当x >y>0时,1x <1y,不符合题意;对于D ,函数y=x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意. 故选D .【点睛】本题考查函数的单调性的应用,关键是掌握并利用常见函数的单调性.9.若函数()(cos )x f x e x a =-在区间,22ππ⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是( )A. ()+∞B. (1,)+∞C. [1,)+∞D. )+∞【答案】D 【解析】 【分析】求得()(cos sin )xf x e x x a =--',把函数的单调性,转化为cos sin 0x x a --≤在区间(,)22x ππ∈-上恒成立,即cos sin ,(,)22a x x x ππ≥-∈-恒成立,利用三角函数的性质,即可求解,得到答案.【详解】由题意,可得()(cos sin )xf x e x x a =--',若()f x 在区间(,)22ππ-上单调递减,则cos sin 0x x a --≤在区间(,)22ππ-上恒成立, 即cos sin ,(,)22a x x x ππ≥-∈-恒成立,令()cos sin sin(),(,)422h x x x x x πππ=-=-∈-,则3(,)444x πππ-∈-,故sin()4x π-的最大值为1,此时42x ππ-=,即4πx =-,所以()h x ,所以a ≥D.【点睛】本题主要考查了利用导数研究函数的单调及其应用,以及三角函数的图象与性质的应用,其中解答中转化为转化为cos sin ,(,)22a x x x ππ≥-∈-恒成立,再利用三角函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别12F F 、,以线段12F F 为直径的圆与双曲线C 在第一象限交于点P ,且2PO PF =,则双曲线的离心率为( )A.1B.C.D. 2【答案】A 【解析】 【分析】由题意知,1290F PF ∠=︒,三角形2POF 为等边三角形,从而可以得到122PF PF c a -=-=,即可求出离心率.【详解】由题意知,1290F PF ∠=︒,212PO OF OF PF c ====,三角形2POF 为等边三角形,则1PF =,2PF c =,则122PF PF c a -=-=,解得1c a ==,1,答案为A. 【点睛】本题考查了双曲线离心率的求法,属于基础题.11.已知直线3402x y ππ+-=经过函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻的最高点和最低点,则将()f x 的图象沿x 轴向左平移8π个单位后得到解析式为( )A. cos 2y x =B. cos2x y =-C. 3sin 28y x π⎛⎫=+ ⎪⎝⎭D. sin 28y x π⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】由直线斜率求出周期,从而得ω,直线与x 轴的交点是函数()f x 的零点,由此可求得ϕ,最后由图象变换可得结论.【详解】直线3402x y ππ+-=的斜率为4k π=-,∴242T π=,T π=,22πωπ==, 直线3402x y ππ+-=与x 轴交点为3(,0)8π,根据对称性,此点是()f x 的零点. ∴33()sin(2)088f ππϕ=⨯+=,又2πϕ<,∴4πϕ=,∴()sin(2)4f x x π=+. ∴将()f x 的图象沿x 轴向左平移8π个单位后得到解析式为sin[2()]cos 284y x x ππ=++=.故选:A .【点睛】本题考查正弦型三角函数的图象与性质,考查三角函数图象变换,解题时注意正弦函数的“五点法”,求三角函数的解析式、性质常常与这五点联系起来.12.我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线2:C y x =,直线l 为曲线C 在点(1,1)处的切线.如图所示,阴影部分为曲线C 、直线l 以及x 轴所围成的平面图形,记该平面图形绕y 轴旋转一周所得的几何体为T .给出以下四个几何体:① ② ③ ④图①是底面直径和高均为1的圆锥;图②是将底面直径和高均为1的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体; 图③是底面边长和高均为1的正四棱锥;图④是将上底面直径为2,下底面直径为1,高为1的圆台挖掉一个底面直径为2,高为1的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体中与T 的体积相等的是( ) A. ① B. ②C. ③D. ④【答案】A 【解析】 【分析】将题目中的切线写出来,然后表示出水平截面的面积,因为是阴影部分旋转得到,所以水平界面面积为环形面积,整理后,与其他四个几何体进行比较,找到等高处的水平截面的面积相等的,即为所求. 【详解】几何体T 是由阴影旋转得到,所以横截面为环形,且等高的时候,抛物线对应的点的横坐标为1x ,切线对应的横坐标为2x()()2,2f x x f x x '==,()12k f '∴==切线为()121y x -=-,即21y x =-,2121,2y x y x +∴==横截面面积2221s x x ππ=-()2211=42y y y ππ⎡⎤+-⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦图①中的圆锥高为1,底面半径为12,可以看成由直线21y x =+绕y 轴旋转得到 横截面的面积为2212y s x ππ-⎛⎫== ⎪⎝⎭.所以几何体T 和①中的圆锥在所有等高处的水平截面的面积相等,所以二者体积相等, 故选A 项.【点睛】本题考查对题目条件的理解和转化,在读懂题目的基础上,表示相应的截面面积,然后进行比较.属于难题.二、填空题(共4小题,每小题5分,共20分)13.261()(21)x x x-+的展开式中4x 项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:()621x +的展开式为:()66616622rrr r rr T C x C x ---+==,当62r -=,4r =时,644642416260T C xx --+==, 当65r -=,1r =时,6116154162192T C x x --+==,据此可得:展开式中4x 项的系数为60192132-=-.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14.在锐角ABC ∆中,角A 、B 、C 所对的边分别为,,a b c ,且A 、B 、C成等差数列,b =则ABC∆面积的取值范围是__________.【答案】 【解析】分析:由A 、B 、C 成等差数列可得3B π=,然后根据正弦定理可得2sin a A =,2sin c C =,在此基础上求得ABC ∆的面积后再根据三角变换可得ABC S ∆=)6A π-+再根据锐角三角形求得62A ππ<<,于是可得面积的取值范围.详解:∵ABC ∆中A 、B 、C 成等差数列, ∴3B π=.由正弦定理得2sin sin sin sin3a cb A C B π====,∴2sin ,2sin a A c C ==, ∴132sin 3sin sin 3sin sin()23ABC S ac B ac A C A A π∆====-23133331cos 23sin (cos sin )sin cos sin sin 22222422A A A A A A A A -=+=+=+⋅ 33333sin 2cos 2sin(2)444264A A A π=++=-+, ∵ABC ∆为锐角三角形,∴022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62A ππ<<. ∴52666A πππ<-<, ∴1sin(2)126A π<-≤, ∴33333sin(2)22644A π<-+≤, 故ABC ∆面积的取值范围是333(,]. 点睛:(1)解决三角形中的范围问题的常用方法:①利用余弦定理并结合基本不等式求解;②结合正弦定理将问题转化为形如sin()y A x ωϕ=+的形式后根据三角函数的有关知识求解.(2)解答本题时容易出现的错误时忽视“锐角ABC ∆”这一条件,从而扩大了角A 的范围.15.如图所示,已知直线AB 的方程为1x y a b+=,⊙C ,⊙D 是相外切的等圆.且分别与坐标轴及线段AB 相切,||AB c =,则两圆半径r =__________(用常数,,a b c 表示).【答案】()2()c a b c a b +-+ 【解析】 【详解】分析:由题得△CDM ∽△BAO ,得2b x r a y r r b a c----==,再利用等式的性质得到两圆半径r . 详解:如图所示,作CM ⊥DM,CE ⊥AB,由△CDM ∽△BAO,得2,.CM DM CD b x r a y r r OB OA AB b a c----==∴== (2)2(),.2()a b x y r a b c r c a b c r a b a b c a b +-+++-+-∴==∴=+++ 故答案为()()2c a b c a b +-+ 点睛:(1)本题主要考查直线和圆的位置关系,考查几何选讲,意在考查学生对这些知识的掌握能力和计算能力. (2)解答本题的关键是得到2b x r a y r r b a c----==的化简,这里利用到了合比的性质,(2)2.a b x y r a b c r a b a b c+-+++-==++ 16.已知两平行平面αβ、间的距离为3A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为__________.【答案】6【解析】设平面ABC 与平面β交线为CE ,取CE AB = ,则0//,4,60AB CE CE ECD =∠=0112343sin 60 6.32A BCD A CDE V V --==⨯⨯⨯⨯=三、解答题(本大题共6小题,共70分.解答应写需给出文字说明,证明过程或演算步骤.) 17.在ABC ∆中,边a b c 、、所对的角分别为、、A B C ,sin sin sin 23sin a A b B c C C a B +-= (1)求角C 的大小;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值【答案】(1)3C π∠=(2)面积的最大值为33【解析】【分析】 (1)由已知及正弦定理可得:22223a b c ab +-=C ,由余弦定理,同角三角函数基本关系式可求tan C 的值,结合范围C ∈(0,π),可得C 的值.(2)由三角形中线长定理得:2(a 2+b 2)=4+c 2,由三角形余弦定理得:c 2=a 2+b 2﹣ab ,消去c 2,结合基本不等式可求ab 43≤,利用三角形面积公式即可计算得解. 【详解】(1)∵由已知及正弦定理可得:22223a b c ab +-=C , ∴由余弦定理可得:22232a b c cosC sinC ab +-==, 即3tanC =∴由C ∈(0,π),可得3C π=.(2)由三角形中线长定理得:2(a 2+b 2)=22+c 2=4+c 2,由三角形余弦定理得:c 2=a 2+b 2﹣ab ,消去c 2得:224423ab a b ab ab -=+≥≤,(当且仅当a =b 时,等号成立), 即1143322323ABC S absinC =≤⨯⨯=. 【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形中线长定理的综合应用,三角形中线长定理主要表述三角形三边和中线长度关系,定理内容为:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍,属于中档题.18.如图,在四面体ABCD 中,平面ABC ⊥平面BCD ,DC BC ⊥,3AB =,2BC =,1AC =.(1)求证:AB AD ⊥;(2)设E 是BD 的中点,若直线CE 与平面ACD 的夹角为30︒,求四面体ABCD 外接球的表面积.【答案】(1)见解析;(2)12π.【解析】试题分析:(1)利用线面垂直的判断定理结合题意(2)利用题意首先求得外接球的半径,然后利用球的表面积公式计算表面积即可.试题解析:(1)由平面ABC ⊥平面BCD ,DC BC ⊥,得DC ⊥平面ABC ,AB CD ∴⊥又由3AB =2BC =,1AC =,得222BC AB AC =+,所以AB AC ⊥故AB ⊥平面ADC ,所以AB AD ⊥(2)取AD 的中点F ,连接EF ,则EF BA //,因为AB ⊥平面ADC EF ∴⊥平面ADC连接FC ,则30ECF ︒∠=,23CE EF AB ∴===又90BAD BCD ︒∠=∠=,所以四面体ABCD 的外接球的半径3R CE ==故四面体ABCD 的外接球的表面积=24312ππ=(向量解法酌情给分). 19.已知过抛物线()2:20E x py p =>焦点F 且倾斜角的60直线l 与抛物线E 交于点,M N OMN ∆的面积为4.(I )求抛物线E 的方程;(II )设P 是直线2y =-上的一个动点,过P 作抛物线E 的切线,切点分别为,A B 直线AB 与直线,OP y 轴的交点分别为,Q R 点,C D 是以R 为圆心RQ 为半径的圆上任意两点,求CPD ∠最大时点P 的坐标.【答案】(I )24x y =;(II )()22,2±-. 【解析】试题分析:(I )抛物线焦点为(,0)2p F ,写出直线l 方程,与抛物线方程联立,消元后可得1212,x x x x +,其中1122(,),(,)M x y N x y ,可再求出原点O 到直线l 的距离d ,由12S MN d =求得p ,也可由1212S x x OF =-求得p ; (II )首先设出点坐标,设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,利用导数几何意义得出两切线方程,代入P 点坐标,从而得直线AB 方程为240tx y -+=,从而可得,R Q 坐标,得QR 的长,而要使CPD ∠最大,则,PC PD 与圆R 相切,这样可求得sin2CPD ∠,最后由基本不等式可得最大值.也可用正切函数求最大值.试题解析:(I )依题意,0,2p F ⎛⎫ ⎪⎝⎭,所以直线l的方程为2p y =+;由2{22p y x py =+=得220x p --=,()222212124160,,p p x x x x p ∆=+=>+==-所以)1212127,8y y x x p p MN y y p p +=++==++=,O 到MN 的距离21,442OMN p d S MN d p ∆=====, 2p ∴=,抛物线方程为24x y =(II )设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由24x y =得2,'42x x y y ==, 则切线PA 方程为()211142x x y x x -=-即21111242x x x y x x y =-=-, 同理,切线PB 方程为222x y x y =-, 把P 代入可得112222{22x t y x t y -=--=-故直线AB 的方程为21x t y -=-即240tx y -+= ()0,2R ∴由240{2tx y y x t -+=-=得2244{84Q Q t x t y t -=+=+,r RQ ∴====,当,PC PD 与圆R 相切时角CPD ∠最大,此时1sin 23CPD r PR ∠===≤,等号当t =± ∴当()2P ±-时,所求的角CPD ∠最大.综上,当CPD ∠最大时点P的坐标为()2±-点睛:在解析几何中由于OMN ∆的边MN 过定点F ,因此其面积可表示为1212S OF x x =-,因此可易求p ,同样在解解析几何问题时如善于发现平面几何的性质可以帮助解题,第(II )小题中如能发现OP AB ⊥则知OP 是圆R 的切线,因此CPD ∠取最大值时,,PC PD 中一条与PO 重合,另一条也是圆的切线,从而易得解.另解:(I )依题意,0,2p F ⎛⎫ ⎪⎝⎭,所以直线l的方程为2p y =+;由2{22p y x py =+=得220x p --=,()222212124160,,p p x x x x p ∆=+=>+==-124x x p -==, 2121422OMN S OF x x p p ∆=-==⇒=,抛物线方程为24x y =. (II )设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由24x y =得2,'42x x y y ==, 则切线PA 方程为()211142x x y x x -=-即21111242x x x y x x y =-=-, 同理,切线PB 方程为222x y x y =-, 把P 代入可得112222{22x t y x t y -=--=-故直线AB 的方程为21x t y -=-即240tx y -+=()0,2R∴由240{2tx yy xt-+=-=得2244{84QQtxtyt-=+=+,()()()22222222216822444Q Qttr RQ x yt tt⎛⎫∴==+-=+-=⎪+⎝⎭++,注意到OP AB⊥2284tPQt+∴=+,2222tan2822RQ tCPD tPQ t t∠∴==≤=+当且仅当28t+即22t=±时等号成立.20.2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)60,80内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.()1求被调查者满意或非常满意该项目的频率;()2若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;()3已知在评分低于60分的被调查者中,老年人占13,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望E ξ.【答案】(1)0.78;(2)12125;(3)23. 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是 ()10.0160.004100.25+⨯==,根据独立重复试验n 次发生k 次的概率公式可得结果;(3)随机变量ξ的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果. 试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在[]60,100的频率为: ()0.0280.030.0160.004100.78+++⨯=;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==, 用样本的频率代替概率,从该市的全体市民中随机抽取1人, 该人非常满意该项目的概率为15, 现从中抽取3人恰有2人非常满意该项目的概率为:223141255125P C ⎛⎫=⋅⋅= ⎪⎝⎭; (3)∵评分低于60分的被调查者中,老年人占13, 又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量ξ的所有可能取值为0,1,2,()023********C C P C ξ⋅=== ()1136291811362C C P C ξ⋅==== ()2036293123612C C P C ξ⋅====ξ的分布列为:ξ的数学期望E ξ 15112012362123=⨯+⨯+⨯=. 21.设函数()ln x f x ae x x =-,其中R a ∈,e 是自然对数的底数.(Ⅰ)若()f x 是0,上的增函数,求a 的取值范围; (Ⅱ)若22ea ≥,证明:()0f x >. 【答案】(Ⅰ)1,e ⎡⎫+∞⎪⎢⎣⎭;(Ⅱ)见解析. 【解析】试题分析:(I )由于函数单调递增,故导函数恒为非负数,分离常数后利用导数求得a 的最小值,由此得到a 的取值范围;(II )将原不等式()0f x >,转化为e ln 0x a x x ->,令()e ln x a F x x x=-,求出()F x 的导数,对x 分成01,1x x ≤两类,讨论函数的最小值,由此证得()0F x >,由此证得()0f x >. 试题解析:(Ⅰ)()()e 1ln x f x a x '=-+,()f x 是()0,+∞上的增函数等价于()0f x '≥恒成立.令()0f x '≥,得1ln e x x a +≥,令()1ln e x x g x +=(0x >).以下只需求()g x 的最大值. 求导得()1e1ln x g x x x -⎛⎫=-'- ⎪⎝⎭, 令()11ln h x x x =--,()2110h x x x'=--<,()h x 是()0,+∞上的减函数, 又()10h =,故1是()h x 的唯一零点,当()0,1x ∈,()0h x >,()0g x '>,()g x 递增;当()1,x ∈+∞,()0h x <,()0g x '<,()g x 递减; 故当1x =时,()g x 取得极大值且为最大值()11e g =,所以1e a ≥,即a 的取值范围是1,e ⎡⎫+∞⎪⎢⎣⎭. (Ⅱ)()0f x >⇔ e ln 0xa x x->. 令()e ln xa F x x x=-(0x >),以下证明当22e a ≥时,()F x 的最小值大于0. 求导得()()21e 1xa x F x x x='-- ()211e x a x x x ⎡⎤=--⎣⎦. ①当01x <≤时,()0F x '<,()()1F x F ≥ e 0a =>;②当1x >时,()()21a x F x x ='- ()e 1x x a x ⎡⎤-⎢⎥-⎢⎥⎣⎦,令()()e 1x x G x a x =--, 则()e x G x '= ()2101a x +>-,又()222e G a =- 2e 20a a-=≥, 取()1,2m ∈且使()2e 1m a m >-,即22e 1e 1a m a <<-,则()()e 1m m G m a m =-- 22e e 0<-=, 因为()()20G m G <,故()G x 存在唯一零点()01,2x ∈,即()F x 有唯一的极值点且为极小值点()01,2x ∈,又()0000e ln x a F x x x =-, 且()()0000e 01x x G x a x =-=-,即()000e 1x x a x =-,故()0001ln 1F x x x =--, 因为()()02001101F x x x =--<-',故()0F x 是()1,2上的减函数. 所以()()02F x F >= 1ln20->,所以()0F x >. 综上,当22ea ≥时,总有()0f x >. 点睛:本题主要考查导数与单调性的关系及恒成立问题,考查利用导数证明不等式的方法,考查化归与转化的数学思想方法.第一问由于已知函数在区间上单调递增,故其导函数在这个区间上恒为非负数,若函数在区间上单调递减,则其导函数在这个区间上恒为非正数.分离常数后可求得a 的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 经过点()0,1P ,倾斜角为6π.在以原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为4sin ρθ=.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A B 、两点,求11PA PB+的值. 【答案】(1)直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数);曲线C 的直角坐标方程为()2224x y +-=;(2)3. 【解析】【详解】试题分析:(1)先根据直线参数方程标准式写直线l 的参数方程,利用y sin ,x cos ρθρθ==化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方程,再根据参数几何意义化简11PA PB+,最后根据韦达定理代入化简求值试题解析:(1)直线l的参数方程为0611162x tcos y tsin t ππ⎧=+=⎪⎪⎨⎪=+=+⎪⎩(t 为参数).即直线l的参数方程为2112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数); ∵4sin ρθ=,∴24sin ρρθ=,∴224x y y +=,即()2224x y +-=, 故曲线C 的直角坐标方程为()2224x y +-=.(2)将l 的参数方程代入曲线C 的直角坐标方程,得230t t --=,显然>0∆, ∴2121,3l t t t t +==-, ∴123PA PB t t ⋅==,12t t PA PB +=-==∴113PA PB PA PB PA PB ++==⋅. 23.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M(2)设,a b M ∈,证明:()()()f ab f a f b >--.【答案】(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110a b -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<.当1x <-时,不等式可化为()12110x x --+++<,解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤,要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+,即证222210a b a b --+>,即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >,∵a b M ∈、,∴221,1a b >>,∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
2021年河南省天一大联考高考数学模拟试卷(理科)

河南省天一大联考高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2≤0},B={(x,y)|x∈A,y∈A},则A∩B=()A.A B.B C.A∪B D.∅2.已知i表示虚数单位,则=()A.1 B.5 C.D.3.在区间[﹣3,3]上随机选取一个实数x,则事件“2x﹣3<0”发生的概率是()A.B.C.D.4.执行如图所示的程序框图,输出的结果为()A.1 B.2 C.3 D.45.已知点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,记C的焦点为F,过点F且与x轴垂直的直线与抛物线交于M,N两点,则线段MN的长为()A.4 B.C.2 D.16.设向量,满足,,则=()A.4 B.8 C.12 D.167.已知变量x,y满足则的最大值为()A.B.C.2 D.18.已知a是大于0的常数,把函数y=a x和的图象画在同一坐标系中,选项中不可能出现的是()A.B.C.D.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4 D.710.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<)的部分图象如图所示,则f()的值为()A.﹣1 B.0 C.1 D.211.设{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,则下列结论正确的是()A.a1008>a1009B.a2016<b2016C.∀n∈N*,1<n<2017,a n>b n D.∃n∈N*,1<n<2017,使得a n=b n 12.已知f(x)=,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为()A.(0,)B.(,e)C.(0,e)D.(e,+∞)二、填空题《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是.14.(2a+b)4的展开式中,a2b3项的系数为.15.三棱锥P﹣ABC的底面ABC是等腰直角三角形,∠A=90°,侧面PAB是等边三角形且与底面ABC垂直,AB=6,则该三棱锥的外接球半径为.16.过双曲线(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐近线截得的线段长为,则该双曲线的离心率为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.(Ⅰ)求AB的长;(Ⅱ)求sinC.18.(12分)如图1,2,E是正方形ABCD的AB边的中点,将△AED与△BEC 分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P﹣CDE.(Ⅰ)求证:平面PED⊥平面PCD;(Ⅱ)求二面角P﹣CE﹣D的余弦值.19.(12分)某金匠以黄金为原材料加工一种饰品,由于加工难度大,该金匠平均每加工5个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响.(Ⅰ)若该金匠加工4个饰品,求其中废品的数量不超过1的概率?(Ⅱ)若该金匠加工了3个饰品,求他所获利润的数学期望.(两小问的计算结果都用分数表示)20.(12分)已知椭圆方程,其左焦点、上顶点和左顶点分别为F,A,B,坐标原点为O,且线段FO,OA,AB的长度成等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若过点F的一条直线l交椭圆于点M,N,交y轴于点P,使得线段MN 被点F,P三等分,求直线l的斜率.21.(12分)已知函数的图象的一条切线为x轴.(Ⅰ)求实数a的值;(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的两个实数x1,x2满足g(x1)=g (x2),求证:x1x2<1.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=sinθ.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)若曲线C1和C2共有四个不同交点,求a的取值范围.[选修4-5:不等式选讲]23.已知a>0,b>0,且.(Ⅰ)求的最小值;(Ⅱ)求a2b的最大值.2017年河南省天一大联考高考数学模拟试卷(理科)(五)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x+2≤0},B={(x,y)|x∈A,y∈A},则A∩B=()A.A B.B C.A∪B D.∅【考点】1E:交集及其运算.【分析】求解一元二次不等式化简集合A,可知A是数集,集合B是点集,则A ∩B是空集.【解答】解:集合A={x|x2﹣3x+2≤0}={x|1≤x≤2},B={(x,y)|x∈A,y∈A}={(x,y)|},∵A为数集,B为点集,∴A∩B=∅.故选:D.【点评】本题考查了集合的定义与运算问题,是基础题.2.已知i表示虚数单位,则=()A.1 B.5 C.D.【考点】A5:复数代数形式的乘除运算.【分析】复数的分子、分母同乘分母的共轭复数,化成a+bi(a、b∈R)的形式,再求其模即可.【解答】解:===﹣﹣i,∴=|﹣﹣i|=,故选:C【点评】本题考查复数代数形式的乘除运算和模的计算,是基础题.3.在区间[﹣3,3]上随机选取一个实数x,则事件“2x﹣3<0”发生的概率是()A.B.C.D.【考点】CF:几何概型.【分析】由题意,利用区间的长度比求概率即可.【解答】解:在区间[﹣3,3]上随机选取一个实数x,对应事件的为区间才6,而满足事件“2x﹣3<0”发生的事件为,由几何概型的公式得到所求概率为;故选B【点评】本题考查了几何概型的概率求法;明确事件的测度为区间的长度是关键.4.执行如图所示的程序框图,输出的结果为()A.1 B.2 C.3 D.4【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b,i的值,当i=3时,满足条件i≥3,退出循环,输出a的值为4.【解答】解:模拟执行程序框图,可得a=,b=1,i=1,不满足条件i≥3,a=,b=,i=2,不满足条件i≥3,a=4,b=1,i=3,满足条件i≥3,退出循环,输出a的值为4.故选:D.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a,b,i的值是解题的关键,属于基础题.5.已知点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,记C的焦点为F,过点F且与x轴垂直的直线与抛物线交于M,N两点,则线段MN的长为()A.4 B.C.2 D.1【考点】K8:抛物线的简单性质.【分析】由抛物线的准线方程,求得p的值,求得抛物线的方程及焦点坐标当x=1时,y=±2,即可求得M和N点坐标,即可求得线段MN的长.【解答】解:由点A(﹣1,﹣2)在抛物线C:y2=2px的准线上,则﹣=﹣1,则p=2,则抛物线方程y2=4x,焦点F(1,0),当x=1时,y=±2,则M(1,2),N(1,﹣2),∴线段MN的长丨MN丨=4,故选:A.【点评】本题考查抛物线的标准方程及简单性质,抛物线的通径求法,考查计算能力,属于基础题.6.设向量,满足,,则=()A.4 B.8 C.12 D.16【考点】9R:平面向量数量积的运算.【分析】分别平方,再相减即可求出答案.【解答】解:∵,,∴||2+2+||2=25,||2﹣2+||2=9,∴4=16,∴=4,故选:A【点评】本题考查了向量的模的计算和向量的数量积公式,属于基础题.7.已知变量x,y满足则的最大值为()A.B.C.2 D.1【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求的最大值.【解答】解:作出不等式组对应的平面区域:的几何意义为区域内的点到P(﹣3,﹣2)的斜率,由图象知,PA的斜率最大,由,得P(﹣2,0),故PA的斜率k==2.故选:C.【点评】本题主要考查线性规划和直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.8.已知a是大于0的常数,把函数y=a x和的图象画在同一坐标系中,选项中不可能出现的是()A.B.C.D.【考点】3O:函数的图象.【分析】0<a<1,x>0,的最小值大于等于2,函数y=a x和的图象不可能有两个交点,可得结论.【解答】解:a>0,是对勾函数,0<a<1,x>0,的最小值大于等于2,函数y=a x和的图象不可能有两个交点,故选D.【点评】本题考查指数函数、对勾函数图象,考查了两个函数图象间的关系,是基础题.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.4 D.7【考点】L!:由三视图求面积、体积.【分析】由三视图可知,直观图是正方体截去两个三棱锥所得,利用所给数据,即可求出体积.【解答】解:由三视图可知,直观图是正方体截去两个三棱锥所得,体积为=,故选A.【点评】本题考查由三视图求体积,考查学生的计算能力,确定直观图的形状是关键.10.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<)的部分图象如图所示,则f()的值为()A.﹣1 B.0 C.1 D.2【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数f(x)的部分图象求出A、B的值,再根据x=时f(x)取得最大值,x=2π时f(x)=0,列出方程组求出ω、φ的值,写出f(x)的解析式,再计算f().【解答】解:由函数f(x)=Asin(ωx+φ)+B的部分图象知,2A=3﹣(﹣1)=4,解得A=2,∴B==1;又x=时,f(x)取得最大值3,∴ω+φ=①;x=2π时,f(x)=0,∴2πω+φ=②;由①②组成方程组,解得ω=,φ=;∴f(x)=2sin(x+)+1,∴f()=2sin(×+)+1=2×(﹣)+1=0.故选:B.【点评】本题考查了函数f(x)=Asin(ωx+φ)+B的图象与性质的应用问题,是基础题.11.设{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,则下列结论正确的是()A.a1008>a1009B.a2016<b2016C.∀n∈N*,1<n<2017,a n>b n D.∃n∈N*,1<n<2017,使得a n=b n【考点】88:等比数列的通项公式;84:等差数列的通项公式.【分析】由{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,推导出a n=n,b n=()n﹣1,由此能求出结果.【解答】解:∵{a n}是等差数列,{b n}是等比数列,且a1=b1=1,a2017=b2017=2017,∴a2017=1+2016d=2017,解得d=1,∴a1018=1+2017=1018,a1019=1+1018=1019,∴a1018<a1019,故A错误;b2017==2017,∴q=,a2016=1+2015=2016,,∴a2016<b2016不一定成立,故B错误;∀n∈N*,1<n<2017,a n=n,,∴a n>b n,故C正确;当a n=n=b n=()n﹣1时,n=1或n=2017,∴不存在n∈N*,1<n<2017,使得a n=b n,故D不正确.故选:C.【点评】本题考查命题真假的判断,考查等差数列、等比数列的性质,考查推理论证能力、运算求解能力,考查转化化归思想,是中档题.12.已知f(x)=,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为()A.(0,)B.(,e)C.(0,e)D.(e,+∞)【考点】54:根的存在性及根的个数判断.【分析】画函数f(x)的图象,利用数形结合的思想探讨方程f2(x)+2a2=3a|f (x)|的根的情况,即可得出结论.【解答】解:f(x)=的图象,如图所示,极小值点x=1,f(1)=e.f(x)>0,方程f2(x)+2a2=3a|f(x)|化为f(x)=a或f(x)=2a;f(x)<0,方程f2(x)+2a2=3a|f(x)|化为f(x)=﹣a或f(x)=﹣2a;∵方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,∴<a<e.故选:B.【点评】本题主要考查函数图象的应用,利用数形结合、函数与方程的相互转化思想解题,属于高档题.二、填空题(2017•河南模拟)《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是6.【考点】84:等差数列的通项公式.【分析】设第一个人分到的橘子个数为a1,由等差数列前n项和公式能求出得到橘子最少的人所得的橘子个数.【解答】解:设第一个人分到的橘子个数为a1,由题意得:,解得a1=6.∴得到橘子最少的人所得的橘子个数是6.故答案为:6.【点评】本题考查等差数列的首项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.(a+2b)(2a+b)4的展开式中,a2b3项的系数为32.【考点】DC:二项式定理的应用.【分析】展开(a+2b)(2a+b)4=(a+2b)[(2a)4+4(2a)3b+6(2a)2b2+4×2a×b3+b4],即可得出a2b3项的系数.【解答】解:(a+2b)(2a+b)4=(a+2b)[(2a)4+4(2a)3b+6(2a)2b2+4×2a×b3+b4],∴a2b3项的系数=8+6×22=32.故答案为:32.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.三棱锥P﹣ABC的底面ABC是等腰直角三角形,∠A=90°,侧面PAB是等边三角形且与底面ABC垂直,AB=6,则该三棱锥的外接球半径为.【考点】LG:球的体积和表面积.【分析】求出P到平面ABC的距离为3,可得球心O到平面ABC的距离,即可求出三棱锥的外接球半径.【解答】解:设球心O到平面ABC的距离为h,则由P到平面ABC的距离为3,可得球心O到平面ABC的距离为h=,∴该三棱锥的外接球半径为=,故答案为.【点评】本题考查三棱锥的外接球半径,考查面面垂直,比较基础.16.过双曲线(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐近线截得的线段长为,则该双曲线的离心率为2或.【考点】KC:双曲线的简单性质.【分析】求出切线方程,与渐近线方程联立,利用该切线与双曲线的两条渐近线截得的线段长为,建立方程,即可得出结论.【解答】解:由题意,切线方程为y=(x+c),与y=x联立,可得(,),与y=﹣x联立,可得(﹣,),∵该切线与双曲线的两条渐近线截得的线段长为,∴(+)2+(﹣)2=3a2,化简求得e=2或.故答案为2或.【点评】本题考查双曲线的方程与性质,考查直线与圆位置关系的运用,考查学生的计算能力,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•河南模拟)如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.(Ⅰ)求AB的长;(Ⅱ)求sinC.【考点】HT:三角形中的几何计算.【分析】(Ⅰ)根据tanθ=,tan2θ=,利用正切函数的二倍角公式,即可求得tanθ,即可求得AB的长;(Ⅱ)sinC=sin(﹣∠BAC)cos∠BAC=cos(θ+2θ),利用二倍角公式即可求得sinC..【解答】解:(Ⅰ)设∠BAD=θ<90°,在Rt△ABD中,tanθ=,AB=,在Rt△ABE中,tan2θ=,AB=,∴=,则5tanθ=2tan2θ,即5tanθ=,即5tan2θ=1,解得(负值舍去),因此.(Ⅱ)由题意知0°<θ<2θ<3θ<90°.因为,则,,则sin2θ=2sinθcosθ=,cos2θ=cos2θ﹣cos2θ=,即,.sinC=sin(﹣∠BAC)cos∠BAC=cos(θ+2θ)=cosθcos2θ﹣sinθsin2θ,=×﹣×=∴sinC=.【点评】本题考查同角三角函数的基本关系,诱导公式,二倍角公式,两角和的余弦公式,考查计算能力,属于中档题.18.(12分)(2017•河南模拟)如图1,2,E是正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P﹣CDE.(Ⅰ)求证:平面PED⊥平面PCD;(Ⅱ)求二面角P﹣CE﹣D的余弦值.【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(Ⅰ)由PE⊥PD,PE⊥PC.得PE⊥平面PCD,即可得平面PED⊥平面PCD.(Ⅱ)设正方形ABCD的边长为2,取DC中点F,连接PF,EF,过点P作PO⊥EF于点O,易证CD⊥PO,PE⊥PF,由EF=2PE=2,得∠PFE=30°且,,.以F为坐标原点建立如图所示的空间直角坐标系,则,C(1,0,0),E(0,2,0),利用向量法求解【解答】解:(Ⅰ)证明:∵∠A=∠B=90°,∴PE⊥PD,PE⊥PC.∵PD交PC于点P,PC,PD在平面PCD内,∴PE⊥平面PCD,∵PE在平面PED内,∴平面PED⊥平面PCD.(Ⅱ)设正方形ABCD的边长为2,取DC中点F,连接PF,EF,过点P作PO⊥EF于点O,易证CD⊥平面PEF,所以CD⊥PO,又CD∩EF=F,所以PO⊥平面CDE,∵PE⊥平面PCD,PF在平面PCD内,∴PE⊥PF,∵EF=2PE=2,∴∠PFE=30°且,,.以F为坐标原点建立如图所示的空间直角坐标系,则,C(1,0,0),E(0,2,0),所以,,设平面PCE的法向量为,则令z=1,得,又平面CDE的一个法向量为,记二面角P﹣CE﹣D的平面角为α,则.【点评】本题考查了空间面面垂直,向量法求二面角,属于中档题.19.(12分)(2017•河南模拟)某金匠以黄金为原材料加工一种饰品,由于加工难度大,该金匠平均每加工5个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响.(Ⅰ)若该金匠加工4个饰品,求其中废品的数量不超过1的概率?(Ⅱ)若该金匠加工了3个饰品,求他所获利润的数学期望.(两小问的计算结果都用分数表示)【考点】CH:离散型随机变量的期望与方差;C5:互斥事件的概率加法公式.【分析】(Ⅰ)依题意,该金匠加工饰品的废品率为,由此利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出他加工的4个饰品中,废品的数量不超过1的概率.(Ⅱ)设X为加工出的成品数,则X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出该金匠所获利润的数学期望.【解答】解:(Ⅰ)依题意,该金匠加工饰品的废品率为,他加工的4个饰品中,废品的数量不超过1的概率为:p=.(Ⅱ)设X为加工出的成品数,则X可能的取值为0,1,2,3,,,,,∴,故该金匠所获利润的数学期望是万元.【点评】本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法及应用,考查推理论证能力、运算求解能力,考查函数与方程思想、化归转化思想,是中档题.20.(12分)(2017•河南模拟)已知椭圆方程,其左焦点、上顶点和左顶点分别为F,A,B,坐标原点为O,且线段FO,OA,AB的长度成等差数列.(Ⅰ)求椭圆的离心率;(Ⅱ)若过点F的一条直线l交椭圆于点M,N,交y轴于点P,使得线段MN 被点F,P三等分,求直线l的斜率.【考点】K4:椭圆的简单性质.【分析】(Ⅰ)依题意有,将其变形可得b=2c,结合椭圆的几何性质以及离心率公式可得,计算可得答案;(Ⅱ)设直线l的方程为y=k(x+c),当k>0时,表示出k和x M、y M,将直线l的方程和椭圆方程联立,解可得x M、y M的值,由斜率公式计算可得k的值,同理分析k<0时可得k的值,综合可得答案.【解答】解:(Ⅰ)依题意有,把上式移项平方并把a2=b2+c2,代入得b=2c,又由a2=b2+c2;所以椭圆的离心率.(Ⅱ)设直线l的方程为y=k(x+c),先研究k>0的情况,要使|MF|=|FP|,则x M=﹣2c,,因此.将直线l的方程和椭圆方程联立可得解得由于点N的横坐标为c,因此|PN|也等于|PF|,同理,当k<0时,由对称性可知k=;直线l的斜率为或.【点评】本题考查椭圆的几何性质,涉及直线与椭圆的位置关系,关键是依据题意,求出椭圆的标准方程.21.(12分)(2017•河南模拟)已知函数的图象的一条切线为x轴.(Ⅰ)求实数a的值;(Ⅱ)令g(x)=|f(x)+f'(x)|,若不相等的两个实数x1,x2满足g(x1)=g (x2),求证:x1x2<1.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)设出切点坐标,得到关于a的方程组,求出a的值即可;(Ⅱ)令,根据函数的单调性求出g(x)的表达式,令G(x)=g(x)﹣g(),根据函数的单调性得到,从而证明结论即可.【解答】解:(Ⅰ),x>0,设切点坐标为(x0,0),由题意得,解得;(Ⅱ)证明:,令,则,当x≥1时,,h'(x)>0,h'(x)又可以写成,当0<x<1时,,h'(x)>0.因此h'(x)在(0,+∞)上大于0,h(x)在(0,+∞)上单调递增,又h(1)=0,因此h(x)在(0,1)上小于0,在(1,+∞)上大于0,且g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,g(1)=0.当x>1时,,记,记函数y=f'(x)的导函数为y=f''(x),则==,故G(x)在(1,+∞)上单调递增,所以G(x)>G(1)=0,所以,不妨设0<x1<1<x2,则,而0<x1<1,,有单调性知,即x1x2<1.【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•河南模拟)在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=sinθ.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)若曲线C1和C2共有四个不同交点,求a的取值范围.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(Ⅰ)利用三种方程的转化方法,求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)由于两方程表示的曲线均关于y轴对称,所以只要关于y的方程有两个大于0的不等实根,即代表两个曲线有4个不同交点,即可求a的取值范围.【解答】解:(Ⅰ)曲线C1的普通方程为x2+(y﹣a)2=4,表示一个以(0,a)为圆心,2为半径的圆;曲线C2的极坐标方程可化为ρ2cos2θ=ρsinθ,故对应的直角坐标方程为y=x2.(Ⅱ)将两方程联立得得y2+(1﹣2a)y+(a2﹣4)=0,由于两方程表示的曲线均关于y轴对称,所以只要关于y的方程有两个大于0的不等实根,即代表两个曲线有4个不同交点,因此有解得.【点评】本题考查三种方程的转化,考查学生分析解决问题的能力,正确转化是关键.[选修4-5:不等式选讲]23.(2017•河南模拟)已知a>0,b>0,且.(Ⅰ)求的最小值;(Ⅱ)求a2b的最大值.【考点】7G:基本不等式在最值问题中的应用.【分析】(Ⅰ)根据题意,由基本不等式可得,进而可得ab 的最大值,由基本不等式分析可得≥,即可得答案;(Ⅱ)根据题意,将变形可得1=+=++,由基本不等式分析可得答案.【解答】解:(Ⅰ)由,可得,,当且仅当时等号成立,因此的最小值为8.(Ⅱ)因为,即3•≤1,变形可得,即a2b的最大值为,当且仅当,即且时,等号成立.【点评】本题考查基本不等式的应用,注意基本不等式成立的条件.。
2021届全国天一大联考新高考模拟试卷(一)理科数学试题

2021届全国天一大联考新高考模拟试卷(一)数学试题(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B R = C. {|1}AB x x =>D. AB =∅【答案】A 【解析】∵集合{|31}xB x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A2.已知函数1()3()3x xf x =-,则()f xA. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【答案】A 【解析】分析:讨论函数()133xxf x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xx f x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xx xx x xf x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xx y ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.3.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( ) A. 1i + B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.4.已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y m = 的图象有且只有一个交点,则正实数m 的取值范围是A. (0,1])⋃+∞B. (0,1][3,)⋃+∞C. )⋃+∞D. [3,)⋃+∞【答案】B 【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =+∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m 上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B. 【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A. sin y x = B. ln y x =C. xy e =D. 3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件; 当y =lnx 时,y ′1x=>0恒成立,不满足条件; 当y =e x 时,y ′=e x >0恒成立,不满足条件; 当y =x 3时,y ′=3x 2>0恒成立,不满足条件;故选A .考点:导数及其性质.6.若3cos()45πα-=,则sin 2α=( ) A. 725 B. 15C. 15-D. 725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D. 【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos(2x+π6)=sin(2x+2π3)的图象,即曲线C2,故选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言. 函数sin()()y A x x Rωϕ=+∈是奇函数π()k k Zϕ⇔=∈;函数sin()()y A x x Rωϕ=+∈是偶函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是奇函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是偶函数π()k k Zϕ⇔=∈.8.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩则z=2x+y的最小值是()A. -15B. -9C. 1D. 9【答案】A【解析】【分析】作出不等式组表示的可行域,平移直线z=2x+y,当直线经过B(-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B(-6,-3)处取得最小值z min=-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.9.已知F为抛物线2:4C y x=的焦点,过F作两条互相垂直的直线12,l l,直线1l与C交于A B、两点,直线2l与C交于D E、两点,则|||||AB DE+的最小值为()A. 16B. 14C. 12D. 10【答案】A 【解析】 【分析】根据12l l ⊥,要使|||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1时,取得最小值.【详解】解法一:如图所示因为12l l ⊥,直线1l 与C 交于A B 、两点,直线2l 与C 交于D E 、两点,要使||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1, 又直线2l 过点()1,0,所以直线2l 的方程为1y x =-,联立方程组241y x y x ⎧=⎨=-⎩,得2440y y --=,12124,4y y y y +==-,所以()212121222111148DE y y y y y y k k=+-=++-=,所以|||||AB DE +的最小值为16. 故选:A解法二:设AB 为(1)y k x =-,DE 为1(1)y x k=--.分别代入抛物线方程得:2222(24)0k x k k -++=⋯(1),22(24)10x k x -++=⋯(2).由于21234242()2()44482416AB DE x x x x k k+=+++++=+++>=+⨯=.此时2244k k=,1k =或1k =-,故选:A .【点睛】本题主要考查抛物线的几何性质直线与抛物线的位置关系,弦长公式等,还考查了运算求解的能力,属于中档题.10.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A. 1- B. 32e -- C. 35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a ex ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦', 因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e-=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法: (1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A. 3 B. 22C. 5D. 2【答案】A 【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos αβ=-=cos cos βα=-=, 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=- 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .14.已知函数f (x )=23,12,1x x x x x x ⎧-+≤⎪⎨+>⎪⎩,设a ∈R ,若关于x 的不等式f(x)2x a ≥+在R 上恒成立,则a 的取值范围是__ 【答案】﹣4716≤a ≤2 【解析】 【分析】先求画出函数()f x 的图像,然后对2y x a =+的图像进行分类讨论,使得2y x a =+的图像在函数()f x 的图像下方,由此求得a 的取值范围.【详解】画出函数()f x 的图像如下图所示,而,22222xa x a x y a x a a ⎧+≥-⎪⎪=+=⎨⎛⎫⎪-+<- ⎪⎪⎝⎭⎩,是两条射线组成,且零点为2x a =-.将2x y a =+向左平移,直到和函数()f x 图像相切的位置,联立方程22x y a y x x ⎧=+⎪⎪⎨⎪=+⎪⎩消去y 并化简得2240x ax -+=,令判别式24160a ∆=-=,解得2a =.将2xy a =+向右平移,直到和函数()f x 图像相切的位置,联立方程223x y a y x x ⎧⎛⎫=-+⎪ ⎪⎝⎭⎨⎪=-+⎩消去y 并化简得2302x x a -++=,令判别式()14304a ∆=-+=,解得4716a =-.根据图像可知47,216a ⎡⎤∈-⎢⎥⎣⎦【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如y ax b =+函数的图像,是,0b a ⎛⎫-⎪⎝⎭引出的两条射线. 15.设抛物线22{2x pt y pt==(0p >)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(,0)2C p ,AF 与BC 相交于点E ,若||2||CF AF =,且ACE ∆的面积为32则p 的值为__________. 6 【解析】试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则2A y =,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==, 所以262CEFCEAS S==92ACFAECCFESSS=+=所以132922p ⨯=6p =【考点】抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点的距离时,一般运用定义转化为到准线的距离进行处理. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF|=x 0+2p;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长|AB|=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.16.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤.17.已知函数()()22f x sin x cos x 23sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】 【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值. (Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间. 【详解】(Ⅰ)f (x )=sin 2x ﹣cos 2x 23-sin x cos x , =﹣cos2x 3-sin2x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,. 【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18. 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.【答案】(1)取出1球为红球或黑球的概率为3.4(2)取出1球为红球或黑球或白球的概率为11.12【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率19.(2017新课标全国Ⅲ理科)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)见解析;(2)7 .【解析】试题分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直;(2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角D–AE–C的余弦值7试题解析:(1)由题设可得,ABD CBD ≌△△,从而AD DC =. 又ACD 是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC 是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB 中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得312E ⎛⎫ ⎪ ⎪⎝⎭. 故()()311,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设(),,n x y z =是平面DAE 的法向量,则00n AD n AE ⎧⋅=⎨⋅=⎩,,即0,310.2x z x y z -+=⎧⎪⎨-+=⎪⎩可取3⎛⎫= ⎪ ⎪⎝⎭n .设m是平面AEC的法向量,则m ACm AE⎧⋅=⎨⋅=⎩,,同理可取()0,1,3=-m.则7cos,⋅==n mn mn m.所以二面角D-AE-C的余弦值为7.【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与,m n互补或相等,故有cos cos,m nm nm nθ⋅==.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20.如图,已知抛物线2x y=.点A1139-2424B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P(x,y)13-x22⎛⎫⎪⎝⎭<<,过点B作直线AP的垂线,垂足为Q(I)求直线AP斜率的取值范围;(II)求PA?PQ的最大值【答案】(I)(-1,1);(II)2716.【解析】试题分析:本题主要考查直线方程、直线与抛物线位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分.(Ⅰ)由斜率公式可得AP的斜率为12x-,再由1322x-<<,得直线AP的斜率的取值范围;(Ⅱ)联立直线AP与BQ的方程,得Q的横坐标,进而表达||PA与||PQ的长度,通过函数3()(1)(1)f k k k=--+求解||||PA PQ⋅的最大值.试题解析:(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA1)2x +1)k +, |PQ2)Q x x -=所以3(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2'()(42)(1)f k k k =--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.21.已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+- 【答案】(Ⅰ) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥, 下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x',可得202.a x x n n'=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 选修4-4:坐标系与参数方程22.11,23x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)被曲线cos ,3x y θθ=⎧⎪⎨=⎪⎩(θ为参数)所截得的弦长.【答案】2 【解析】 【分析】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得到直角坐标方程,然后将11,22x t y t⎧=-⎪⎪⎨⎪=⎪⎩代入曲线的直角坐标方程,再利用直线参数方程的几何意义求弦长.【详解】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得2213y x +=,将11,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入2213y x +=并整理得:220t t -=,解得120,2t t ==, 所截得的弦长为122t t -=【点睛】本题主要考查参数方程与直角坐标方程的转化,以及直线参数方程的几何意义,还考查了运算求解的能力,属于中档题.选修4-5:不等式选讲23.设0,0x y >>,已知1x y +=,求2223x y +的最小值. 【答案】65【解析】 【分析】根据柯西不等式的性质求解.【详解】由柯西不等式得()()222222231x yx y ⎡⎤+⋅+≥=+=⎢⎥⎢⎥⎣⎦所以226235x y +≥,当且仅当23x y =,即32,55x y ==时,取等号.所以2223x y +的最小值为65【点睛】本题主要考查柯西不等式的性质,还考查了转化化归的思想和运算求解的能力,属于基础题.。
2021届全国天一大联考新高考模拟试卷(七)历史试题

2021届全国天一大联考新高考模拟试卷(七)历史试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第I卷(选择题)1.有人在《春秋天事表·楚令尹表》中作了统计,春秋之世楚国26个令尹,除1人外,其余25人全部出自楚王族贵族。
越往后,楚令尹的挑选范围越窄,只限于王子、王孙范围。
这种变化说明当时的楚国A. 选官制度发生重大变革B. 血缘纽带不再发生作用C. 分封制得到了贯彻执行D. 权力向集中的方向发展【答案】D【解析】【分析】【详解】根据材料“春秋之世楚国26个令尹,除1人外,其余25人全部出自楚王族贵族”“只限于王子、王孙范围”等信息结合所学可知,令尹相当于楚国的丞相,26个令尹中25个出自王族,越往后越限于王子、王孙出任,丞相的任用限于王族,说明权力向集中的方向发展,D项正确;战国时期选官制度的变化主要是在秦国,由世卿世禄制度转变为军功爵制,A项错误;王子、王孙是典型的王族成员,不能说血缘纽带不再发生作用,B项错误;题干没有提及分封制的执行情况,C项错误。
2021-2022学年全国版天一大联考高考数学一模试卷含解析

2021-2022高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米B .63厘米C .69厘米D .76厘米2.已知0x >,a x =,22xb x =-,ln(1)c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<3.设m ,n 为直线,α、β为平面,则m α⊥的一个充分条件可以是( ) A .αβ⊥,n αβ=,m n ⊥ B .//αβ,m β⊥ C .αβ⊥,//m β D .n ⊂α,m n ⊥4.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( )A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)5.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .6.抛物线23x ay =的准线方程是1y =,则实数a =( )A .34- B .34C .43-D .437.若,则( )A .B .C .D .8.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .10.已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>11.公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟先他10米,当阿基里斯跑完下-个10米时,乌龟先他1米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.1米时,乌龟爬行的总距离为( )A .5101900-米B .510990-米C .4109900-米D .410190-米12.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .10102021二、填空题:本题共4小题,每小题5分,共20分。
2021届全国天一大联考新高考模拟考试数学(理科)试题

2021届全国天一大联考新高考模拟考试理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、保持卡面清洁,不折叠,不破损。
7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|1},{|0}A x x B x x ≤==<,则()RA B ⋃=( )A. {|1}x x ≥B. {|1}x x >C. {|1x x <-或01}x ≤< D . {|1x x ≤-或01}x <≤【答案】B 【解析】 【分析】先利用一元二次不等式的解法化简集合A ,再求A 与B 的并集,然后再求补集即可. 【详解】因为2{|1}={|11}A x x x x =-≤≤,{|0}B x x =<,所以={|1}A B x x ≤,所以(){|1}RA B x x =>.故选:B【点睛】本题主要考查集合的基本运算以及一元二次不等式的解法,还考查了运算求解的能力,属于基础题.2.在等比数列{}n a 中,363,6a a ==,则9a =( ) A.19B.112C. 9D. 12【答案】D 【解析】 【分析】根据等比数列下标和性质计算可得;【详解】解:因为等比数列的性质,369,,a a a 成等比数列,即9623a a a =⋅,所以392636312a a a =÷=÷=.故选:D【点睛】本题考查等比数列的性质的应用,属于基础题. 3.设复数() ,z x yi x R y =+∈,下列说法正确的是( ) A. z 的虚部是yi ; B. 22||z z =;C. 若0x =,则复数z 为纯虚数;D. 若z 满足|1|z i -=,则z 在复平面内对应点(),x y 的轨迹是圆. 【答案】D 【解析】 【分析】根据复数的相关概念一一判断即可;【详解】解:z 的实部为x ,虚部为y 所以故A 错;2222i z x y xy =++,222||z x y =+,所以B 错;当00x y ==,时,z 为实数,所以C 错;由|1|z i -=得||1x yi i +-=,|(1)|1x y i ∴+-=,22(1)1x y ∴+-=,所以D 对. 故选:D【点睛】本题考查复数的相关概念的理解,属于基础题.4.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有( ) A. 8种 B. 9种C. 12种D. 14种【答案】D【解析】 【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果. 【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故选:D.【点睛】本题考查分类计数原理,考查间接法求选法数,属于基础题目. 5.若sin 831πθ⎛⎫+= ⎪⎝⎭,则sin 24πθ⎛⎫-= ⎪⎝⎭( ) A. 29-B.29C. 79-D.79【答案】C 【解析】 【分析】利用诱导公式和二倍角公式可化简求得结果.【详解】227sin 2sin 2cos 212sin 14424899πππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-+=-++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:C .【点睛】本题考查利用诱导公式和二倍角公式求值的问题,考查基础公式的应用.6.田径比赛跳高项目中,在横杆高度设定后,运动员有三次试跳机会,只要有一次试跳成功即完成本轮比赛.在某学校运动会跳高决赛中,某跳高运动员成功越过现有高度即可成为本次比赛的冠军,结合平时训练数据,每次试跳他能成功越过这个高度的概率为0.8(每次试跳之间互不影响),则本次比赛他获得冠军的概率是( ) A. 0.832 B. 0.920C. 0.960D. 0.992【答案】D 【解析】 【分析】根据相互独立事件的概率公式求出三次试跳都没成功的概率,由对立事件的概率公式可得其获得冠军的概率;【详解】解:三次试跳都没成功的概率为30.2=0.008,所以他获得冠军的概率是10.0080.992-=. 故选:D【点睛】本题考查相互独立事件的概率公式的应用,属于基础题.7.已知5log 2a =,0.5log 0.2b =,()ln ln 2c =,则a 、b 、c 的大小关系是( ) A. a b c << B. a c b <<C. b a c <<D. c a b <<【答案】D 【解析】 【分析】利用对数函数的单调性比较a 、b 、c 与0和1的大小关系,进而可得出a 、b 、c 三个数的大小关系. 【详解】555log 1log 2log 5<<,则01a <<,0.50.5log 0.2log 0.51b =>=,ln1ln 2ln e <<,即0ln 21<<,()ln ln 2ln10c ∴=<=.因此,c a b <<. 故选:D.【点睛】本题考查对数式的大小比较,一般利用对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.8.已知直线a 和平面α、β有如下关系:①αβ⊥;②//αβ;③a β⊥;④//a α.则下列命题为真的是( )A. ①③⇒④B. ①④⇒③C. ③④⇒①D. ②③⇒④【答案】C 【解析】 【分析】利用面面垂直的性质可判断A 选项的正误;由空间中线面位置关系可判断B 选项的正误;利用线面垂直的判定定理和线面平行的性质定理可判断C 选项的正误;利用面面平行的性质可判断D 选项的正误. 【详解】对于A 选项,由①③可知,//a α或a α⊂,A 错; 对于B 选项,由①④可知,a 与β的位置关系不确定,B 错; 对于C 选项,过直线a 作平面γ,使得b γα⋂=,//a α,则//a b ,a β⊥,b β∴⊥,b α⊂,αβ∴⊥,C 对;对于D 选项,由②③可知,a α⊥,D 错. 故选:C.【点睛】本题考查空间中有关线面位置关系命题真假的判断,考查推理能力,属于中等题.9.如图,为测量某公园内湖岸边,A B 两处的距离,一无人机在空中P 点处测得,A B 的俯角分别为,αβ,此时无人机的高度为h ,则AB 的距离为( )A. ()222cos 11sin si s n s n in i hβααβαβ-+- B. ()222cos 11sin si s n s n in i hβααβαβ-++C. ()222cos 11cos co c s c s os o h βααβαβ-+- D. ()222cos 11cos co c s c s os o hβααβαβ-++【答案】A 【解析】 【分析】设点P 在AB 上的投影为O ,在Rt △POB 中,可得sin hPB β=,再结合正弦定理和三角恒等变换的公式,化简求得AB ,得到答案.【详解】如图所示,设点P 在AB 上的投影为O ,在Rt △POB 中,可得sin hPB β=, 由正弦定理得sin()sin AB PBαβα=-,所以sin()sin()=sin sin sin PB h AB αβαβαβα⋅-⋅-=222222sin ()(sin cos cos sin )sin sin sin sin h h αβαβαββαβα--= 222222sin cos cos sin 2sin cos cos sin =sin sin h αβαβαβαββα+- 2222cos cos 2cos cos =sin sin sin sin h αββααβαβ+-22221sin 1sin 2cos cos =sin sin sin sin h αββααβαβ--+-22112cos cos 2sin sin sin sin h βααβαβ=+--22112sin sin 2cos cos sin sin sin sin h αβαβαβαβ+=+- 22112cos()sin sin sin sin h αβαβαβ-=+-故选:A.【点睛】本题主要考查了解三角形的实际应用,其中解答中结合图象把实际问题转化为数学问题,合理利用正弦定理求解是解答的关键,注重考查了推理与运算能力.10.过抛物线()2:20C x py p =>的焦点F 的直线交该抛物线于A B 、两点,若3AF BF =,O 为坐标原点,则AFOF=( ) A.43B.34C. 4D.54【答案】A 【解析】 【分析】画出图像,分别作,A B 关于准线的垂线,再根据平面几何的性质与抛物线的定义求解即可.【详解】如图,作分别作,A B 关于准线的垂线,垂足分别为,D E ,直线AB 交准线于C .过A 作BE 的垂线交BE 于G ,准线与y 轴交于H .则根据抛物线的定义有,AF AD BF BE ==.设AF AD t ==,3BF BE t ==,故2BG t =,4AB t =,故1cos 2BG ABG AB ∠==. 故26BC BE t ==,故FH 是CBE △边BE 的中位线,故113244OF FH BE t ===.故4334AFt t OF==.故选:A【点睛】本题主要考查了利用平面几何中的比例关系与抛物线的定义求解线段比例的问题,需要根据题意作出对应的辅助线,利用边角关系求解,属于中档题.11.函数()()sin f x x ωϕ=+的部分图象如图中实线所示,图中的圆C 与()f x 的图象交于M 、N 两点,且M 在y 轴上,则下列说法中正确的是( )①函数()f x 的图象关于点4,03⎛⎫ ⎪⎝⎭成中心对称;②函数()f x 11,26--⎛⎫⎪⎝⎭上单调递增; ③圆C 的面积为3136π. A. ①② B. ①③C. ②③D. ①②③【答案】B 【解析】 分析】先求出函数()y f x =的解析式,验证403f ⎛⎫= ⎪⎝⎭可判断①的正误;利用正弦函数的单调性可判断②的正误;求出圆C 的半径,利用圆的面积可判断③的正误.【详解】由圆对称性,正弦函数的对称性得1,03⎛⎫ ⎪⎝⎭为函数()y f x =的一个对称中心,所以周期112136T ⎛⎫=⨯+= ⎪⎝⎭,22T πωπ∴==,又函数()y f x =的图象过点1,06⎛⎫-⎪⎝⎭,则1sin 063f πϕ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,且函数()y f x =在16x =-附近单调递增,所以,()23k k Z πϕπ-=∈,可取3πϕ=.所以,()i 2s n 3x f x ππ⎛⎫=+⎪⎝⎭. 084s =33in 3f ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭成立,所以①对; 当1126x -<<-时,22033x πππ-<+<,所以,函数()y f x =在区间11,26--⎛⎫ ⎪⎝⎭上不单调,所以②错;当0x =时,得点M 的坐标为⎛ ⎝⎭,所以圆的半径为MC ==,则圆的面积为3136π,所以③对. 故选:B.【点睛】本题考查利用正弦函数的基本性质求解析式,同时也考查了正弦型函数的对称性和单调性的判断,考查推理能力与计算能力,属于中等题. 12.函数()()2R mxmx f x ee x mx m -=++∈-的图象在点()()()()1111,,,A xf x B x f x --处两条切线的交点0(P x ,0)y 一定满足( ) A. 00x = B. 0x m = C. 00y = D. 0y m =【答案】A 【解析】 【分析】根据函数()()2R mxmx f x ee x mx m -=++∈-,求导,然后利用导数的几何意义,分别写出在点()()()()1111,,,A x f x B x f x --处的切线方程,再联立求解即可.【详解】因为函数()()2R mxmx f x ee x mx m -=++∈-,所以()2mx mxf x me mex m -'=-+-, 所以()11112-'=-+-mx mx f x me me x m ()11112-'-=---mx mx f x me me x m所以()()112111R -=++∈-mx mx f x ee x mx m ,()()112111+R --=++∈mx mxf x e e x mx m又因为在点()()()()1111,,,A x f x B x f x --处的切线方程分别为:()()()()()()111111,y f x f x x x y f x f x x x ''-=---=-+,联立消去y 得:()()1111211112+---+--++-mx mx mx mx me me x m x x e e x mx ,()()111121111+2--=--++-++mx mx mx mx me me x m x x e e x mx .解得0x =. 故选:A【点睛】本题主要考查导数的几何意义以及直线的交点,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线22221(00)y x a b a b-=>>,的离心率为2,则该双曲线的渐近线方程为______. 【答案】y x =± 【解析】 【分析】根据离心率公式和双曲线的,,a b c 的关系进行求解【详解】由题知:2222⎧==⎪⇒=⎨⎪=+⎩c e a b ac a b,双曲线的渐近线方程为y x =± 故答案为y x =±【点睛】本题考查双曲线渐近线的求法,解题时要熟练掌握双曲线的简单性质 14.执行如图所示的程序框图,若输入[]1,3t ∈-,则输出s 的取值范围是____________.【答案】[0,1] 【解析】 【分析】分别在[)1,1t ∈-和[]1,3t ∈两种情况下,根据指数函数和对数函数的单调性求得值域,取并集得到所求的取值范围.【详解】当[)1,1t ∈-时,1t s e -=,1t s e -=在[)1,1-上单调递增,)2,1s e -⎡∴∈⎣;当[]1,3t ∈时,3log s t =,3log s t =在[]1,3上单调递增,[]0,1s ∴∈;综上所述:输出的[]0,1s ∈. 故答案为:[]0,1.【点睛】本题以程序框图为载体考查了指数函数和对数函数值域的求解问题,关键是能够通过分类讨论得到函数的单调性,进而确定所求值域.15.已知向量()0,1,||7,1,AB AC AB BC ==⋅=则ABC ∆面积为____________.【答案】2【解析】 【分析】根据()0,1=AB ,1AB BC ⋅=,可得||cos 1-=BC B ,再由||7=AC ,利用余弦定理可解得||BC ,cos B ,进而得到sin B ,然后代入1sin 2=ABCS BA BC B 求解. 【详解】因为()0,1=AB , 所以||1=AB ,又因为||||cos()1π⋅=⋅-=AB BC AB BC B , 所以||cos 1-=BC B ,由余弦定理得222||||||2||||cos =+-⋅⋅AC AB BC AB BC B , 所以||2BC =, 则1cos 2B =-, 因为 0180<<︒B ,所以120B =︒,sin B =,所以面积为1133sin 122222==⨯⨯⨯=ABCSBA BC B . 故答案为:32【点睛】本题主要考查平面向量与解三角形,还考查了运算求解的能力,属于中档题.16.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱1,BC CC 的中点,则二面角C AM N --的余弦值为_________;若动点P 在正方形11BCC B (包括边界)内运动,且1PA //平面AMN ,则线段1PA 的长度范围是_________.【答案】 (1). 23 (2). 32[,5] 【解析】 【分析】延长AM 交DC 于点Q ,过C 作AM 垂线CG ,垂足为G ,连接NG ,则∠NGC 为二面角C AM N --的平面角,计算可得结果;取11B C 的中点E ,1BB 的中点F ,连结1A E ,1A F ,EF ,取EF 中点O ,连结1A O ,推导出平面//AMN 平面1A EF ,从而点P 的轨迹是线段EF ,由此能求出1PA 的长度范围. 【详解】延长AM 交DC 于点Q ,过C 作AM 垂线CG ,垂足为G ,连接NG ,则∠NGC 为二面角C AM N --的平面角, 计算得25CG =,22535()155NG =+=,所以25352cos 553NGC ∠=÷= 取11B C 的中点E ,1BB 的中点F ,连接1A E ,1A F ,EF ,取EF 中点O ,连接1A O ,点M ,N 分别是棱长为2的正方体1111ABCD A B C D -中棱BC ,1CC 的中点, 1//AM A E ∴,//MN EF , AMM N M =,1A EEF E =,∴平面//AMN 平面1A EF ,动点P 在正方形11BCC B (包括边界)内运动,且1//PA 面AMN ,∴点P 的轨迹是线段EF ,2211215A E A F ==+22112=+=EF ,1AO EF ∴⊥, ∴当P 与O 重合时,1PA 的长度取最小值221232(5)()2A O =-=,当P 与E (或)F 重合时,1PA 的长度取最大值为115A E A F ==. 1PA ∴的长度范围为325]. 故答案为:23;325] 【点睛】本题考查二面角余弦值的求法和线段长度的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知数列{}n a 是等比数列,且公比q 不等于1,数列{}n b 满足2n bn a =.(1)求证:数列{}n b 是等差数列;(2)若12a =,32432a a a =+,求数列211log n n b a +⎧⎫⎨⎬⎩⎭的前n 项和n S . 【答案】(1)见解析;(2)1n nS n =+ 【解析】 【分析】(1)根据对数运算法则和等比数列定义可证得12log n n b b q +=-,由此证得结论; (2)利用等比数列通项公式可构造方程求得q ,进而整理得到211log n n b a +,采用裂项相消法可求得结果.【详解】(1)已知数列{}n b 满足2n b n a =,则2log n n b a =,1121222log log log log n n n n n na b b a a q a +++∴-=-==, ∴数列{}n b 为等差数列.(2)由12a =,32432a a a =+可得:23642q q q =+,解得:2q或1q =(舍),2n n a ∴=,则2log n n b a n ==,()211111log 11n n b a n n n n +==-++∴,11111111223111n n S n n n n ⎛⎫⎛⎫⎛⎫∴=-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 【点睛】本题考查等差数列的证明、裂项相消法求解数列的前n 项和问题,涉及到等比数列通项公式的应用;求和问题的处理关键是能够根据通项公式的形式进行准确裂项,进而前后相消求得结果.18.如图,四棱锥P ABCD -中,底面ABCD 为梯形,//,90B AB C AD D ︒∠=,点E 为PB 的中点,且224CD AD AB ===,点F 在CD 上,且13DF FC =.(1)求证:EF //平面PAD ;(2)若平面PAD ⊥平面ABCD ,PA PD =且PA PD ⊥,求直线PA 与平面PBF 所成角的正弦值. 【答案】(1)见解析;(2)277【解析】 【分析】(1)如图所示,取PA 的中点M ,连结DM 、EM ,所以根据线面平行的判定定理即可证明;(2)取AD 中点N ,BC 中点H ,连结PN 、NH ,以N 为原点,NA 方向为x 轴,NH 方向为y 轴,NP 方向为z 轴,建立空间坐标系,找到平面PBF 的一个法向量n ,求出直线PA 向量n 所成夹角的余弦值,即可求直线PA 与平面PBF 所成角的正弦值.【详解】(1)如图所示,取PA 的中点M ,连结DM 、EM ,因为点E 为PB 的中点,且224CD AD AB ===,所以//EM AB 且112EM AB ==, 因为13DF FC =,所以411==DF DC ,所以1==EM DF , 又因为//AB DC ,所以//EM DF ,所以四边形EMDF 为平行四边形,所以//EF DM ,又DM ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD ;(2)取AD 中点N ,BC 中点H ,连结PN 、NH , 因为PA PD =,所以PNAD ,又平面PAD ⊥平面ABCD ,所以PN平面ABCD ,又//,90B AB C AD D ︒∠=,所以AD NH ⊥,以N 为原点,NA 方向为x 轴,NH 方向为y 轴,NP 方向为z 轴,建立空间坐标系, 所以()0,0,1P ,()1,0,0A ,()1,2,0B ,()1,1,0F -,在平面PBF 中()1,2,1=--BP ,()2,1,0=--BF ,()=1,0,1PA -,设在平面PBF 的法向量为(),,n x y z =,所以00BP n BF n ⎧⋅=⎨⋅=⎩,2020x y z x y --+=⎧⎨--=⎩,令1x =,则法向量()1,2,3n =--,又()1,0,1PA =-, 设直线PA 与平面PBF 所成角为α, 所以||27sin |cos ,|||||214α⋅=<>===⋅⋅PA n PA n PA n ,即直线PA 与平面PBF 所成角的正弦值为27.【点睛】本题主要考查线面平行的判定,和线面所成角的求法,解题的关键是会用法向量的方法求线面角的正弦值.19.已知椭圆22:12x C y +=与x 轴正半轴交于点A ,与y 轴交于B 、D 两点.(1)求过A 、B 、D 三点的圆E 的方程;(2)若O 为坐标原点,直线l 与椭圆C 和(1)中的圆E 分别相切于点P 和点Q (P 、Q 不重合),求直线OP 与直线EQ 的斜率之积.【答案】(1)22948x y ⎛⎫-+= ⎪ ⎪⎝⎭;(2)24. 【解析】 【分析】(1)求出A 、B 、D 三点的坐标,求得圆心E 的坐标,进而求出圆E 的半径,由此可求得圆E 的方程; (2)设直线l 的方程为y kx m =+(k 存在且0k ≠),将直线l 的方程与椭圆C 的方程联立,由0∆=可得2212m k =+,由直线l 与圆E相切可得出22889k m =-+,进而可得出2221241k m =-=,求出直线OP 与直线EQ 的斜率,进而可求得结果. 【详解】(1)由题意可得)A、()0,1B -、()0,1D ,则圆心E 在x 轴上,设点(),0E m ,由BE AE =,可得)221m m +=,解得m =,圆E的半径为AE =. 因此,圆E的方程为2298x y ⎛+= ⎝⎭; (2)由题意:可设l 的方程为y kx m =+(k 存在且0k ≠), 与椭圆C 联立消去y 可得()222124220kxkmx m +++-=,由直线l 与椭圆C 相切,可设切点为()00,P x y ,由()()222216421120k m m k∆=-⨯-+=,可得2212m k =+,解得02k x m =-,01y m=, 由圆E 与直线l4=,可得22889k m =-+.因此由222212889m k k m ⎧=+⎪⎨=-+⎪⎩,可得2221241k m =-=, 直线OP 的斜率为12OP k k =-,直线EQ 的斜率1EQ k k=-, 综上:22421OP EQ k k k =⋅=. 【点睛】本题考查三角形外接圆方程的求解,同时也考查了椭圆中直线斜率之积的计算,考查计算能力,属于中等题.20.武汉市掀起了轰轰烈烈的“十日大会战”,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有()*1000n N ∈份血液样本,有以下两种检验方式:方案①:将每个人的血分别化验,这时需要验1000次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k 个人的血就只需检验一次(这时认为每个人的血化验1k次);否则,若呈阳性,则需对这k 个人的血样再分别进行一次化验这样,该组k 个人的血总共需要化验1k +次. 假设此次检验中每个人的血样化验呈阳性的概率为p ,且这些人之间的试验反应相互独立. (1)设方案②中,某组k 个人中每个人的血化验次数为X ,求X 的分布列;(2)设0.1p =. 试比较方案②中,k 分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数)【答案】(1)分布列见解析;(2)2k =,总次数为690次;3k =,总次数为604次;4k =,次数总为594次;减少406次 【解析】 【分析】(1)设每个人的血呈阴性反应的概率为q ,可得1q p =-,再由相互独立事件的概率求法可得k 个人呈阴性反应的概率为kq ,呈阳性反应的概率为1k q -,随机变量1,1X k k=+即可得出分布列. (2)由(1)的分布列可求出数学期望,然后令2,3,4k =求出期望即可求解. 【详解】(1)设每个人的血呈阴性反应的概率为q ,则1q p =-.所以k 个人的血混合后呈阴性反应的概率为kq ,呈阳性反应的概率为1kq -, 依题意可知1,1X k k=+, 所以X 的分布列为:1111k kX k k Pq q +- (2)方案②中,结合(1)知每个人的平均化验次数为:()()111111k k k E X q q k k k q ⎛⎫=++⋅-=-+ ⎪⎝⎭⋅ 所以当2k =时, ()210.910.692E X =-+=, 此时1000人需要化验的总次数为690次,3k =()31,0.910.60433E X =-+≈,此时1000人需要化验的总次数为604次,4k =时, ()410.910.59394E X =-+=,此时1000人需要化验的次数总为594次,即2k =时化验次数最多,3k =时次数居中,4k =时化验次数最少. 而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①, 当4k =时化验次数最多可以平均减少1000-594=406次.【点睛】本题考查了两点分布的分布列、数学期望,考查了考生分析问题、解决问题的能力,属于中档题. 21.已知函数()2ln 2,xe f x a x e R a =-∈ (1)若函数()f x 在2ex =处有最大值,求a 的值; (2)当a e ≤时,判断()f x 的零点个数,并说明理由.【答案】(1)a e =;(2)当0a e ≤<时,函数()f x 无零点;当0a <或a e =时,函数()f x 只有一个零点. 【解析】 【分析】(1)根据函数最值点可确定02e f ⎛⎫'=⎪⎝⎭,从而求得a ;代入a 的值验证后满足题意,可得到结果;(2)令()()ln 0tg t a a t e t =+->,将问题转化为()g t 零点个数的求解问题;分别在0a =、0a <和0a e <≤三种情况下,根据导函数得到原函数的单调性,结合零点存在定理和函数的最值可确定零点的个数.【详解】(1)由题意得:()f x 定义域为()0,∞+,()22xe af x e x e'=-,()f x 在2e x =处取得最大值,2202e af e⎛⎫'∴=-= ⎪⎝⎭,解得:a e =. 当a e =时,()2ln 2xef x e x e =-,()22xe ef x e x e'=-,()22240xe ef x e x e''∴=--<,()f x '∴在()0,∞+上单调递减,又02e f ⎛⎫'=⎪⎝⎭,则0,2e x ⎛⎫∈ ⎪⎝⎭时,()0f x '>;当,2e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<;()f x ∴在0,2e ⎛⎫ ⎪⎝⎭上单调递增,在,2e ⎛⎫+∞ ⎪⎝⎭上单调递减,()max 2e f x f ⎛⎫∴= ⎪⎝⎭,满足题意;综上所述:a e =. (2)令2x t e=,()()ln 0tg t a a t e t =+->,则()g t 与()f x 的零点个数相等, ①当0a =时(),0,tg t e =-<即()20x ef x e =-<,∴函数()f x 的零点个数为0;②当0a <时, ()0ta g t e t'=-<,()g t ∴在()0,∞+上为减函数, 即函数()g t 至多有一个零点,即()f x 至多有一个零点.当10e a t e-<<时,1ln ln 1ea e a a t a a e a a e a -⎛⎫⎛⎫+>+=+-= ⎪ ⎪⎝⎭⎝⎭,ln t a a t e +∴>,即()0g t >,又()01g a e =-<,∴函数()g t 有且只有一个零点,即函数()f x 有且只有一个零点;③当0a e <≤时,令()0g t '=,即t a te =,令()()0th t te t =>,则()()10ttth t e te t e '=+=+>()t h t te ∴=在()0,∞+上为增函数,又()1h e =,故存在(]00,1t ∈,使得()00g t '=,即00t ae t =. 由以上可知:当00t t <<时,()0g t '>,()g t 为增函数;当0t t >时,()0g t '<,()g t 为减函数;()()0000max 0ln ln t ag t g t a a t e a a t t ∴==+-=+-,(]00,1t ∈, 令()ln aF t a a t t=+-,(]0,1t ∈, 则()20a aF t t t'=+>,()F t ∴在(]0,1上为增函数, 则()()10F t F ∴≤=,即()()max0g t ≤,当且仅当1t =,a e =时等号成立,由以上可知:当a e =时,()g t 有且只有一个零点,即()f x 有且只有一个零点;当0a e <<时,()g t 无零点,即()f x 无零点;综上所述:当0a e ≤<时,函数()f x 无零点;当0a <或a e =时,函数()f x 只有一个零点.【点睛】本题考查导数在研究函数中的应用,涉及到根据函数的最值求解参数值、利用导数研究函数零点个数的问题;函数零点个数的求解关键是能够通过换元法将问题转化为新函数零点个数的求解,进而通过分类讨论的方式,结合函数单调性、零点存在定理和函数最值来确定零点个数,属于较难题.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上且满足||||8,OA OB ⋅=点B 的轨迹为2C .(1)求曲线12,C C 的极坐标方程; (2)设点M 的极坐标为32,2π⎛⎫⎪⎝⎭,求ABM ∆面积的最小值. 【答案】(1)1C :2cos ρθ=,2C :cos 4ρθ=; (2)2. 【解析】 【分析】(1)消去参数,求得曲线1C 的普通方程,再根据极坐标方程与直角坐标方程的互化公式,即可求得曲线1C 的极坐标方程,再结合题设条件,即可求得曲线2C 的极坐标方程;(2)由2OM =,求得OBM OAM ABM S S S ∆∆∆=-,求得ABM ∆面积的表达式,即可求解. 【详解】(1)由曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩ (α为参数),消去参数,可得普通方程为()2211x y -+=,即2220x y x +-=,又由cos ,sin x y ρθρθ==,代入可得曲线1C 的极坐标方程为2cos ρθ=, 设点B 的极坐标为(,)ρθ,点A 点的极坐标为00(,)ρθ, 则0000,,2cos ,OB OA ρρρθθθ====, 因为||||8OA OB ⋅=,所以08ρρ⋅=,即82cos θρ=,即cos 4ρθ=,所以曲线2C 的极坐标方程为cos 4ρθ=.(2)由题意,可得2OM =, 则2211||||242cos 42cos 22ABM B OBM O M A A S S S OM x x θθ∆∆∆=⋅-=⋅⋅=-=--, 即242cos ABM S θ∆=-, 当2cos 1θ=,可得ABM S ∆的最小值为2.【点睛】本题主要考查了参数方程与普通方程,以及直角坐标方程与极坐标方程的互化,以及极坐标方程的应用,着重考查推理与运算能力,属于中档试题.23.已知函数()|23||23|.f x x x =-++(1)解不等式()8f x ≤;(2)设x ∈R 时,()f x 的最小值为M .若实数,,a b c 满足2a b c M ++=,求222a b c ++的最小值.【答案】(1){|22}x x -≤;(2)6【解析】【分析】(1)利用零点分段讨论求解不等式;(2)利用绝对值三角不等式求得6M =,利用柯西不等式求解最值.【详解】(1)322x x ⎧≤-⎪⎨⎪≥-⎩或332268x ⎧-<<⎪⎨⎪-≤⎩或322x x ⎧⎪⎨⎪≤⎩∴{|22}x x -≤,(2)∵()()()|2323|66x x x f M --+=∴=()()()2222222112236,a b c a b c ++++++= 当且仅当22a b c ==时“=”成立,所以2226,a b c ++所以最小值为6.【点睛】此题考查解绝对值不等式,利用零点分段讨论求解,利用绝对值三角不等式求解最值,结合柯西不等式求最值,需要注意考虑等号成立的条件.。
2021届全国天一大联考新高考模拟试卷(一)数学(理科)

2021届全国天一大联考新高考模拟试卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( )A.B.C. 2D.【答案】A 【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力. 3.抛物线214y x =的准线方程是( ) A. 1x =- B. 2x =- C. 1y =- D. 2y =-【答案】C 【解析】试题分析:由题意得,抛物线可化为24x y =,则2p =,所以准线方程为1y =-,故选C .考点:抛物线的几何性质.4.若向量(1,2)a x =+与(1,1)b =-平行,则|2+|=a b ( )A.B.2C. D.【答案】C 【解析】 【分析】根据向量平行得到3x =-,故()|2+|=3,3a b -,计算得到答案.【详解】向量(1,2)a x =+与(1,1)b =-平行,则()12x -+=,故3x =-,()()()|2+|=4,41,13,3a b -+-=-=故选:C .【点睛】本题考查了根据向量平行求参数,向量的模,意在考查学生的计算能力.5.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题中,错误的是( ) A. 若,m n m α⊥⊥,则//n α B. 若//,//,m n m n αα⊄,则//n α C. 若,,m n m n αβ⊥⊥⊥,则αβ⊥ D. 若//,//m ααβ,则//m β或m β⊂【答案】A 【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于A :若,m n m α⊥⊥,则//n α或n ⊂α,故A 错误;BCD 正确. 故选:A .【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力. 6.已知函数()y f x =的部分图象如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()sin 2f x x x =+ C. 1()sin 22f x x x =- D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】首先通过函数的定义域排除选项A ,再通过函数的奇偶性排除选项D,再通过函数的单调性排除选出B ,确定答案.【详解】由图象可知,函数的定义域为R ,而函数()tan f x x x =+的定义域不是R,所以选项A 不符合题意; 由图象可知函数是一个奇函数,选项D 中,存在实数x , 使得1()cos ()2f x x x f x -=--≠-,所以函数不是奇函数,所以选项D 不符合题意;由图象可知函数是增函数,选项B ,()12cos 2[1,3]f x x =∈-'+,所以函数是一个非单调函数,所以选项C 不符合题意;由图象可知函数是增函数,选项C ,()1cos 20f x x =-≥,所以函数是增函数,所以选项C 符合题意. 故选:C【点睛】本题主要考查函数的图象和性质,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平.7.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A. 24 B. 36 C. 48 D. 64【答案】B 【解析】 【分析】根据题意,有两种分配方案,一是3:1:1,二是2:2:1,然后各自全排列,再求和.【详解】当按照3:1:1进行分配时,则有133318C A =种不同的方案;当按照2:2:1进行分配,则有233318C A =种不同的方案. 故共有36种不同的派遣方案, 故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.8.已知函数41()2x xf x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( ) A. c b a << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】解:因为41()222x x xxf x --==-,定义域为R ,()()22x x f x f x --=-=-故函数是奇函数,又2x y =在定义域上单调递增,2x y -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20< 所以()()()0.30.30.320.2log 2f f f >>即a b c >> 故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.9.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时, 2101 2.3 2.7x x x ≈++) A. 1.24 B. 1.25C. 1.26D. 1.27【答案】C 【解析】 【分析】根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 【详解】根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==, 根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.10.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+ ⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=, ()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+, 13a =,20a =,332a =-,432a =-,50a =,632a =,每个周期和为0, 故202012343S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力.11.已知双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,过F 作直线b y x a=-的垂线,垂足为M ,且交双曲线的左支于N 点,若2FN FM =,则双曲线的离心率为( ) A. 3B.5 C. 2 D.3【答案】B 【解析】 【分析】计算得到2,a ab M c c ⎛⎫- ⎪⎝⎭,根据2FN FM =得到222,a ab N c c c ⎛⎫-- ⎪⎝⎭,代入双曲线方程解得答案.【详解】易知直线NF :()a y x c b =-,联立方程()b y x aa y x cb ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2,a ab M c c ⎛⎫-⎪⎝⎭. 2FN FM =,故222,a ab N c c c ⎛⎫-- ⎪⎝⎭,故2222222241a c c a b a c b⎛⎫- ⎪⎝⎭-=, 化简整理得到:22241e e e ⎛⎫--= ⎪⎝⎭,解得e =故选:B .【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和综合应用能力.12.已知函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,若函数()()F x f x mx =-有4个零点,则实数m 的取值范围是( )A. 5126⎛⎫⎪⎝⎭B. 52⎛-⎝C. 1,320⎛-⎝ D. 11,206⎛⎫⎪⎝⎭ 【答案】B 【解析】 【分析】根据函数零点定义可知()f x mx =有四个不同交点,画出函数图像可先求得斜率的大致范围.根据函数在24x ≤<和46x ≤<的解析式,可求得y mx =与两段函数相切时的斜率,即可求得m 的取值范围. 【详解】函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,函数()()F x f x mx =-有4个零点,即()f x mx =有四个不同交点. 画出函数()f x 图像如下图所示:由图可知,当24x ≤<时,设对应二次函数顶点为A ,则13,2A ⎛⎫⎪⎝⎭,11236OAk ==, 当46x ≤<时,设对应二次函数的顶点为B ,则15,4B ⎛⎫⎪⎝⎭,114520OBk ==. 所以11206m <<. 当直线y mx =与24x ≤<时的函数图像相切时与函数()f x 图像有三个交点,此时()211322y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()22680x m x +-+=.()226480m ∆=--⨯=,解得322,m =- 322m =+; 当直线y mx =与46x ≤<时的函数图像相切时与函数()f x 图像有五个交点,此时()211544y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()2410240x m x +-+=.()24104240m ∆=--⨯=,解得56,2m =562m =;故当()f x mx =有四个不同交点时56,3222m ⎛∈- ⎝. 故选:B.【点睛】本题考查了分段函数解析式的求法,函数零点与函数交点的关系,直线与二次函数相切时的切线斜率求法,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.我校高一、高二、高三共有学生1800名,为了了解同学们对“智慧课堂”的意见,计划采用分层抽样的方法,从这1800名学生中抽取一个容量为36的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的学生人数为_____. 【答案】700 【解析】 【分析】设从高三年级抽取的学生人数为2x 人,由题意利用分层抽样的定义和方法,求出x 的值,可得高三年级的学生人数.【详解】设从高三年级抽取的学生人数为2x 人,则从高二、高一年级抽取的人数分别为2x ﹣2,2x ﹣4. 由题意可得()()2222436x x x +-+-=,∴7x =. 设我校高三年级的学生人数为N ,再根据36271800N⨯=,求得N =700 故答案为:700.【点睛】本题主要考查分层抽样,属于基础题.14.已知实数,x y 满足24020x y y x y --≤⎧⎪≤⎨⎪+≥⎩,则3z x y =-的最大值为_______.【答案】22 【解析】 【分析】3y x z =-,作出可行域,利用直线的截距与b 的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15.等差数列{}n a 的前n 项和为n S ,34310a S ==,,则11nk kS==∑_____.【答案】21nn + 【解析】 【分析】 计算得到()12n n n S +=,再利用裂项相消法计算得到答案. 【详解】3123a a d =+=,414610S a d =+=,故11a d ==,故()12n n n S +=, ()1111211122211111nn nk k k k n S k k k k n n ===⎛⎫⎛⎫==-=-= ⎪ ⎪++++⎝⎭⎝⎭∑∑∑. 故答案为:21nn +. 【点睛】本题考查了等差数列的前n 项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用. 16.古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足3BP PE =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.【答案】 (1). 23 (2). 94【解析】 【分析】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,设(,)P x y ,求出点P 的轨迹为22+12x y =,即得解;(2)先求出点P 的轨迹为222++12x y z =,P 到平面1B CF 的距离为3h =,再求出h 的最小值即得解.【详解】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,则(6,0),(2,0),B E 设(,)P x y , 由3BP PE =得2222(6)3[(2)]x y x y -+=-+, 所以22+12x y =,所以若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为3(2)设点(,,)P x y z ,由3BP PE =得222222(6)3[(2)z ]x y z x y -++=-++,所以222++12x y z =,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C所以11(3,3,0),(0,3,3),FB BC =-=-设平面1B CF 的法向量为000(,,)n x y z =, 所以100100·330,(1,1,1)·330n FB x y n n B C y z ⎧=-=⎪∴=⎨=-=⎪⎩,由题得(6,3,z)CP x y =--, 所以点P 到平面1B CF的距离为||||CP n h n ⋅== 因为2222222(++)(111)(),66x y z x y zx y z ++≥++∴-≤++≤, 所以minh ==M 到平面1BCF由题得1B CF ∆=, 所以三棱锥1MB CF -的体积的最小值为21934. 故答案为:(1). (2).94. 【点睛】本题主要考查空间几何中的轨迹问题,考查空间几何体体积的计算和点到平面距离的计算,考查最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:(共60分)17.在锐角△ABC 中,a =________, (1)求角A ;(2)求△ABC 的周长l 的范围. 注:在①(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(6+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案.(2)根据正弦定理得到4sin sin sin a b c A B C ===,故6ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b c A B C===, 故24sin 4sin 4sin 4sin 3ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△ 6ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(6ABC l ∴∈+△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cosb A a Cc A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③11()cos (cos )24f x x x x =-=21cos 2x sin x x -14=12×1+cos 22x +2×sin 22x -14111=(cos 22)=sin(2)2226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 18.在创建“全国文明城市”过程中,银川市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分Z ~N (μ,198),μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值....作代表), ①求μ的值;②利用该正态分布,求(88.5)P Z ≥;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若()2,XN μσ,则()0.6826P X μσμσ-<≤+=,()220.9544P X μσμσ-<≤+=,()330.9974P X μσμσ-<≤+=.【答案】(1)①60.5μ=②0.0228(2)见解析,1654【解析】 【分析】(1)直接根据公式计算得到60.5μ=,14σ=,计算得到答案.(2)获赠话费X 的可能取值为20,40,50,70,100,计算概率得到分布列,再计算数学期望得到答案. 【详解】(1)由题意得:3024013502160257024801190460.5100⨯+⨯+⨯+⨯+⨯+⨯+⨯=,∴60.5μ= ,∵14σ=≈,1(22)(88.5)(2)0.02282P u Z P Z P Z σμσμσ--<≤+>=>+==,(2)由题意知()()12P Z P Z μμ<=≥=,.获赠话费X 的可能取值为20,40,50,70,100,()13320248P X ==⨯=,()133********P X ==⨯⨯=,()11150248P X ==⨯=,()13111337024424416P X ==⨯⨯+⨯⨯=,()111110024432P X ==⨯⨯=,.∴X 的分布列为: X 20 40 50 70 100 P 3893218316132∴39131165()20405070100832816324E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了正态分布求概率,分布列和数学期望,意在考查学生的计算能力和应用能力. 19.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.【答案】(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形,且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD =, 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD , 平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π12=,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做. 20.已知函数21()(1)ln(1)()2f x x x ax x a R =++--∈ (1)设()'()h x f x =,试讨论()h x 的单调性;(2)若函数()f x 在(0,)+∞上有最大值,求实数a 的取值范围 【答案】(1)在11,1a ⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)01a << 【解析】 【分析】(1)计算()()()ln 1h x f x x ax '==+-,()11h x a x '=-+,讨论0a ≤,0a >两种情况,计算得到答案. (2)讨论0a ≤,1a ≥,01a <<三种情况,求导得到函数单调区间,110h a ⎛⎫->⎪⎝⎭,由零点存在性定理,存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =,计算最值得到答案.【详解】(1)()()ln 1f x x ax '=+-,令()()()ln 1h x f x x ax '==+-, ()11h x a x '=-+; 当0a ≤时,()0h x '>,()'fx ∴在()1,-+∞上递增,无减区间;当0a >时,令()0h x '>,则111x a -<<-,令()0h x '<,则11x a>-, 所以()'fx 在11,1a⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; (2)由(1)可知,当0a ≤时,()'f x ∴在()0,∞+上递增,()()''00f x f ∴>=,()f x ∴在()0,∞+上递增,无最大值,不合题意;当1a ≥时,()1101h x a a x '=-<-≤+,()'f x 在()0,∞+上递减, 故()()''00f x f <=,()f x ∴在()0,∞+上递减,无最大值,不合题意; 当01a <<时,110a ->,由(1)可知()'f x 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; 设()1ln g x x x =--,则()1x g x x-'=; 令()0g x '<,则01x <<;令()0g x '>,则1x >,()g x ∴在()0,1上单调递减,在()1,+∞单调递增,()()10g x g ∴≥=,即ln 1x x ≤-,由此,当0x >时,1≤<ln x <所以,当0x >时,()()12h x ax a x <<+=-.取241t a =-,则11t a>-,且()20h t <-=, 又因为()1100h h a ⎛⎫->= ⎪⎝⎭, 所以由零点存在性定理,存在011,x t a ⎛⎫∈-⎪⎝⎭,使得()00h x =;. 当()00,x x ∈时,()0h x >,即()0f x '>; 当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以()f x 在()00,x 上单调递增,在()0,x +∞上单调递减, 故函数在()0,∞+上有最大值()0f x . 综上,01a <<.【点睛】本题考查了函数的单调性,根据最值求参数,意在考查学生的计算能力和综合应用能力.21.已知O 为坐标原点,椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1F ,2F ,2F 点又恰为抛物线2:4D y x =的焦点,以12F F 为直径的圆与椭圆C 仅有两个公共点.(1)求椭圆C 的标准方程;(2)若直线l 与D 相交于A ,B 两点,记点A ,B 到直线1x =-的距离分别为1d ,2d ,12||AB d d =+.直线l 与C 相交于E ,F 两点,记OAB ,OEF 的面积分别为1S ,2S . (ⅰ)证明:1EFF △的周长为定值; (ⅱ)求21S S 的最大值. 【答案】(1)2212x y +=;(2)(i )详见解析;(ii【解析】 【分析】(1)由已知求得2(1,0)F ,可得1c =,又以12F F 为直径的圆与椭圆C 仅有两个公共点,知b c =,从而求得a 与b 的值,则答案可求;(2)()i 由题意,1x =-为抛物线D 的准线,由抛物线的定义知,1222||||||AB d d AF BF =+=+,结合22||||||AB AF BF +,可知等号当且仅当A ,B ,2F 三点共线时成立.可得直线l 过定点2F ,根据椭圆定义即可证明11||||||EF EF FF ++为定值;()ii 若直线l 的斜率不存在,则直线l 的方程为1x =,求出||AB 与||EF可得21||||4S EF S AB ==;若直线l 的斜率存在,可设直线方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,3(E x ,3)y ,4(F x ,4)y ,方便联立直线方程与抛物线方程,直线方程与椭圆方程,利用弦长公式求得||AB ,||EF,可得2212||1()1||2S EF S AB k ==∈+,由此可求21S S 的最大值. 【详解】解:(1)因为2F 为抛物线2:4D y x =的焦点,故2(1,0)F所以1c =又因为以12F F 为直径的圆与椭圆C 仅有两个公共点知:b c =所以a =1b =所以椭圆C 的标准方程为:2212x y +=(2)(ⅰ)由题知,因为1x =-为抛物线D 的准线 由抛物线的定义知:1222||AB d d AF BF =+=+又因为22||AB AF BF ≤+,等号当仅当A ,B ,2F 三点共线时成立 所以直线l 过定点2F 根据椭圆定义得:112112||4EF EF FF EF EF FF FF a ++=+++==(ⅱ)若直线l 的斜率不存在,则直线l 的方程为1x = 因为||4AB =,||EF =21||||4S EF S AB == 若直线l 的斜率存在,则可设直线:(1)(0)l y k x k =-≠,设()11,A x y ,()22,B x y由24(1)y x y k x ⎧=⎨=-⎩得,()2222240k x k x k -++= 所以212224k x x k ++=,212244||2k AB x x k+=++= 设()33,E x y ,()44,F x y ,由2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,()2222124220k x k x k +-+-= 则2342412k x x k +=+,23422212k x x k-=+所以)23421||12k EF x k+=-==+则2212||11||242S EF S AB k ⎛⎫⎪⎛⎫===⨯∈ ⎪ ⎪ ⎪⎝⎭ ⎪+⎝⎭综上知:21SS 的最大值等于4【点睛】本题考查椭圆方程的求法,考查直线与椭圆、直线与抛物线位置关系的应用,考查计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值. 【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】【分析】 (1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=. 【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=, 即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=,即22(3)9x y -+=.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t +=所以M对应的参数1202t t t +==120|t ||t |||||=||||2AP AQ AM t ==. 【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.[选修4-5:不等式选讲]23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-. 所以a 的取值范围为22,3⎡⎤--⎢⎥⎣⎦. 【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。
2021届全国金太阳联考新高考模拟试卷(七)数学试题

2021届全国金太阳联考新高考模拟试卷(七)数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{0,1,2,3}A =,{2,3,4,5}B =,则AB =( ) A. {1,2,3,4,5}B. {0,1,4,5}C. {2,3}D. {0,1,2,3,4,5} 【答案】D【解析】【分析】根据并集的定义可直接求得结果.【详解】由并集的定义可得:{}0,1,2,3,4,5AB =.故选:D .【点睛】本题考查集合运算中的并集运算,属于基础题.2.i 是虚数单位,2z i =-,则||z =( )A. B. 2 C. D. 【答案】C【解析】【分析】由复数模长的定义可直接求得结果.【详解】2z i =-,z ∴==故选:C .【点睛】本题考查复数模长的求解问题,属于基础题.3.已知向量()1,2a =,()1,b λ=-,若//a b ,则实数λ等于( )A. 1-B. 1C. 2-D. 2【答案】C【解析】【分析】 由向量平行关系可构造方程求得结果. 【详解】//a b ,()121λ∴⨯=⨯-,解得:2λ=-.故选:C .【点睛】本题考查向量平行的坐标表示,属于基础题.4.设命题2:,0p x R x ∀∈>,则p ⌝为( )A. 2,0x R x ∀∈≤B. 2,0x R x ∀∈>C. 2,0x R x ∃∈>D. 2,0x R x ∃∈≤【答案】D【解析】【分析】根据全称量词否定的定义可直接得到结果.【详解】根据全称量词否定的定义可知:p ⌝为:x R ∃∈,使得20x ≤.故选:D .【点睛】本题考查含量词的命题的否定,属于基础题.5.511x ⎛⎫- ⎪⎝⎭展开式中含2x -的系数是( ) A. 15B. 15-C. 10D. 10- 【答案】D【解析】【分析】由二项展开式通项公式可确定3r =,由此可求得系数. 【详解】511x ⎛⎫- ⎪⎝⎭展开式的通项()()55155111r r r r r r r T C C x x --+⎛⎫=⋅-=-⋅ ⎪⎝⎭, 当3r =时,3224510T C x x --=-=-,即2x -的系数为10-.故选:D . 【点睛】本题考查二项展开式指定项系数的求解问题,关键是熟练掌握二项展开式通项公式的形式.6.若双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,离心率为53,点(,0)P b ,则12||||PF PF =( ) A. 6B. 8C. 9D. 10 【答案】C【解析】【分析】根据题意写出1F 与2F 坐标,表示出12||||PF PF ,结合离心率公式计算即可. 【详解】双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F , ∴()1,0F c -,()2,0F c ,又(,0)P b , ∴1PF b c =+,2PF c b =-, 该双曲线离心率为53,∴53ca=,即2222253c ca c b⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭,解得54cb=,∴12511||495||114cPF b c bcPF c bb+++====---,故选:C.【点睛】本题考查了双曲线的定义及性质,考查运算能力,属于基础题.7.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于323d(d为球的直径),并得到球的体积为316V dπ=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据 3.1415926π=⋅⋅⋅,判断下列公式中最精确的一个是()A. 3169d V≈ B. 32d V≈ C. 3300157d V≈ D. 3158d V≈【答案】C【解析】【分析】利用选项中的公式化简求得π,找到最精确的选项即可.【详解】由316V dπ=得:36Vdπ=.由A得:3916Vd≈,693.37516π=∴⨯≈;由B得:312Vd≈,632π∴≈=;由C得:3157300Vd≈,61573.14300π⨯∴≈=;由D得:3815Vd≈,683.215π⨯∴≈=,C∴的公式最精确.故选:C.【点睛】本题考查数学史与立体几何的知识,关键是能够对选项中的公式进行准确化简求得π的近似值.8.已知32cos cos2αβ-=,32sin sinαβ+=cos()αβ+等于()A. 12B. 12-C. 14D. 14- 【答案】A【解析】【分析】把已知两等式平方后作和,结合同角三角函数平方关系和两角和差余弦公式可化简求得结果.【详解】由32cos cos 2αβ-=得:()22292cos cos 4cos 4cos cos cos 4αβααββ-=-+=, 由32sin sin 2αβ+=得:()22232sin sin 4sin 4sin sin sin 4αβααββ+=++=, 两式相加得:()54cos cos sin sin 3αβαβ--=,即()4cos 2αβ+=,()1cos 2αβ∴+=. 故选:A . 【点睛】本题考查利用三角恒等变换公式化简求值的问题,涉及到同角三角函数平方关系的应用;关键是能够通过平方运算配凑出符合两角和差余弦公式的形式.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是( )A. 第一场得分的中位数为52B. 第二场得分的平均数为193C. 第一场得分的极差大于第二场得分的极差D. 第一场与第二场得分的众数相等【答案】ABD【解析】【分析】 根据茎叶图分别计算中位数、平均数、极差和众数,依次判断各个选项即可得到结果.【详解】对于A ,将第一场得分从小到大排序可知中位数为23522+=,A 正确;对于B ,第二场得分的总分为3967710102476+++++++=,则平均数为7619123=,B 正确; 对于C ,第一场得分的极差为19019-=,第二场得分的极差为24024-=,C 错误;对于D ,第一场和第二场得分的众数均为0,D 正确.故选:ABD .【点睛】本题考查茎叶图的相关知识,涉及到利用茎叶图计算中位数、众数、平均数和极差的问题,属于基础题.10.已知正方体的外接球与内切球上各有一个动点M 、N ,若线段MN 1,则( )A. 正方体的外接球的表面积为12πB. 正方体的内切球的体积为43πC. 正方体的棱长为2D. 线段MN 的最大值为【答案】ABC【解析】【分析】设正方体的棱长为a ,由此确定内切球和外接球半径,由MN 的最小值为两球半径之差可构造方程求得a ,进而求得外接球表面积和内切球体积;由MN 的最大值为两球半径之和可得到最大值.【详解】设正方体的棱长为a ,则正方体外接球半径为体对角线长的一半,即2a ;内切球半径为棱长的一半,即2a . ,M N 分别为外接球和内切球上的动点,min 11222a MN a a ∴=-==,解得:2a =,即正方体棱长为2,C 正确,∴正方体外接球表面积为2412ππ⨯=,A 正确;内切球体积为43π,B 正确;线段MN 的最大值为122a a +=,D 错误. 故选:ABC . 【点睛】本题考查正方体外接球和内切球相关问题的求解,关键是通过球的性质确定两球上的点的距离最小值为R r -,最大值为R r +.11.已知圆M 与直线20x y ++=相切于点(0,2)A -,圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A. 圆M 的圆心在定直线20x y --=上B. 圆M 的面积的最大值为50πC. 圆M 的半径的最小值为1D. 满足条件的所有圆M 的半径之积为10【答案】ABD【解析】【分析】由切线的性质可确定AM 与20x y ++=垂直,由此可求得M 满足的直线方程,可判断出A 的正误;利用垂径定理可构造方程求得半径所有可能的取值,进而判断出,,B C D 的正误. 【详解】圆M 与20x y ++=相切于()0,2A -,AM ∴与20x y ++=垂直,∴直线AM 斜率为1,则M 在直线2y x =-,即20x y -+=上,A 正确;设(),2M a a -,∴圆M 半径r AM ===,∴圆M 被x轴截得的弦长为2==,解得:5a =-或1a =,当5a =-时,圆M 面积最大,为250r ππ=,B 正确;当1a =时,圆M ,C 错误;满足条件的所有半径之积为10=,D 正确.故选:ABD .【点睛】本题考查直线与圆知识的综合应用,涉及到切线的性质、直线被圆截得的弦长问题;关键是熟练应用垂径定理,即直线被圆截得的弦长等于12.若存在m ,使得()f x m ≥对任意x D ∈恒成立,则函数()f x 在D 上有下界,其中m 为函数()f x 的一个下界;若存在M ,使得()f x M ≤对任意x D ∈恒成立,则函数()f x 在D 上有上界,其中M 为函数()f x 的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是( )A. 1不是函数1()(0)f x x x x=+>的一个下界 B. 函数()ln f x x x =有下界,无上界C. 函数2()xe f x x =有上界,无下界D. 函数2sin ()1x f x x =+有界 【答案】BD【解析】【分析】 根据基本不等式可判断出A 错误;利用导数可确定B 中函数的单调性,从而确定是否存在上下界;由20x >,0x e >可知()0f x >,从而否定C ;根据正弦函数的值域可进行放缩得到D 中函数的上下界.【详解】对于A ,当0x >时,12x x +≥(当且仅当1x =时取等号),()1f x ∴>恒成立,1∴是()f x 的一个下界,A 错误;对于B ,()()ln 10f x x x '=+>,()10,x e -∴∈时,()0f x '<;()1,x e -∈+∞时,()0f x '>,()f x ∴在()10,e -上单调递减,在()1,e -+∞上单调递增,()()11f x f e e-∴≥=-,()f x ∴有下界, 又x →+∞时,()f x →+∞,()f x ∴无上界限,综上所述:()ln f x x x =有下界,无上界,B 正确;对于C ,20x >,0xe >,20xe x ∴>,()f x ∴有下界,C 错误; 对于D ,[]sin 1,1x ∈-,2221sin 1111x x x x -∴≤≤+++, 又2111x -≥-+,2111x ≤+,2sin 111x x ∴-≤≤+,()f x ∴既有上界又有下界, 即()f x 有界,D 正确.故选:BD .【点睛】本题考查函数的新定义运算的问题,关键是明确新定义运算实际考查了函数值域的求解问题,涉及到利用导数来求解函数的单调区间和最值、放缩法的应用等知识.三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设()f x 是定义在R 上的函数,若()()g x f x x =+是偶函数,且(2)4g -=-,则(2)f =________.【答案】6-【解析】【分析】根据偶函数的定义可构造方程()()f x x f x x +=--,代入2x =和()24g -=-即可求得结果.【详解】()g x 为偶函数,()()g x g x ∴=-,即()()f x x f x x +=--,()()2222f f ∴+=--,又()()2224g f -=--=-,()26f ∴=-.故答案为:6-.【点睛】本题考查利用函数的奇偶性求解函数值的问题,属于基础题.14.已知函数()sin()(0)f x x ωϕω=+>,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫ ⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,则ω=_________.【答案】2【解析】【分析】根据正弦函数两相邻对称中心横坐标间隔为半个最小正周期可求得最小正周期,由此可求得ω. 【详解】2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫ ⎪⎝⎭是()f x 两个相邻的对称中心, 722632T πππ∴=-=,即2T ππω==,2ω∴=. 故答案为:2.【点睛】本题考查正弦型函数对称性和周期性的综合应用问题,关键是明确正弦型函数相邻的两个对称中心横坐标间隔为半个最小正周期.15.已知1F ,2F 分别为椭圆221168x y +=的左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点2F 作12F MF ∠的角平分线的垂线,垂足为N ,若||2ON =(O 为坐标原点),则21MF MF -=__________,||OM =________.【答案】 (1). 4 (2). 【解析】【分析】延长2F N ,1MF 相交于Q 点,易知2MF FQ =,得到N 2F Q 中点,结合三角形中位线性质可求得1FQ ,由1211MQ MF MF MF FQ -=-=可求得结果;结合椭圆定义可求得2MF ,1MF ,由勾股定理确定11MF OF ⊥,进而求得结果.【详解】如图,延长2F N ,1MF 相交于Q 点,由题意知:2MN F Q ⊥,且MN 平分12F MF ∠,2MF MQ ∴=,N ∴为2F Q 的中点, O 为12F F 的中点,11//2ON FQ ∴,21114MF MF MQ MF FQ ∴-=-==. 由椭圆定义知:218MF MF +=,26MF ∴=,12MF =, 又12216842F F =-=2222112MF MF F F ∴=+,11MF OF ∴⊥,22114823OM MF OF ∴=+=+=故答案为:4;23【点睛】本题考查椭圆几何性质的应用,涉及到椭圆的定义和对称性的应用,考查学生对于椭圆几何性质的基础知识的掌握情况.16.在正三棱柱111ABC A B C -中,23AB =12AA =,,E F 分别为1AB ,11A C 的中点,平面α过点1C ,且平面//α平面11A B C ,平面α平面111A B C l =,则异面直线EF 与l 所成角的余弦值为________. 3【解析】【分析】 由面面平行性质可知11//l A B ,取1111,A B B C 的中点分别为,H G ,可证得//GF l ,由此得到异面直线所成角为GFE ∠或其补角,通过求得cos GFE ∠可确定所成角为GFE ∠,进而得到结果. 【详解】平面//α平面11A B C ,平面α平面111A B C l =,平面11A B C 平面11111A B C A B =, 11//l A B ∴取1111,A B B C 的中点分别为,H G ,连接1,,,,EH EG GH GF AC ,如图所示,则11//GF A B ,//GF l ∴,∴异面直线EF 与l 所成的角为GFE ∠或其补角,23AB =,12AA =,14AC ∴=,1EH =,3HF GF ==,2EG EF ∴==,3322cos 024GF GFE EF ∴∠===>, ∴异面直线EF 与l 所成的角为GFE ∠, ∴异面直线EF 与l 所成角的余弦值为3.故答案为:3. 【点睛】本题以三棱柱为载体,综合考查异面直线所成角的求解;解答的基本方法是通过平移直线,把异面直线平移到两条相交直线上,将异面直线所成角的问题转变为相交直线所成角的问题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.从中国教育在线官方公布的考研动机调查来看,本科生扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力;通过考研选择真正感兴趣的专业;为了获得学历;继续深造;随大流;有名校情结.如图是2015~2019年全国硕士研究生报考人数趋势图(单位:万人)的拆线图.(1)求y 关于t 的线性回归方程;(2)根据(1)中的回归方程,预测2021年全国硕士研究生报考人数. 参考数据:()()51311ii i tt y y =--=∑;回归方程ˆˆˆya bt =+中斜率和截距的最小二乘估计公式分别为()()()121ˆnii i nii tty y b tt==--=-∑∑,ˆˆay bt =-. 【答案】(1)ˆ31.1120.9y t =+;(2)338.6万人【解析】 【分析】(1)根据折线图中数据计算得到最小二乘法所需数据,利用最小二乘法求得回归直线; (2)将7t =代入回归直线即可求得所求预测值. 【详解】(1)由折线图中数据计算得:()11234535t =++++=, ()()()522222212101210i i t t =-=-+-+++=∑,由参考数据知,()()51311ii i tt y y =--=∑,()()()51521311ˆ31.110ii i i i tty y bt t ==--∴===-∑∑,ˆˆ214.231.13120.9a y bt=-=-⨯=, ∴所求回归方程为ˆ31.1120.9yt =+. (2)将2021年对应的7t =代入回归方程得:ˆ31.17120.9338.6y=⨯+=, ∴预测2021年全国硕士研究生报考人数约338.6万人.【点睛】本题考查最小二乘法求解回归直线并利用回归直线进行预测的问题,涉及到折线图的读取问题;关键是熟练掌握最小二乘法,对学生的运算能力有一定要求. 18.在①2b c +=.②ABC ∆的面积4ABC S ∆=,③3sin sin 4B C =这三个条件中任选一个,补充在下面问题中,问题中的ABC ∆是否为等边三角形,请说明理由.在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,且(cos cos )tan ,1a C c A A a +==,________,试判断ABC ∆是否为等边三角形?(注:如果选择多个条件分别解答,按第一个解答计分)【答案】若选①,等边三角形;若选②,等边三角形;若选③,等边三角形. 【解析】【分析】利用正弦定理边化角整理可求得tan A ,进而得到A ,利用余弦定理可构造方程,得到221b c bc +-=; 若选①,利用余弦定理的结论可求得1bc =,进而求得1b c ==,从而得到结论; 若选②,根据三角形面积公式可求得1bc =,进而求得1b c ==,从而得到结论; 若选③,利用正弦定理角化边可求得1bc =,进而求得1b c ==,从而得到结论.【详解】由()cos cos tan a C c A A +=得:()sin cos sin cos tan A C C A A B +=,即()()sin tan sin tan sin tan A C A B A B A B π+=-==,()0,B π∈,sin 0B ∴≠,tan A ∴=,又()0,A π∈,3A π∴=.由余弦定理得:22222cos 1b c bc A b c bc +-=+-=.若选①,则()2223431b c bc b c bc bc +-=+-=-=,解得:1bc =,1b c ∴==,又3A π=,则ABC ∆是等边三角形.若选②,1sin 244ABC S bc A ∆===,解得:1bc =, 222b c ∴+=,即1b c ==,又3A π=,则ABC ∆是等边三角形.若选③,3A π=,sin 2A ∴=,23sin sin sin 4B C A ∴==,由正弦定理得:2bc a =,即1bc =,222b c ∴+=,即1b c ==,又3A π=,则ABC ∆是等边三角形.【点睛】本题采用开放式设问的方式,考查解三角形的相关知识,涉及到正弦定理边角互化的应用、利用余弦定理和三角形面积公式解三角形等知识,属于常考题型.19.已知数列{}n a 的前n 项和为n S ,14a =,()1314nn n S a -+=-,()212(1)log n n n b a +=-⋅.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .【答案】(1)4nn a =;(2)24(21)n T n n =-+【解析】 【分析】(1)利用n a 与n S 的关系可证得数列{}n a 为等比数列,利用等比数列通项公式求得结果; (2)由(1)可求得{}n b 的通项公式,采用并项求和的方法,结合等差数列求和公式可求得结果. 【详解】(1)()1314n n n S a -+=-,∴当2n ≥且n *∈N 时,()11314n n n S a -+-=-,()()()111331414n n n n n n n a S S a a --+-+∴=-=---,整理可得:()()11440nn n aa -+--=,当2n ≥且n *∈N 时,140n --≠,14n n a a +∴=; 当1n =时,()1112331412S a a-==-=,216a ∴=,满足214a a =,∴数列{}n a 是以4为首项,4为公比的等比数列,1444n n n a -∴=⨯=.(2)由(1)知:()()()()()2211122221log 41log214n n n n n n b n +++=-⋅=-⋅=-⋅,()()22222241234212n T n n ⎡⎤∴=-+-+⋅⋅⋅+--⎣⎦()()()()()()412123434411n =+⨯-++⨯-+⋅⋅⋅+-⨯-⎡⎤⎣⎦()()()()424374144212n n n n n +=⨯---⋅⋅⋅--=-⨯=-+【点睛】本题考查利用n a 与n S 的关系证明数列为等比数列并求通项、并项求和法求解数列的前n 项和的问题,涉及到等差数列求和公式的应用;关键是明确对于通项公式含有()1n-的数列求和时,通常采用并项求和的方式,通过分组找到数列的规律.20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,AB AD ⊥,//BC AD ,222AD BC PA ===,1AB =,,,E F G 分别为线段,,AD DC PB 的中点.(1)证明:平面//PEF 平面GAC ; (2)求多面体AGCPEF 的体积;(3)求直线GC 与平面PCD 所成角的正弦值. 【答案】(1)证明见解析;(2)13;(3)16【解析】 【分析】(1)连接BE ,交AC 于点O ,证得四边形ABCE 为平行四边形,从而得到O 为AC 中点,分别利用三角形中位线性质和线面平行的判定定理证得//PE 平面GAC ,//EF 平面GAC ,由面面平行的判定定理可证得结论;(2)利用切割的方式,通过所求体积P ABCD G ABC P DEF V V V V ---=--,结合棱锥体积公式可求得结果; (3)以A 为坐标原点建立空间直角坐标系,利用空间向量法可求得所求的结果. 【详解】(1)连接BE ,交AC 于点O ,连接,GO CE ,//BC AD ,2AD BC =且E 为AD 中点,//BC AE ∴,∴四边形ABCE 为平行四边形,O ∴为AC 中点,又G 为PB 中点,//GO PE ∴,又GO ⊂平面GAC ,PE ⊄平面GAC ,//PE ∴平面GAC ; ,E F 分别为,AD CD 中点,//EF AC ∴,又AC ⊂平面GAC ,EF ⊄平面GAC ,//EF ∴平面GAC ,,PE EF ⊂平面PEF ,PE EF E ⋂=,∴平面//PEF 平面GAC .(2)222AD BC PA ===,1AB =,∴()111121322P ABCD V -=⨯⨯+⨯=; 又G 为PB 中点,G ∴到平面ABC 的距离为1122PA =,11111132212G ABC V -∴=⨯⨯⨯⨯=,,E F 分别为,AD CD 中点,14DEF DAC S S ∆∆∴=,又()1112111122DAC S ∆=⨯+⨯-⨯⨯=,11113412P DEF V -∴=⨯⨯=,∴多面体AGCPEF 的体积1111212123P ABCD G ABC P DEF V V V V ---=--=--=.(3)PA ⊥底面ABCD ,AB AD ⊥,,,AB AD AP ∴两两互相垂直,则以A 为坐标原点可建立如下图所示的空间直角坐标系:则11,0,22G ⎛⎫ ⎪⎝⎭,()1,1,0C ,()0,2,0D ,()0,0,1P , 11,1,22GC ⎛⎫∴=- ⎪⎝⎭,()1,1,1PC =-,()0,2,1PD =-,设平面PCD 的法向量(),,n x y z =,则020n PC x y z n PD y z ⎧⋅=+-=⎨⋅=-=⎩,令1y =,则2z =,1x =,()1,1,2n ∴=,设直线GC 与平面PCD 所成角为θ,则112sin 6362n GC n GCθ⋅===⋅⨯, ∴直线GC 与平面PCD 所成角的正弦值为16.【点睛】本题考查立体几何中的面面平行关系的证明、多面体体积的求解、空间向量法求解直线与平面所成角的问题;对于不规则几何体体积的求解,通常采用切割的方式,将问题转化为棱锥或棱柱体积的求解问题.21.已知点()()8,0P t t <是抛物线()2:20C y px p =>上一点,点F 为抛物线C 的焦点,10PF =.(1)求直线PF 的方程;(2)若直线PF 与抛物线C 的另一个交点为Q ,曲线C 在点P 与点Q 处的切线分别为,m n ,直线,m n 相交于点G ,求点G 的坐标.【答案】(1)4380x y +-=;(2)(2,3)--【解析】 【分析】(1)利用抛物线焦半径公式可求得抛物线方程和焦点坐标,进而求得P 点坐标;由直线两点式方程可整理得到直线的一般式方程;(2)联立直线PF 方程与抛物线方程可求得Q 点坐标,假设切线方程,与抛物线方程联立后可利用0∆=求出切线方程,两条切线方程联立即可求得交点坐标. 【详解】(1)10PF =,8102p∴+=,解得:4p =, ∴抛物线C 的方程为28y x =,()2,0F ,又P 为抛物线C 上一点,264t ∴=,又0t <,8t ∴=-,∴直线PF 的方程为028082y x --=---,即4380x y +-=.(2)联立243808x y y x+-=⎧⎨=⎩得:26160y y +-=,解得:8y =-或2y =, 1,22Q ⎛⎫∴ ⎪⎝⎭,设():88m y k x +=-,联立()2888y x y k x ⎧=⎪⎨+=-⎪⎩得:2864640ky y k ---=,由()64464640k k ∆=++=得:12k =-, ∴直线m 的方程为:()1882y x +=--,即280x y ++=. 同理可求得直线n 的方程为:210x y -+=.由280210x y x y ++=⎧⎨-+=⎩得:23x y =-⎧⎨=-⎩,即G 点的坐标为()2,3--.【点睛】本题考查直线与抛物线的综合应用问题,涉及到抛物线焦半径公式的应用、抛物线切线方程的求解等知识;解决直线与拋物线的综合问题时,需要注意:(1)观察、应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题;(3)注重平面几何的知识,利用数形结合的思想处理问题.22.已知函数()sin f x ax x =-,曲线()y f x =在点,22f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线过点(2021,2020). (1)求实数a 的值;(2)求函数()()g x xf x =的单调区间;(3)若112a =,122n n n a a f a ππ+⎛⎫=- ⎪⎝⎭,证明:1114n n a a π+-<- 【答案】(1)1a =;(2)单调递增区间(0,)+∞,单调递减区间(,0)-∞;(3)证明见解析 【解析】 【分析】(1)利用在某点处切线方程的求解方法可求得在点,22f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程,将点()2021,2020代入切线方程即可求得a ;(2)由(1)可知当0x >时,sin 0x x ->,从而可确定当0x >时,()g x '的正负,从而确定()g x 在()0,∞+上的单调性;根据奇偶性定义可知()g x 为偶函数,从而求得其在(),0-∞上的单调性,进而得到所求单调区间;(3)根据递推关系式可类推得到101n n a a +<<<,利用(2)中当0x >时,sin x x >的结论,将所证不等式左侧进行放缩即可证得结论. 【详解】(1)()cos f x a x '=-,cos 22f a a ππ⎛⎫'∴=-= ⎪⎝⎭,又122a f ππ⎛⎫=-⎪⎝⎭,∴在点,22f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程为:122a y a x ππ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭, 即为1y ax =-,又切线过点()2021,2020,202020211a ∴=-,解得:1a =. (2)()22sin sin g x ax x x x x x =-=-,()2sin cos g x x x x x '∴=--,当0x >时,由(1)知:()1cos 0f x x '=-≥,()f x ∴在[)0,+∞上单调递增,()()00f x f ∴>=,即sin 0x x ->,()()()2sin cos sin 1cos g x x x x x x x x x '=--=-+-,∴当0x >时,()0g x '>,()g x ∴在()0,∞+上单调递增;又()()()()22sin sin g x x x x x x x g x -=-+-=-=,()g x ∴偶函数,()g x ∴在(),0-∞上单调递减;综上所述:()g x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞.(3)sin 222n n n f a a a πππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,1sin 2n na a π+⎛⎫∴= ⎪⎝⎭, 112a =,2sin 42a π∴==120222a a πππ∴<<<,2301a a ∴<<<, 依次类推可得到:101n n a a +<<<.()211sin 1cos 2sin 1122241111n n n n n n n na a a a a a a a ππππ+⎛⎫⎛⎫⎡⎤---- ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦===---- 01n a <<,011n a ∴<-<,()0144n a ππ∴<-<,又101n n a a +<<<,110112n a a ≤∴<--=, 由(2)知:当0x >时,sin x x >,()()()222sin 121144111424224n n n nn a a a a a πππππππ⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦∴<=⨯-≤⨯⨯<--,1114n n a a π+-∴<-.【点睛】本题考查导数在研究函数中的应用,涉及到导数几何意义的应用、利用导数求解函数的单调区间、利用导数证明与数列有关的不等式的问题;证明不等式的关键是能够将所证不等式,利用已证得的结论进行适当放缩,属于较难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届全国天一大联考新高考模拟试卷(七)理科数学试题★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(选择题,共60分)一、选择题(共有12小题,每小题5分,共60分,四个选项中只有一个是正确的.) 1.已知全集{1,2,3,4,5,6}U =,集合{1,2,4},{1,3,5}A B==,则()U A B =( ) A. {1}B. {3,5}C. {1,6}D. {1,3,5,6} 【答案】B【解析】分析:由全集U 及A ,求出补集U C A ,找出集合A 的补集与集合B 的交集即可.详解:{} 1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,5U A ∴=, 又{}(){}1,3,5,3,5U B A B =∴⋂=,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性. 研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合B 或不属于集合A 的元素的集合.2.已知(2)(2)43,m i i i +-=+,m R i ∈为虚数单位,则m 的值为( )A. 1B. 1-C. 2D. 2-【答案】A【解析】【分析】先化简已知的等式,再利用两个复数相等的条件,解方程组求得x 的值.【详解】∵()()2243,m i i i +-=+∴()2m 2443m i i ++-=+, ∴22443m m +=⎧⎨-=⎩,即m 1= 故选A【点睛】本题考查两个复数的乘法法则的应用,以及两个复数相等的条件,基本知识的考查. 3.向量,,a b c 在正方形网格中的位置如图所示.若向量a b λ+与c 共线,则实数λ=( )A. 2-B. 1-C. 1D. 2【答案】D【解析】【分析】 由图像,根据向量的线性运算法则,可直接用,a b 表示出c ,进而可得出λ.【详解】由题中所给图像可得:2a b c +=,又c = a b λ+,所以2λ=.故选D【点睛】本题主要考查向量的线性运算,熟记向量的线性运算法则,即可得出结果,属于基础题型.4.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分,据此可估计阴影部分的面积是( )A. 165B. 325C. 10D. 185【答案】C【解析】【分析】由条件可知8025200s =,计算结果. 【详解】设图中阴影部分的面积为s ,正方形的面积为25,则8025200s =, 解得:10s =故选:C【点睛】本题考查几何概型,属于简单题型.5.函数()f x 的定义域是R ,且满足()()0f x f x +-=,当0x ≥时,()21x f x x =+,则()f x 图象大致是( ) A. B.C. D.【答案】A【解析】【分析】根据函数的奇偶性可排除B,C 选项,当0x ≥时,()21x f x x =+可知()0f x ≥,排除D 选项,即可求解. 【详解】因为函数()f x 的定义域是R ,且满足()()0f x f x +-=,所以()f x 是奇函数,故函数图象关于原点成中心对称,排除选项B,C ,又当0x ≥时,()21x f x x =+, 可知()0f x ≥,故排除选项D,故选:A【点睛】本题主要考查了函数的奇偶性,函数图象,属于中档题.6.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、玉、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅、.癸酉,甲戌、乙亥、子、.癸未,甲申、乙酉、丙戌、癸巳,共得到60个组合,周而复始,循环记录.2010年是“干支纪年法”中的庚寅年,那么2019年是“干支纪年法”中的( )A. 己亥年B. 戊戌年C. 庚子年D. 辛丑年【答案】A【解析】【分析】根据“干支纪年法”依次写出2011-2019年的“干支纪年”,得到结果.【详解】2011年是辛卯年,2012年是玉辰年,2013年是癸已年,2014年是甲午年,2015年是乙未年,2016年是丙申年,2017年是丁酉年,2018年是戊戌年,2019年是己亥年.故选:A【点睛】本题考查新定义,重点考查读懂题意,列举法,属于基础题型.7.若01a b <<<,则b a , a b , log b a , 1log a b 的大小关系为( ) A.1log log b a b aa b a b >>> B. 1log log a b b a b a b a >>> C.1log log b a b a a a b b >>> D. 1log log a b b aa b a b >>> 【答案】D【解析】因为01a b <<<,所以10a a b b a a >>>>,因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <. 综上1log log a b b a a b a b >>>;故选D. 8.已知一几何体的三视图如图所示,正视图和侧视图是两个直角边分别为2和1的全等三角形,则这个四面体最长的棱长为( )A. 5B. 3C. 2D. 23【答案】B【解析】【分析】根据三视图画出如图的几何体,再求最长的棱长.【详解】由三视图可知,此几何体是三棱锥,如图,画出四面体ABCD ,由三视图可知,2AD DC ==,长方体的侧棱长为1,最长的棱是BD ,2222213BD =++=故选:B【点睛】本题考查由三视图还原几何体,重点考查空间想象能力,属于中档题型,一般由三视图还原几何体,根据“长对正,高平齐,宽相等”的原则还原,也可将几何体放在正方体或长方体中,找点作图.9.已知51x ax x ⎛⎫- ⎪⎝⎭的展开式中常数项为-40,则a 的值为( ) A. 2B. -2C. 2±D. 4 【答案】C【解析】【分析】 由题意可知51ax x ⎛⎫- ⎪⎝⎭的展开式中,含1x 项的系数是-40,利用二项式定理的通项公式求1x 的系数求a 的值. 【详解】由题意可知51ax x ⎛⎫- ⎪⎝⎭的展开式中,含1x 项的系数是-40, ()()555215511r r r r r r r r T C ax C a x x ---+⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪⎝⎭, 当3r =时,()33213151T C a x -+=⋅-⋅,则21040a -=-,解得:2a =±.故选:C【点睛】本题考查二项式定理指定项系数,重点考查转化与化归的思想,属于基础题型.10.已知函数()()2sin 10f x x ωω=+>在区间,32ππ⎡⎤⎢⎥⎣⎦上是增函数,且在区间[]0,π上存在唯一的0x 使得0()3f x =,则ω的取值不可能为( )A. 23B. 14C. 34D. 1【答案】B【解析】【分析】 由已知函数在,32ππ⎡⎤⎢⎥⎣⎦上单调递增,在[]0,π上存在唯一的最大值,建立关于ω的不等式组,求解ω的范围,比较选项. 【详解】由题意可知225220ππωπωππω⎧⋅≤⎪⎪⎪≤⋅<⎨⎪>⎪⎪⎩,解得:112ω≤≤ 四个选项只有B 不成立.故选:B【点睛】本题考查三角函数的性质,重点考查最值,属于中档题型,本题的关键是考查端点值和最大值的比较.11.过双曲线22221(0)x y a b a b-=>>的右焦点F 的直线交两渐近线于E 、Q 两点,O 为坐标原点,OEQ △内切圆的半径为4a ,且0OE EQ ⋅=,则双曲线的离心率为( )A.B.C. 2D. 3【答案】D【解析】【分析】因为内切圆的圆心是三角形角平分线的交点,根据角平分线的性质,画出如图的图象,再结合焦点到渐近线的距离为b ,和数形结合分析出13b a =,再求离心率. 【详解】设内切圆的圆心为M ,则在EOQ ∠的角平分线上, 过点M 分别作MN OE ⊥于点N ,MT EQ ⊥于点T ,由FE OE ⊥,得四边形MNET 是正方形,由焦点到渐近线0bx ay -=的距离为d ,则22bc d b a b ==+,又OF c =, OE a ∴=,4a NE MN ==, 34a NO ∴=, 13b MN a ON ∴==, 221013c b a a ∴=+=故选:D【点睛】本题考查双曲线的几何性质和三角形内心的几何性质,重点考查转化与化归,数形结合分析问题的能力,属于中档题型,本题的关键是利用双曲线的焦点到渐近线的距离等于b ,再根据勾股定理确定OE a =,再根据内切圆的几何性质确定几何关系.12.如图,在正方体````ABCD A B C D -中,平面垂直于对角线AC ,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( )A. S 为定值,l 不为定值B. S 不为定值,l 为定值C. S 与l 均为定值D. S 与l 均不为定值【答案】B【解析】【分析】将正方体切去两个正三棱锥'A A BD -和''C B CD '-,得到一个几何体V ,V 是以平行平面'A BD 和''B CD 为上下底,每个侧面都是直角等腰三角形,截面多边形的每一条边分别与V 的底面上的一条边平行,设正方体棱长为a ,'''A K A B γ=,可求得六边形的周长为32a 与γ无关,即周长为定值;当I J N M L K 、、、、、都在对应棱的中点时,ω是正六边形,计算可得面积233S a =,当ω无限趋近于'A BD 时,ω的面积无限趋近于23a ,从而可知ω的面积一定会发生变化. 【详解】设平面α截得正方体的六个表面得到截面六边形为ω,ω与正方体的棱的交点分别为I J N M L K 、、、、、(如下图), 将正方体切去两个正三棱锥'A A BD -和''C B CD '-,得到一个几何体V ,V 是以平行平面'A BD 和''B CD 为上下底,每个侧面都是直角等腰三角形,截面多边形ω的每一条边分别与V 的底面上的一条边平行,设正方体棱长为a ,'''A K AB γ=,则2IK B D a γγ''==,()()121KL A B a γγ=-'=-,故()2212IK KL a a a γγ+=+-=,同理可证明2LM MN NJ IJ a +=+=,故六边形ω的周长为32a ,即周长为定值;当I J N M L K 、、、、、都在对应棱的中点时,ω是正六边形,计算可得面积221233362224S a a ⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭,三角形'A BD 的面积为()2213322a a ⨯⨯=,当ω无限趋近于'A BD 时,ω的面积无限趋近于23a ,故ω的面积一定会发生变化,不为定值. 故答案为B.【点睛】本题考查了正方体的结构特征,考查了截面的周长及表面积,考查了学生的空间想象能力,属于难题.第Ⅱ卷 (非选择题,共90分)二、填空题(共20分.本大题共4小题,每小题5分)13.实数满足204040x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩,则2z x y =-的最小值是____【答案】-8【解析】【分析】首先画出可行域,然后平移直线,判断目标函数的最小值.【详解】如图,画出可行域,令0z =,作出初始目标函数:12y x =,当0y =时,x z =,即当直线的横截距最小时,2z x y =-取得最小值,由图象可知,当直线过点C 时,目标函数取得最小值, 204x y x -+=⎧⎨=⎩ ,解得4,6x y == ,即()4,6C , 即min 4268z =-⨯=-故答案为:-8【点睛】本题考查线性规划,重点考查数形结合分析问题的能力,属于基础题型.14.为响应中共中央、国务院印发《关于全面加强新时代大中小学劳动教育的意见》,高二(1)班5名学生自发到3个农场参加劳动,确保每个农场至少有一人,则不同的分配方案有___种(用数字填写答案) 【答案】150 【解析】 【分析】根据条件分配方案先分成两类,一种是2,2,1,一种是1,1,3的分组分配,再按照组合排列求解.【详解】由题意可知,有两类分配方法,其中一种是3个农场有2个农场有2人,1个农场有1人,共有2235332290C C A A =种方法, 另外一种是3个农场有2个农场有1人,另外一个农场有3人,共有1135432260C C A A =种方法, 所以一共有90+60=150种方法. 故答案为:150【点睛】本题考查排列,组合,重点考查分组,分配,属于基础题型.15.设12,F F 分别是椭圆221167x y +=的左、右焦点,E 为椭圆上任一点,N 点的坐标为()5,1,则1||||EN EF +的最大值为_____【答案】8【解析】 【分析】首先利用椭圆的定义,转化()128EN EF EN EF +=+-,利用22EN EF NF -≤,结合数形结合分析距离和的最大值. 【详解】128EF EF +=()128EN EF EN EF ∴+=+-22EN EF NF -≤,如图,当2,,E F N 三点共线时,等号成立,所以2EN EF -的最大值是2F N ==即1||||EN EF +的最大值是8.故答案为:85【点睛】本题考查椭圆内距离的最大值,椭圆的定义,重点考查数形结合分析问题的能力,属于基础题型,本题的关键是利用椭圆的定义转化()128EN EF EN EF ∴+=+-,从而利用三点共线求最大值. 16.设数列{}n a 的前n 项和为n S 满足:1(1)n n n a S n n -=-+,1,2,,n n =,则2020S =____【答案】202020201120212S ⎛⎫=- ⎪⎝⎭【解析】 【分析】首先求首项,当2n ≥时,1n n n a S S -=-,再通过构造可得数列11n S n ⎧⎫-⎨⎬+⎩⎭是等比数列,从而求得n S . 【详解】当1n =时,10S =, 当2n ≥时,1(1)n n n S a n n -+=+,11111212111n n n n n S S S S S n n n n n--⎛⎫+-=-=--=- ⎪+++⎝⎭ 111111111111222212n n nn n n S S S S n n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⇒-=-=-=-⇒=- ⎪ ⎪⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故202020201120212S ⎛⎫=- ⎪⎝⎭【点睛】本题考查数列已知n S 求n a ,重点考查转化与化归的思想,属于中档题型,本题的关键是证明数列11n S n ⎧⎫-⎨⎬+⎩⎭是等比数列.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答) (一)必考题:共60分.17.如图,点A 在BCD 的外接圆上,且3sin 5A =,A 为锐角,5AD CD ==,35BD =.(1)求AB ;(2)求四边形ABCD 的面积. 【答案】(1)10;(2)18 【解析】 【分析】(1)ABD △中,利用余弦定理求AB ;(2)由(1)易求ABD △的面积,根据四点共圆,可知A BCD π∠+∠=,BCD 中利用正弦定理求sin DBC ∠,再来利用两角和的正弦公式求sin BDC ∠,最后求面积.【详解】解:(1)∵3sin 5A =,A 为锐角,∴4cos 5A =,在ABD △中由余弦定理得:2222cos BD AD AB AD AB A =+-⋅28200AB AB --=,得10AB =或2AB =-(舍去),∴10AB = (2)由(1)可知113sin 10515225ABD S AB AD A =⋅=⨯⨯⨯=△ ∵ABCD 四点共圆,∴A C π∠+∠=,∴3sin 5C =,4cos 5C =-,在BCD 中由正弦定理得:sin sin BD CD C DBC =∠,即3553sin 5DBC =∠,得5sin DBC ∠=25cos 5DBC ∠= sin sin(())sin()BDC DBC BCD DBC BCD π∴∠=-∠+∠=∠+∠=5425325555525⎛⎫-+=⎪⎝⎭ ∴1125sin 355322BCD S BD CD BDC =⨯⨯⨯∠=⨯=△∴四边形ABCD 面积15318S =+=【点睛】本题考查利用正余弦定理解三角形,重点考查推理计算能力,属于基础题型,本题的关键条件是四边形若有外接圆,则对角互补.18.已知四棱锥S ABCD -,SD SB =,在平行四边形ABCD 中,AD CD =,Q 为SC 上的点,过AQ 的平面分别交SB ,SD 于点E 、F ,且//BD 平面AEQF .(1)证明:EF SC ⊥;(2)若23SA SC ==2AB =,Q 为SC 的中点,SA 与平面ABCD 所成角的正弦值为32,求平面SBD 与平面AEQF 所成锐二面角的余弦值. 【答案】(1)证明见解析;(2)12【解析】 【分析】(1)利用线面平行的性质可知//BD EF ,再后再根据条件证明BD ⊥平面SAC ,从而证明线线垂直; (2)如图,以O 为坐标原点,分别以,,OA OB OS 为,,x y z 轴建立空间直角坐标系,利用两个平面法向量求二面角的余弦值.【详解】(1)证明:连结AC 交BD 于点O ,连结SO . ∵在平行四边形ABCD 中,AD CD =, ∴BD AC ⊥,且O 为AC 、BD 的中点, ∵SD SB =,∴SO BD ⊥, ∵ACSO O =,且,AC SO ⊂平面SAC ,∴BD ⊥平面SAC ,∵SC ⊂平面SAC ,∴BD SC ⊥, ∵//BD 平面AEQF ,且平面AEQF平面SBD EF =∴//BD EF , ∴EF SC ⊥(2)由(1)可知BD ⊥平面SAC ,故平面ABCD ⊥平面SAC ∵SA SC =,且O 为AC 的中点,∴SO AC ⊥ 又∵平面ABCD平面SAC AC =∴SO ⊥平面ABCD ,∴SA 与平面ABCD 所成角为SAO ∠ ∵SA 与平面ABCD 所成角的正弦值为32,且23SA =,∴3AO =3SO = 在Rt AOB 中,2AB =,由勾股定理得:1OB =如图,以O 为坐标原点,分别以,,OA OB OS 为,,x y z 轴建立空间直角坐标系,则:3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,0,3)A B C D S --,∵Q 为SC 的中点,∴3322Q ⎛⎫- ⎪ ⎪⎝⎭则(0,2,0)BD =-,333,0,22AQ ⎛⎫=- ⎪ ⎪⎝⎭易知,平面SBD 的一个法向量为()1,0,0m =设平面AEQF 的法向量为(),,n x y z =,因为//EF BD ,则:00n BD n AQ ⎧⋅=⎨⋅=⎩,即2033302y x z -=⎧⎪⎨+=⎪⎩, 令1x =,则:0y =,3z =AEQF 的一个法向量为(1,0,3n =∴||1cos ,||||213m n m n m n ⋅===+∴平面SBD 与平面AEQF 所成锐二面角的余弦值为12【点睛】本题考查证明线线垂直,空间坐标法求二面角,重点考查推理证明,计算能力,属于中档题型. 19.已知抛物线2:4C y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点. (1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点()2,0E -,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =-或1y x =-+;(2)证明见解析 【解析】 【分析】(1)法一:分斜率存在和斜率不存在两种情况讨论,当斜率存在时设直线方程为()1y k x =-与24y x =联立,利用弦长公式1228AB x x =++=求解;法二:设直线方程为1x my =+,方程联立后利用弦长公式求解;(2)设直线l 方程为()0x my b m =+≠与24y x =联立,由AEO BEO ∠=∠得EA EB k k =-,利用根与系数关系,得到直线过定点.【详解】解:(1)法一:焦点()1,0F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为()1,2,()1,2-,此时AB 4=,不符合题意,故直线的斜率存在.设直线l 方程为()1y k x =-与24y x =联立得()2222220k x k x k -+-=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =-,由抛物线的定义得()()()212222||||||1128k AB AF BF x x k+=+=+++=+=,解得1k =±,所以l 方程为1y x =-或1y x =-+法二:焦点()1,0F ,显然直线l 不平行于x 轴,设直线方程为1x my =+, 与24y x =联立得2440y my --=,设()11,A x y ,()22,B x y124y y m +=,124y y =-()2||41AB m ====+由8AB =,解得1m =±,所以l 方程为1y x =-或1y x =-+ (2)设()11,A x y ,()22,B x y ,设直线l 方程为()0x my b m =+≠与24y x =联立得2440y my b --=124y y m +=,124y y =-由AEO BEO ∠=∠得EA EB k k =-,即121222y yx x =-++ 整理得121122220y x y x y y +++=,即()()121122220y my b y my b y y +++++= 整理得()12122(2)0my y b y y +++= 即84(2) 0bm b m -++=,即2b = 故直线l 方程为2x my =+过定点()2,0【点睛】本题考查了直线与抛物线的位置关系的综合问题,涉及弦长,斜率求法,属于中档题型,题中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.20.某工厂改造一废弃的流水线M ,为评估流水线M 的性能,连续两天从流水线M 生产零件上随机各抽取100件零件作为样本,测量其直径后,整理得到下表:记抽取的零件直径为X . 第一天第二天经计算,第一天样本的平均值165μ=,标准差1 2.2.σ=第二天样本的平均值265μ=,标准差2 2.σ= (1)现以两天抽取的零件来评判流水线M 的性能.(i )计算这两天抽取200件样本的平均值μ和标准差σ(精确到0.01);(ii )现以频率值作为概率的估计值,根据以下不等式进行评判(P 表示相应事件的概率),①()0.6826P X μσμσ-<≤+≥;②()2 20.9544P X μσμσ-<≤+≥;③()330.9974P X μσμσ-<≤+≥评判规则为:若同时满足上述三个不等式,则设备等级为优;仅满足其中两个,则等级为良;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格,试判断流水线M 的性能等级.(2)将直径X 在(]2,2μσμσ-+范围内的零件认定为一等品,在(]3,3μσμσ-+范围以外的零件认定为次品,其余认定为合格品.现从200件样本除一等品外的零件中抽取2个,设ξ为抽到次品的件数,求ξ分布列及其期望.2.102≈6.648≈21.024≈;参考公式:标准差σ=【答案】(1)(i )65μ=, 2.10σ≈;(ii )合格;(2)分布列见解析,811【解析】 【分析】(1)(ⅰ)因为两天100个零件的平均值都是65,所以200个零件的平均值也是65,按照公式计算标准差σ;(ⅱ)分别计算3σ的概率,然后比较等级;(2)由(ⅱ)可知200件零件中合格品7个,次品4个,ξ的可能取值为0,1,2,利用超几何分布计算概率,并求分布列和数学期望.【详解】(1)(i )依题意:200个零件的直径平均值为65μ=由标准差公式得:第一天:()100221165100484i i X σ=-==∑,第二天:()100222165100400i i X σ=-==∑,则()2002211165(484400) 4.42200200ii X σ==-=+=∑故 2.10σ=≈(注:如果写出1(2.202) 2.102σ=+=不给分) (ii )由(1)可知:164()(62.967.1)0.820.6826200P X P X μσμσ-<≤+=<≤==≥, 189(22)(60.869.2)0.9450.9544200P X P X μσμσ-<≤+=<≤==<,196(33)(58.771.3)0.980.9974200P X P X μσμσ-<≤+=<<==<仅满足一个不等式,判断流水线M 的等级为合格.(2)可知200件零件中合格品7个,次品4个,ξ的可能取值为0,1,2,则2721121(0)55C P C ξ===,117421128(1)55C C P C ξ===,242116(2)55C P C ξ===,ξ的分布列则21286801255555511E ξ=⋅+⋅+⋅= 【点睛】本题考查样本期望,方差的计算,3σ原则的应用,以及超几何分布列的计算,重点考查数据的分析和应用,属于中档题型,本题的关键是读懂题意.21.已知函数2()2ln f x x ax =-,()(1)34x g x x e ax =++-,a R ∈. (1)求()f x 的单调区间;(2)若()f x 有最大值且最大值是1-,求证:()()f x g x <. 【答案】(1)见解析;(2)见解析 【解析】 【分析】(1)对()f x 求导,得()221()ax f x x-'=,对a 分类讨论,利用导函数的正负性即可得出单调性;(2)利用(1)中结论及()f x 最大值是1-,可得1a =,对()()f x g x <进行整理,可得232ln 14x x x x e x -<+-+,由0x >时,e 1x>可知,证明232114ln x x x x -+-+≤即可,构造函数()2432ln h x x x x =--+,利用导数可得()()0h x h x ≤()002ln 1x x =-+,再构造()ln 1m x x x =-+,利用导数可得()(1)0m x m ≤=,所以()()00h x h x ≤≤,问题得解. 【详解】(1)由函数2()2ln f x x ax =-,0x >得()2212()2ax f x ax x x-'=-= 1)当0a ≤时,()0f x '>,函数()f x 在()0∞,+上单调递增; 2)当0a >时,由()f x '=当0x <<时()0f x '>,当x >()0f x '< 故()fx 0⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减.(2)证明:由(1)知,当0a >时,函数()f x 有唯一最大值,即l 1n 1f a --=-,解得=1a . 22ln ()(3)14x x x f x g x e x x -++-<⇔<0x >时e 1x >, 所以证明23ln 1142x x x x -≤⇔+-+ 242ln 30x x x -+≤-即可, 令()()2432ln 0+h x x x x x =-+∈-∞,, ()()()()2211221224x x x x h x x x x x-+-+-'=--==可知,当01x -时函数()h x 取得极大值即最大值,且200210x x +-= ()()2000000=2ln 432ln 1h x x x x x x --+=-+设()ln 1m x x x =-+,则11()1x m x x x-'=-= 所以()m x 在01,上单调递增,[)1+∞,上单调递减, 故()(1)0m x m ≤=,所以()()0002ln 10h x x x =-+≤所以()()00h x h x ≤≤,即242ln 30x x x -+≤-问题得解.【点睛】本题是导数的综合应用题,考查了利用导数求函数单调性及利用导数求最值证明不等式,考查了分类讨论思想和放缩法,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点A的极坐标为4π⎫⎪⎭,直线l的极坐标方程为sin()42πρθ+= (1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若B 是曲线C 上的动点,G 为线段AB 的中点.求点G 到直线l 的距离的最大值.【答案】(1)l :10x y +-=,C :2213x y +=;(2)2【解析】【分析】(1)利用22sin cos 1αα+=消参得到曲线C 的普通方程,以及利用两角和的正弦公式展开,利用cos ,sin x y ρθρθ==求直线的直角坐标方程;(2)利用参数方程设),sin ,[0,2)B αααπ∈,则1sin 1,22G θθ⎛⎫++ ⎪ ⎪⎝⎭,利用点到直线的距离,转化为三角函数求最值.【详解】(1)∵直线l的极坐标方程为sin 42πρθ⎛⎫+= ⎪⎝⎭,即sin cos 10ρθρθ+-=. 由cos x ρθ=,sin y ρθ=,可得直线l 的直角坐标方程为10x y +-=.将曲线C的参数方程sin x y αα⎧=⎪⎨=⎪⎩消去参数α,得曲线C 的普通方程为2213x y +=. (2)设),sin ,[0,2)B αααπ∈.点A的极坐标4π⎫⎪⎭化为直角坐标为()1,1则sin 12G θ⎫+⎪⎪⎝⎭. ∴点G 到直线l距离3d πθ⎛⎫==+≤ ⎪⎝⎭. 当sin 13πα⎛⎫+=± ⎪⎝⎭时,等号成立点. ∴点G 到直线l的距离的最大值为2 【点睛】本题考查参数方程,极坐标方程,直角坐标方程的互化,以及参数方程的应用,属于基础题型,本题第二问的关键是利用椭圆的参数方程设点G 的坐标,转化为三角函数求最值.23.已知函数()21f x x a x =-++,()2g x x =+.(1)当2a =时,求不等式()1f x <的解集;(2)若[0,1]x ∀∈,不等式()()f x g x ≤恒成立,求实数a 的取值.【答案】(1)空集;(2)1【解析】【分析】(1)不等式转化为22110x x -++-<,利用零点分段,去绝对值,写成分段函数的形式,利用函数的单调性求函数的值域,同时求出不等式的解集;(2)当[]0,1x ∈,去绝对值,转化为21x a -≤对[]0,1x ∀∈恒成立,再去绝对值求a 的取值范围.【详解】解:(1)当2a =时,不等式()1f x <化为22110x x -++-<,设函数2211x x y -++-=,3,12,1132,1x x y x x x x -<-⎧⎪=-+-≤≤⎨⎪->⎩,由函数图象可知当1x =时,函数取得最小值1,所以1y ≥∴原不等式解集为空集(2)当[]0,1x ∈,不等式()()f x g x ≤恒成立,即21x a -≤对[]0,1x ∀∈恒成立,由2121x ax a-≤⎧⎨-≥-⎩得2121a xa x≥-⎧⎨≤+⎩对[]0,1x∀∈恒成立得11 aa≥⎧⎨≤⎩故a的取值为1【点睛】本题考查含绝对值不等式的解法,以及恒成立求参数的取值范围,重点考查计算能力,属于基础题型.。