2021届全国天一大联考新高考模拟试卷(一)理科数学试题

合集下载

2021届全国天一大联考新高考模拟考试(十九)数学(理)试题

2021届全国天一大联考新高考模拟考试(十九)数学(理)试题

2021届全国天一大联考新高考模拟考试(十九)理科数学试卷★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题1.已知集合{1,3,4,5}A =,集合2{}450|B x Z x x =∈--<,则A B 的子集个数为( )A. 2B. 4C. 8D. 16【答案】C 【解析】试题分析:由2450x x --<,解得15x -<<,所以{}0,1,2,3,4B =,所以{}1,3,4A B ⋂=,所以A B ⋂的子集个数为328=,故选C .考点:1、不等式的解法;2、集合的交集运算;3、集合的子集.2.如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等,若复数z 所对应的点为1Z ,则复数•z i (i 是虚数单位)的共轭复数所对应的点为( )A. 1ZB. 2ZC. 3ZD. 4Z【答案】B 【解析】试题分析:z i ⋅为将复数z 所对应的点逆时针旋转90得2Z ,选B. 考点:复数几何意义【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)a bi c di ac bd ad bc i a b c d R ++=-++∈. 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、共轭为.a bi - 3.下列四个函数,在0x =处取得极值的函数是( ) ①3y x = ②21y x +=③y x =④2x y = A. ① ② B. ② ③C. ③ ④D. ① ③【答案】B 【解析】【详解】试题分析:能不能取得极值要看函数在这个导函数的零点处的两边是否异性单调.通过检验②③这两个函数在处的左右两边情况是:左边是减函数,右边是增函数,因此是极值点.而①④两个函数都是单增的,所以应选B . 考点:函数极值的定义.4.已知变量,x y 满足:20{2300x y x y x -≤-+≥≥,则22)x y z +=的最大值为( )2 B. 22 C. 2D. 4【答案】D 【解析】试题分析:作出满足不等式组的平面区域,如图所示,由图知目标函数12z x y =+经过点(1,2)A 时取得最大值,所以212max (2)4z ⨯+==,故选D .考点:简单的线性规划问题.5.执行如图所示的程序框图,输出的结果是( )A. 5B. 6C. 7D. 8【答案】B 【解析】 【分析】按照流程图运行到第五次循环后停止循环,由此可得答案. 【详解】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选:B.【点睛】本题考查了循环结构流程图和条件结构流程图,属于基础题.6.两个等差数列的前n 项和之比为51021nn+-,则它们的第7项之比为()A. 2B. 3C.4513D.7027【答案】B【解析】试题分析:设这两个数列的前n项和分别为,n nS T,则1131377113137713()132513102313()13221312a aS a ab bT b b+⨯⨯+=====+⨯⨯-,故选B.考点:1、等差数列的前n项和;2、等差数列的性质.7.在某次数学测试中,学生成绩ξ服从正态分布()2100,(0)Nδδ>,若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为()A. 0.05B. 0.1C. 0.15D. 0.2【答案】B【解析】试题分析:由题意知ξ服从正态分布2(100,)σ,(80120)0.8Pξ<<=,则由正态分布图象的对称性可知,1(080)0.5(80120)0.12P Pξξ<<=-<<=,故选B.考点:正态分布.8.函数()sin(0,0)f x A x Aωω=>>的部分图象如图所示,(1)(2)(3)(2015)f f f f++++的值为()A. 0B. 32C. 62D. 2-【答案】A【解析】试题分析:由函数的图象可得:22,2(62)8A T w π==-==,解得4w π=,可得函数的解析式为()sin4f x x π=,所以()()()()()()122,340,562,f f f f f f ======-()()()780,9f f f ===,观察规律可知函数()f x 的值以8为周期,且()()()()()()()12345780f f f f f f f ++++++=,由于201525187=⨯+,故可得()()()()()()()()()()12320151234570f f f f f f f f f f ++++=+++++=,故选A.考点:三角函数的周期性.【方法点晴】本题主要考查了三角函数sin()y A wx ϕ=+部分图象确定函数的解析式、数列的周期性、数列的求和扥知识点的综合应用,其中根据三角函数的图象,求出函数的解析式,进而分析出函数的性质和数列的周期性,进而求解数列的和是解答本题的关键,着重考查了学生分析和解答问题的能力及转化与化归思想的应用.9.若(1)x +7280128(12)x a a x a x a x -=++++,则127a a a +++的值是( )A. -2B. -3C. 125D. -131【答案】C 【解析】试题分析:令0x =,得01a =;令1x =,得01282a a a a -=++++,即1283a a a +++=-.又7787(2)128a C =-=-,所以12783125a a a a +++=--=,故选C .考点:二项式定理.10.已知圆1C :2220x cx y ++=,圆2C :2220x cx y -+=,c 是椭圆C :22221x ya b+=的半焦距,若圆1C ,2C 都在椭圆内,则椭圆离心率的范围是( )A. 1,12⎡⎫⎪⎢⎣⎭B. 10,2⎛⎫ ⎪⎝⎭C. 2⎫⎪⎪⎣⎭D. 0,2⎛ ⎝⎦【答案】B 【解析】 【分析】首先求出两圆的圆心和半径,可得两圆的位置关系.则问题等价于圆2C 上的点()()2,0,,c c c 都在椭圆的内部,列不等式组,即可求出椭圆离心率的范围.【详解】把圆1C :2220x cx y ++=,圆2C :2220x cx y -+=化为标准式得, 圆()2212:C c x c y ++=,圆()2222:C x c y c -+=,则圆1C 和圆2C 关于原点对称. 圆1C ,2C 都在椭圆内等价于圆2C 上的点()()2,0,,c c c 都在椭圆的内部,222222221c a cc a b b a c<⎧⎪⎪∴+<⎨⎪=-⎪⎩,解得102c a <<,即102e <<.故选:B .【点睛】本题考查圆与椭圆的位置关系,根据图形找出临界值,列出关于,a c 的不等式组即可求解. 11.定义在R 上的函数()f x 对任意1212,()x x x x ≠都有1212()()0f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,2t ss t-+的取值范围是( ) A. 1[3,)2-- B. 1[3,]2--C. 1[5,)2--D. 1[5,]2--【答案】D 【解析】试题分析:由已知条件知函数()f x 为奇函数且在R 上为减函数,由22(2)(2)f s s f t t -≤--有22(2)(2)f s s f t t -≤-,所以2222s s t t -≥-,()(2)0s t s t -+-≥,若以s 为横坐标,t 为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式()(2)0{14s t s t s -+-≥≤≤表示的平面区域,即ABC ∆及其内部,(1,1),(4,4),(4,2)A B C -,令2t s z s t -=+,则21z t s z+=-,求出1,12OC AB k k =-=,所以,解得152z -≤≤-,∴2t s s t -+的取值范围是15,2⎡⎤--⎢⎥⎣⎦,选D.考点:1.函数的基本性质;2.线性规划.【方法点睛】本题主要考查了函数的性质:单调性和奇偶性,以及线性规划的相关知识,属于中档题. 利用已知条件得出函数()f x 是R 上的减函数,由函数(1)=-y f x 的图象关于(1,0)成中心对称,根据图象的平移,得出()y f x =的图象关于原点成中心对称,所以()f x 为奇函数,解不等式22(2)(2)f s s f t t -≤--,得出()(2)0s t s t -+-≥,画出不等式组表示的平面区域,2t sz s t -=+,则21z t s z+=-,通过图形求关于s 的一次函数的斜率得出z 的范围,从而求出2t ss t-+的范围. 12.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 3,此时四面体ABCD 外接球表面积为( ) A.77B.1919C. 7πD. 19π【答案】C 【解析】分析:三棱锥B ACD -的三条侧棱,BD AD DC DA ⊥⊥,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥B ACD -的三条侧棱,BD AD DC DA ⊥⊥,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径, 三棱柱中,底面BDC ∆,1,3BD CD BC ===,120BDC ︒∴∠=,BDC ∴∆的外接圆的半径为1312⨯=, 由题意可得:球心到底面的距离为32. ∴球的半径为3714r =+=. 外接球的表面积为:274474S r πππ==⋅=. 故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.二、填空题(本大题共4小题,每小题5分,共20分)13.一个几何体的三视图如图所示,该几何体体积为__________.433【解析】该几何体可以看作是一个四棱锥,四棱锥底面是边长为2的正方形,高为3,因此体积为2143233V =⨯=14.已知向量AB 与AC 的夹角为60,且2AB AC ==,若AP AB AC λ=+且AP BC ⊥,则实数λ的值为__________. 【答案】1 【解析】试题分析:因为AP BC ⊥,所以0AP BC ⋅=.2()()AP BC AB AC AC AB AB AC AC λλ⋅=+⋅-=⋅+-2AB AB ACλ-⋅=22(1)cos60||AB AC AC AB λλ-︒+-=2(1)44220λλλ-+-=-+=,解得1λ=.考点:1、向量的数量积运算;2、向量的线性运算.15.已知双曲线22221(0,0)x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是2223be (e为双曲线的离心率),则e 的值为__________. 【答案】6 【解析】试题分析:由题意,得抛物线的准线为x c =-,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为22b a ,所以222223b be a =,即223b e a =,所以,整理,得422910e e -+=,解得62e =或3e =1的直线与双曲线的右支交于两点,所以6e =. 考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中,,a b c 的关系式,求值问题就是建立关于,,a b c 的等式,求取值范围问题就是建立关于,,a b c 的不等式.16.用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.【答案】2015413- 【解析】由题意得(),(),()(),(),2n g n n n g n g n ==为奇数为偶数 所以20152015201521(1)(2)(3)(4)(22)(21)S g g g g g g -=+++++-+-20142015(1)(1)(3)(2)(21)(21)g g g g g g =+++++-+-20142015(1)(2)(3)(21)13(21)g g g g =+++++-++++-201420142013201420152014201320142121212(121)4442S S S ---+-=+=+=++1201520151201320141201320142114414441444.143S ---==++++=++++==-三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知a =3b =sin B A +=(1)求角A 的大小; (2)求ABC ∆的面积.【答案】(1)3A π=;(2)2ABC S ∆=. 【解析】试题分析:(1)先由正弦定理求得sin B 与sin A 的关系,然后结合已知等式求得sin A 的值,从而求得A 的值;(2)先由余弦定理求得c 的值,从而由cos B 的范围取舍c 的值,进而由面积公式求解.试题解析:(1)在ABC ∆中,由正弦定理sin sin a b A B =3sin B=3sin B A =.sin B A +=sin A =. 因为ABC ∆为锐角三角形,所以3A π=.(2)在ABC ∆中,由余弦定理222cos 2b c a A bc +-=,得219726c c+-=,即2320c c -+=.解得1c =或2c =.当1c =时,因为222cos 0214a c b B ac +-==-<,所以角B 为钝角,不符合题意,舍去.当2c =时,因为222cos 02a c b B ac +-==>,又,,b c b a B C B A >>⇒>>,所以ABC ∆为锐角三角形,符合题意.所以ABC∆面积11sin 3222S bc A ==⨯⨯=.考点:1、正余弦定理;2、三角形面积公式.18.某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)当3a b ==时,记甲型号电视机的“星级卖场”数量为m ,乙型号电视机的“星级卖场”数量为n ,比较,m n 的大小关系;(2)在这10个卖场中,随机选取2个卖场,记X 为其中甲型号电视机的“星级卖场”的个数,求X 的分布列和数学期望;(3)若1a =,记乙型号电视机销售量的方差为2s ,根据茎叶图推断b 为何值时,2s 达到最小值.(只需写出结论)【答案】(1)m n =;(2)X 的分布列为X12P295929∴252()0121999E X =⨯+⨯+⨯=;(3)0b =. 【解析】试题分析:(1)根据茎叶图,得2数据的平均数为101014182225273041432410+++++++++=.乙组数据的平均数为1018202223313233334326.510+++++++++=. 由茎叶图,知甲型号电视剧的“星级卖场”的个数5m =,乙型号电视剧的“星级卖场”的个数5n =,所以m n =.(2)由题意,知X 的所有可能取值为0,1,2.且()025*******C C PX C ===,()()11025555221010521299C C C C P X P X C C ======,, 所以X 的分布列为X0 12 P295929所以()25201+2=1999E X =⨯+⨯⨯. (3)当0b =时,2s 达到最小值.试题解析:(1)根据平均数的定义分别求出甲、乙两组数据的平均数,从而得到“星级卖场”的个数进行比较;(2)写出X 的所有可能取值,求出相应概率,列出分布列,求得数学期望;(3)根据方差的定义求解. 考点:1、平均数与方差;2、分布列;3、数学期望.19.如图1,在边长为4的菱形ABCD 中,60BAD ∠=,DE AB ⊥于点E ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D DC ⊥,如图2.(1)求证:1A E ⊥平面BCDE ; (2)求二面角1E A B C --的余弦值;(3)判断在线段EB 上是否存在一点P ,使平面1A DP ⊥平面1A BC ?若存在,求出EPPB的值;若不存在,说明理由.【答案】(1)详见解析;(2)77;(3)不存在. 【解析】(1)∵DE ⊥BE ,BE ∥DC , ∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D , ∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D , ∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =2,则A 1(0,0,2),B (2,0,0),C (4,2,0),D (0,2,0),∴1BA =(−2,0,2),BC =(2,2,0),易知平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由1BA ·m =0,BC ·m =0,得令y =1,得m =(−,1,−),∴cos 〈m ,n 〉===.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC . 设P (t ,0,0)(0≤t ≤2),则1A P =(t ,0,−2),1A D =(0,2,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1), 由1100A D p A P p ⎧⋅=⎪⎨⋅=⎪⎩得令x 1=2,得p =.∵平面A 1DP ⊥平面A 1BC , ∴m·p =0,即2−+t =0,解得t =−3.∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .20.如图,已知椭圆2214x y +=,点,A B 是它的两个顶点,过原点且斜率为k 的直线l 与线段AB 相交于点D ,且与椭圆相交于,EF 两点.(1)若6ED DF =,求k的值;(2)求四边形AEBF 面积的最大值. 【答案】(1)23k =或38k =;(2)22 【解析】试题分析:(1)先由两点式求得直线AB 的方程,然后设l 的方程为y kx =.设()00,D x kx ,()11,E x kx ,()22,F x kx ,联立直线l 与椭圆的方程,得到12,x x 间的关系,再由6ED DF =与点D 在线段AB 上求得k的值;(2)由点到直线的距离公式分别求得点,A B 到线段EF 的距离,从而得到四边形AEBF 的面积的表面式,进而求得其最大值.试题解析:(1)依题设得椭圆的顶点()()2,0,0,1A B ,则直线AB 的方程为220x y +-=. 设直线EF 的方程为()0y kx k =>.设()()()001122,,,,D x kx E x kx F x kx ,,其中12x x <,联立直线l 与椭圆的方程221{4x y y kx+==,消去y ,得方程()22144k x +=.(3分)故21214x x k=-=+,由6ED DF =知,()02206x x x x -=-,得()021215677x x x x =+==D 在线段AB 上,知00220x kx +-=,得021+2x k =,所以21+2k ,化简,得2242560k k -+=,解得23k =或38k =. (2)根据点到直线的距离公式,知点,A B 到线段EF的距离分别为12h h ==,又EF =所以四边形AEBF 的面积为()1221212k S EF h h +=+====≤ 当且仅当14k k=,即12k =时,取等号,所以四边形AEBF 面积的最大值为考点:1、直线与圆的位置关系;2、点到直线的距离公式;3、基本不等式. 21.设函数2()(2)ln f x x a x a x =---. (1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点,求满足条件的最小正整数a 的值; (3)若方程()()f x c c R =∈,有两个不相等的实数根12,x x ,比较12()2x x f +'与0的大小. 【答案】(1) 单调增区间(,)2a +∞,单调减区间为(0,)2a. (2) 3a =,(3)详见解析 【解析】试题分析: (1)先求函数导数,再求导函数零点1,a - ,根据定义域舍去1-,对a 进行讨论, 0a ≤时,()0f x '>,单调增区间为()0,+∞.0a >时,有增有减;(2) 函数()f x 有两个零点,所以函数必不单调,且最小值小于零 ,转化研究最小值为负的条件:4ln 402aa +->,由于此函数单调递增,所以只需利用零点存在定理探求即可,即取两个相邻整数点代入研究即可得a 的取值范围,进而确定整数值,(3)根据02a f ⎛⎫= ⎪⎭'⎝,所以只需判定1222x x a 与+大小,由()()12f x f x =可解得221122112222ln ln x x x x a x x x x +--=+--,代入分析只需比较11221222ln x x x x x x -+与大小, 设12x t x =,构造函数()22ln 1t g t t t -=-+,利用导数可得最值,即可判定大小.试题解析:(1)解:()()22a f x x a x =---' ()()()22221x a x a x a x x x----+== (0)x >. 当0a ≤时,()0f x '>,函数()f x 在()0,+∞上单调递增,函数()f x 的单调增区间为()0,+∞. 当0a >时,由()0f x '>,得2a x >;由()0f x '<,得02a x <<. 所以函数()f x 的单调增区间为,2a ⎛⎫+∞⎪⎝⎭,单调减区间为0,2a ⎛⎫ ⎪⎝⎭.(2)解:由(1)得,若函数()f x 有两个零点 则0a >,且()f x 的最小值02a f ⎛⎫< ⎪⎝⎭,即244ln 02a a a a -+-<. 因为0a >,所以4ln402a a +->.令()4ln 42ah a a =+-,显然()h a 在()0,+∞上为增函数, 且()220h =-<,()38134ln 1ln10216h =-=->,所以存在()02,3a ∈,()00h a =. 当0a a >时,()0h a >;当00a a <<时,()0h a <.所以满足条件的最小正整数3a = (3)证明:因为12,x x 是方程()f x c =的两个不等实根,由(1)知0a >.不妨设120x x <<,则()21112ln x a x a x c ---=,()22222ln x a x a x c ---=.两式相减得()()221112222ln 2ln 0x a x a x x a x a x ----+-+=,即()2211221122112222ln ln ln ln x x x x ax a x ax a x a x x x x +--=+--=+--.所以221122112222ln ln x x x x a x x x x +--=+--.因为02a f ⎛⎫= ⎪⎭'⎝,当0,2a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<, 当x∈,2a ⎛⎫+∞ ⎪⎝⎭时,()0f x '>,故只要证1222x x a+>即可,即证明22112212112222ln ln x x x x x x x x x x +--+>+--,即证明()()22221212121122ln ln 22x x x x x x x x x x -++-<+--,即证明11221222lnx x x x x x -<+.设12(01)x t t x =<<. 令()22ln 1t g t t t -=-+,则()()()()22211411t g t t t t t -=-=+'+.因为0t >,所以()0g t '≥,当且仅当t =1时,()0g t '=,所以()g t 在()0,+∞上是增函数. 又()10g =,所以当()0,1t ∈时,()0g t <总成立.所以原题得证点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.22. 如图,直线PQ 与⊙O 相切于点A ,AB 是⊙O 的弦,∠PAB 的平分线AC 交⊙O 于点C ,连结CB ,并延长与直线PQ 相交于点Q ,若AQ=6,AC=5.(Ⅰ)求证:QC 2﹣QA 2=BC ⋅QC ;(Ⅱ)求弦AB 的长.【答案】(Ⅰ)证明见解析;(Ⅱ)103AB = 【解析】试题分析:(Ⅰ)由于PQ 与⊙O 相切于点A ,再由切割线定理得:QA 2=QB ⋅QC=(QC ﹣BC )⋅QC=QC 2﹣BC ⋅QC 从而命题得到证明(Ⅱ)解:PQ 与⊙O 相切于点A ,由弦切角等于所对弧的圆周角∠PAC=∠CBA ,又由已知∠PAC=∠BAC ,所以∠BAC=∠CBA ,从而AC=BC=5,又知AQ=6,由(Ⅰ)可得△QAB ∽△QCA ,由对应边成比例,求出AB 的值.试题解析:(Ⅰ)证明:∵PQ 与⊙O 相切于点A ,∴由切割线定理得:QA 2=QB ⋅QC=(QC ﹣BC )⋅QC=QC 2﹣BC ⋅QC . ∴QC 2﹣QA 2=BC ⋅QC .(Ⅱ)解:∵PQ 与⊙O 相切于点A ,∴∠PAC=∠CBA , ∵∠PAC=∠BAC ,∴∠BAC=∠CBA ,∴AC=BC=5又知AQ=6,由(Ⅰ) 可知QA 2=QB ⋅QC=(QC ﹣BC )⋅QC ,∴QC=9 由∠QAB=∠ACQ ,知△QAB ∽△QCA ,∴AB QA AC QC =,∴103AB =. 考点:切割线定理及三角形相似.【方法点睛】(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.23.在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的方程为25sin ρθ=. (1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P 坐标为(3,5),圆C 与直线l 交于,A B 两点,求||||PA PB +的值. 【答案】(1)(2)32【解析】试题分析:(1)由加减消元得直线l 的普通方程,由222sin ,y x y ρθρ==+得圆C 的直角坐标方程;(2)把直线l 的参数方程代入圆C 的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t 1|+|t 2|=t 1+t 2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l 的普通方程为x+y ﹣3﹣=0又由得 ρ2=2ρsinθ,化为直角坐标方程为x 2+(y ﹣)2=5;(Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程, 得(3﹣t )2+(t )2=5,即t 2﹣3t+4=0设t 1,t 2是上述方程的两实数根, 所以t 1+t 2=3又直线l 过点P,A 、B 两点对应的参数分别为t 1,t 2,所以|PA|+|PB|=|t 1|+|t 2|=t 1+t 2=3.24.选修4-5:不等式选讲(1)已知函数()|1||3|f x x x =-++,求x 的取值范围,使()f x 为常函数; (2)若,,x y z ∈R ,2221x y z ++=,求225m x z =++的最大值.【答案】(1)[]3,1x ∈-;(2)3. 【解析】试题分析:(1) 利用零点分段法求解;(2)利用柯西不等式求解.试题解析:(1)()22,313{4,3122,1x x f x x x x x x --<-=-++=-≤≤+>.则当[]3,1x ∈-时,()f x 为常函数.(2)由柯西不等式得()(((()2222222225225x y z x z ⎡⎤++++≥+⎢⎥⎣⎦,所以32253x z -≤++≤222==,即225x y z ===时,取最大值,因此m 的最大值为3.考点:1、零点分段法;2、柯西不等式.。

2021届全国天一大联考新高考模拟试卷(十九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(十九)数学(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|20190M x x =+>,{}2|3N x x =>,则MN =( )A. 19|20x x ⎧-<<⎨⎩ B. {|x x >C. 19|20x x ⎧⎫<<-⎨⎬⎩⎭D. {|x x <【答案】B 【解析】 【分析】求出M 和N ,然后直接求解即可【详解】19|20M x x ⎧⎫=>-⎨⎬⎩⎭,{|N x x =< x >,{|M N x x ∴⋂=>,故选:B.【点睛】本题考查集合的运算,属于简单题2.满足条件|4|2||z i z i +=+的复数z 对应点的轨迹是( ) A. 直线 B. 圆 C. 椭圆 D. 双曲线【答案】B 【解析】 【分析】设复数z x yi =+,然后代入|4|2||z i z i +=+,得2222(4)44(1)x y x y ++=++,化简即可得答案【详解】设复数z x yi =+,则:|4||(4)|z i x y i +=++=,|||(1)|z i x y i +=++=结合题意有:2222(4)44(1)x y x y ++=++, 整理可得:224x y +=. 即复数z 对应点的轨迹是圆. 故选:B.【点睛】本题考查复数的模的运算,属于简单题3.已知()0,1x ∈,令log 5x a =,cos b x =,3x c =,那么a b c ,,之间的大小关系为( ) A. a b c << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】因为(0,1)x ∈,所以log 50x a =<, 因为y cosx =在0,2π⎡⎤⎢⎥⎣⎦单调递减,所以,cos cos1cos 02b π<<<,所以01b << 因为函数3x y =在(0,1)上单调递增,所以0333x <<,即13c <<,比较大小即可求解【详解】因为()0,1x ∈,所以0a <.因为12π>,所以01b <<, 因为()0,1x ∈,所以13c <<,所以a b c <<, 故选:A.【点睛】本题考查指数函数,对数函数和三角函数的单调性,以及利用单调性判断大小的题目,属于简单题4.给出关于双曲线的三个命题:①双曲线22194y x -=的渐近线方程是23y x =±;②若点()2,3在焦距为4的双曲线22221x y a b-=上,则此双曲线的离心率2e =;③若点F 、B 分别是双曲线22221x y a b-=的一个焦点和虚轴的一个端点,则线段FB 的中点一定不在此双曲线的渐近线上.其中正确的命题的个数是( ) A. 0 B. 1C. 2D. 3【答案】C 【解析】【详解】对于①:双曲线22194y x -=的渐近线方程是32y x =±,故①错误;对于②:双曲线的焦点为()()2,0,2,0-,22,1a a ===,从而离心率2ce a==,所以②正确; 对于③:()(),0,0,,F c B b FB ±±的中点坐标,22c b ⎛⎫±± ⎪⎝⎭均不满足渐近线方程,所以③正确; 故选C. 5.已知函数()f x 图象如图所示,则函数()f x 的解析式可能是( )A. ()()44||x xf x x -=+B. ()4()44log||x xf x x -=-C. ()14()44log ||xxf x x -=+D. ()4()44log||x xf x x -=+【答案】D 【解析】 【分析】结合图像,利用特值法和函数的奇偶性,即可求解【详解】A 项,(0)0f =,与所给函数图象不相符,故A 项不符合题意B 项,4()(44)log ||()x xf x x f x --=-=-,()f x 为奇函数,与所给函数图象不相符,故B 项不符合题意C 项,4414(2)(22)log 20f -=+<,与所给函数图象不符.故C 项不符合题意 综上所述,A 、B 、C 项均不符合题意,只有D 项符合题意, 故选:D.【点睛】本题主要考查函数的概念与性质,属于简单题6. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A. 40种 B. 60种C. 100种D. 120种【答案】B 【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有=60种.故选B .7.已知向量a ,b 满足||2a =,||1b =,且||2b a -=则向量a 与b 的夹角的余弦值为( )A.2 B.23C.2 D.2【答案】C 【解析】 【分析】先由向量模的计算公式,根据题中数据,求出12a b ⋅=,再由向量夹角公式,即可得出结果. 【详解】因为向量a ,b 满足||2a =,||1b =,且||2b a -=,所以2||2-=b a ,即2222+-⋅=b a a b ,因此12a b ⋅=, 所以2cos ,22⋅<>===a b a b a b.故选:C【点睛】本题主要考查由向量的模求向量夹角余弦值,熟记向量夹角公式,以及模的计算公式即可,属于常考题型.8.如图,给出的是求1111 (24636)++++的值的一个程序框图,则判断框内填入的条件是( )A. 18?i >B. 18?i <C. 19?i >D. 19?i <【答案】D 【解析】 【分析】由已知中程序的功能是计算111124636+++⋯+的值,根据已知中的程序框图,我们易分析出 进行循环体的条件,进而得到答案.【详解】模拟程序的运行,可知程序的功能是计算111124636+++⋯+的值,即36n ,19i <时,进入循环,当19i =时,退出循环, 则判断框内填入的条件是19i <.故选D .【点睛】本题考查的知识点是循环结构的程序框图的应用,解答本题的关键是根据程序的功能判断出 最后一次进入循环的条件,属于基础题.9.非负实数x 、y 满足ln (x +y -1)≤0,则关于x -y 的最大值和最小值分别为 A. 2和1 B. 2和-1C. 1和-1D. 2和-2【答案】D 【解析】【详解】试题分析:依题意有,作出可行域,如下图所示:设x y z -=,则有y x z =-,平移y x z =-,当直线y x z =-经过点(0,2)A 时,z 有最小值,其值为2-,当直线y x z =-经过点(2,0)B 时,z 有最大值,其值为2, 因此 x -y 的最大值和最小值分别为2和-2, 故选:D.考点: 简单的线性规划问题.10.如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n 个金属片从1号针移到3号针最少需要移动的次数记为()f n ,则()6f =( )A. 61B. 33C. 63D. 65【答案】C 【解析】 【分析】根据题意,求出(1)1f =,同理,求出(2)21+1=3f =⨯,(3)2(2)17f f =+=,(4)2(3)115f f =+=,推导出(1) 2 ()1f n f n +=+ 【详解】由题设可得(1)1f = 求出(2)21+1=3f =⨯,(3)2(2)17f f =+=,(4)2(3)115f f =+=,推导出(1) 2 ()1f n f n +=+, 所以()663f =. 故选:C【点睛】本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数是解题的关键.11.已知函数()|cos |(0)f x x x =的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则()221sin 2θθθ=+( ) A. 2- B. 1-C. 0D. 2【答案】B 【解析】 【分析】依题意,设直线为y kx =,则直线y kx =与(0)y cosx x =切于3(,2)2ππ上的一点,求出切点坐标为(,cos )θθ,然后利用切线方程,即可求出θ,进而得到22(1)sin 2θθθ+的值【详解】函数()|cos |(0)f x x x =的图象与过原点的直线恰有四个交点,∴直线与函数()|cos |(0)f x x x =在区间3,22ππ⎛⎫⎪⎝⎭内的图象相切,在区间3,22ππ⎛⎫⎪⎝⎭上, ()f x 的解析式()cos f x x =,故由题意切点坐标为(,cos )θθ.∴切线斜率0sin sin x k y x θ==-=-'=,∴由点斜式得切线方程为:cos sin ()y x θθθ-=--,即sin sin cos y x θθθθ=-++直线过原点,sin cos 0θθθ∴+=,得1tan θθ=-, ()221222tan tan 1sin 11sin 2212sin cos cos tan θθθθθθθθθθ--∴===-⎛⎫++ ⎪⎝⎭. 故选:B.【点睛】本题考查三角函数的图像问题,难点在于利用切线方程求出θ的值,属于中档题12.过正方体1111ABCD A B C D -的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作( ) A. 1个 B. 2个C. 3个D. 4个【答案】D 【解析】 【分析】每条棱在平面α的正投影的长度都相等,等价于每条棱所在直线与平面α所成角都相等,从而棱AB ,AD ,1AA 所在直线与平面α所成的角都相等,三棱锥1A A BD -是正三棱锥,直线AB ,AD ,1AA 与平面1A BD所成角都相等,过顶点A 作平面α平面1A BD ,由此能求出这样的平面α的个数.【详解】在正方体1111ABCD A B C D -中,每条棱在平面α的正投影的长度都相等⇔每条棱所在直线与平面α所成的角都相等⇔棱1AB AD AA 、、所在直线与平面α所成的角都相等,易知三棱锥1A A BD -是正三棱锥,直线1AB AD AA 、、与平面1A BD 所成的角都相等.过顶点A 作平面α平面1A BD ,则直线1AB AD AA 、、与平面α所成的角都相等.同理,过顶点A 分别作平面α与平面1C BD 、平面1B AC 、平面1D AC 平行,直线1AB AD AA 、、与平面α所成的角都相等.所以这样的平面α可以作4个,故选:D.【点睛】本题考查立体几何中关于线面关系和面面关系的相关概念,属于简单题第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.函数()e 22019x f x x =-+在()()0,0f 处的切线方程是_______. 【答案】2020y x =-+ 【解析】 【分析】求出原函数的导函数,得到(0)f ',再求出(0)f ,然后列出利用切线方程可得答案. 【详解】求导函数可得()2xf x e =-,当0x =时,0(0)21f e '=-=-,0(0)020192020f e =-+=,切点为()0,2020,∴曲线()22019x f x e x =-+在点()()0,0f 处的切线方程是2020y x -=-,故答案为:2020y x =-+.【点睛】本题考查切线方程问题,属于简单题14.数列{}n a 是各项为正且单调递增的等比数列,前n 项和为n S ,353a 是2a 与4a 的等差中项,5484S =,则3a =_____. 【答案】36 【解析】 【分析】由题意可得:1q >,由353a 是2a 与4a 的等差中项,5484S =,可得324523a a a ⨯=+即 523111(1)(),4841a q a q a q q q-=+=-,联立解得:1a ,q ,再利用通项公式即可得出答案【详解】由题意得()2311151510314841a q a q a q a q S q ⎧⋅=⋅+⎪⎪⎨-⎪==⎪-⎩,解得3q =,14a =,23136a a q ∴=⋅=. 故答案为:36【点睛】本题考查差比混合问题,设方程求解即可,属于简单题15.点M 是抛物线2:2(0)C x py p =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在FPM 中,sin sin PFM PMF λ∠=∠,则λ的最大值为__________. 【答案】2 【解析】 【分析】由正弦定理求得||||PMPF λ=,根据抛物线的定义,得1||||PB PM λ=,即1sin αλ=,则λ取得最大值时,sin α最小,此时直线PM 与抛物线相切,将直线方程代入抛物线方程,由0∆=求得k 的值,即可求得λ的最大值【详解】如图,过P 点作准线的垂线,垂足为B ,则由抛物线的定义可得||||PF PB =, 由sin sin PFM PMF λ∠=∠,在PFM △中正弦定理可知:||||F PM P λ=, 所以||||PM PB λ=,所以1||||PB PM λ=, 设PM 的倾斜角为α,则1sin αλ=,当λ取得最大值时,sin α最小,此时直线PM 与抛物线相切,设直线PM 的方程为2p y kx =-,则222x py p y kx ⎧=⎪⎨=-⎪⎩,即2220x pkx p -+=, 所以222440p k p ∆=-=, 所以1k =±,即tan 1α=±,则sin 2α=, 则λ得最大值为1sin α=【点睛】本题属于综合题,难度较大,难点(1)利用sin sin PFM PMF λ∠=∠,通过正弦定理转化为||||F PM P λ=;难点(2)设PM 的倾斜角为α,则1sin αλ=,通过λ取得最大值时,sin α最小,得出PM 与抛物线相切,本题属于难题16.甲乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上6,这样就可得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a >时,甲获胜,否则乙获胜,若甲胜的概率为34,则1a 的取值范围是____.【答案】(,6][12,)-∞⋃+∞ 【解析】 【分析】由题意可知,进行两次操作后,得出3a 的所有可能情况,根据甲胜的概率,列出相应的不等式组,即可求解.【详解】由题意可知,进行两次操作后,可得如下情况:当3112(26)6418a a a =--=-,其出现的概率为211()24=, 当3111(26)632a a a =-+=+,其出现的概率为211()24=, 当1312(6)662a a a =+-=+,其出现的概率为211()24=, 当1132(6)6924a aa =++=+其出现的概率为211()24=, ∵甲获胜的概率为34,即31a a >的概率为34, 则满足111111114184189944a a a a a a a a -≤->⎧⎧⎪⎪⎨⎨+>+≤⎪⎪⎩⎩或整理得11612a a ≤≥或.【点睛】本题主要考查了概率的综合应用,以及数列的实际应用问题,其中解答中认真审题,明确题意,得出3a 的所有可能情况,再根据甲胜的概率,列出相应的不等式组求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题:共70分.解答应写出文字说明证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且cos (2)cos a B c b A =-. (1)求角A 的大小;(2)若6a =,求ABC ∆面积的最大值. 【答案】(1)3π;(2)【解析】 【分析】(1)利用正弦定理化简边角关系式,结合两角和差正弦公式和三角形内角和的特点可求得1cos 2A =,根据A 的范围求得结果;(2)利用余弦定理构造等式,利用基本不等式可求得bc 的最大值,代入三角形面积公式即可求得结果.【详解】(1)由正弦定理得:()2sin sin cos sin cos C B A A B -=,即:()2sin cos sin cos cos sin sin C A A B A B A B =+=+,A B C π++= ()sin sin 0A B C ∴+=≠ 1cos 2A ∴=()0,A π∈ 3A π∴=(2)由(1)知:13sin 2ABCSbc A bc == 由余弦定理得:2221236cos 222b c a bc A bc bc+--==≥(当且仅当b c =时等号成立) ∴036bc ∴<≤(当且仅当b c =时等号成立)ABC S ∆∴的最大值为:33693⨯= 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、两角和差正弦公式的应用、余弦定理和三角形面积公式的应用、利用基本不等式求最值的问题,属于常考题型.18.如图在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB AD ⊥,AB ∥CD ,2224AB AD CD PC ====,,E 为线段PB 上一点.(1)求证:平面EAC ⊥平面PBC ; (2)若点E 满足13BE BP =,求二面角P AC E --的余弦值. 【答案】(1)见解析(2)63【解析】 【分析】(1)由已知条件分别证明AC BC ⊥、PC AC ⊥,由此可证得AC ⊥平面PBC ,进而可证EAC PBC ⊥平面平面(2)以C 为原点,取AB 的中点H ,CH ,CD ,CP 分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,由13BE BP =,求得224,,333E ⎛⎫- ⎪⎝⎭,进而求得平面ACE 的一个法向量为()1,1,1n =--,平面PAC 的一个法向量为(1,1,0)CB =-,设二面角P AC E --的平面角为θ,根据||cos |cos ,|||||n CB n CB n CB θ⋅=〈〉=⋅求解即可【详解】(1)如图,由题意,得2AC BC ==2AB =,BC AC ∴⊥.PC ⊥底面ABCD ,PC AC ∴⊥,又PC BC C =,AC ∴⊥平面PBC ,AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)如图,以C 为原点,取AB 中点M ,以CM CD CP ,,所在直线为x y z ,,轴建立空间直角坐标系, 则()()()1,1,0,0,0,4,1,1,0B P A -,设(),,E x y x ,且13BE BP =,得 1(1,1,)(1,1,4)3x y z -+=-,即224,,333E ⎛⎫- ⎪⎝⎭,(1,1,0)CA =,224,,333CE ⎛⎫=- ⎪⎝⎭,设平面EAC 的法向量为()111,,n x y z =,由00CE n CA n ⎧⋅=⎨⋅=⎩,即1111122403330x y z x y ⎧-+=⎪⎨⎪+=⎩, 令11x =,得(1,-1,-1)n =.又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC ,故平面PAC 的法向量为(1,1,0)m BC ==-, 设二面角P AC E --的平面角为θ,则||cos |cos ,|||||3m n m n m n θ⋅=〈〉==⋅. 【点睛】本题主要考查点、线、面的位置关系和空间直角坐标系,属于简单题19.某学校为了了解全校学生“体能达标”的情况,从全校1000名学生中随机选出40名学生,参加“体能达标”预测,并且规定“体能达标”预测成绩小于60分的为“不合格”,否则为“合格”若该校“不合格”的人数不超过总人数的5%,则全校“体能达标”为“合格”;否则该校“体能达标”为“不合格”,需要重新对全校学生加强训练现将这40名学生随机分为甲、乙两个组,其中甲组有24名学生,乙组有16名学生经过预测后,两组各自将预测成绩统计分析如下:甲组的平均成绩为70,标准差为4;乙组的平均成绩为80,标准差为6(题中所有数据的最后结果都精确到整数).(1)求这40名学生测试成绩的平均分x 和标准差s ; (2)假设该校学生的“体能达标”预测服从正态分布()2,N μσ用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ.利用估计值估计:该校学生“体能达标”预测是否“合格”? 附:①n 个数12,,,n x x x 的平均数11n i i x x n ==∑,方差(22221111)n n i i i i s x x x nx n n ==⎛⎫=-=- ⎪⎝⎭∑∑;②若随机变量Z 服从正态分布()2,N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.【答案】(1)平均分为74,标准差为7.(2)该校学生“体能达标”预测合格. 【解析】 【分析】(1)根据甲组的平均成绩为70,乙组的平均成绩为80,根据公式可得x设甲组24名学生的测试成绩分别为:1224 ,x x x ⋯,乙组16名学生的测试成绩分别为:252640,x x x ⋯,将公式2211()n i i s x x n ==-∑变形变形为()22222121n s x x x nx n ⎡⎤=+++-⎣⎦,分别求得21s 和22s ,即可根据公式解得解得()22221224241670x x x +++=⨯+和()2222252640163680x x x +++=⨯+,最后整理公式得()()22222222122425264014040s x x x x x x x ⎡⎤=+++++++-⨯⎣⎦,计算并求解即可(2)由(1)可得ˆ74μ=,ˆ7σ=,由(22)0.9544P Z μσμσ-<<+=, 得(6088)0.9544P X <<=,进而得到1(60)(10.9544)0.02282P X <=⨯-=, 求出全校学生“不合格”的人数占总人数的百分比,与5%进行比较即可 【详解】(1)这40名学生测试成绩的平均分702480167440x ⨯+⨯==.将()2211n i i s x x n ==-∑变形为()()22222212111n i n i s x x x x x nx n n =⎡⎤=-=+++-⎣⎦∑.设第一组学生的测试成绩分别为12324,,,,x x x x , 第二组学生的测试成绩分别为25262740,,,,x x x x ,则第一组的方差为()2222221122412470424s x x x ⎡⎤=+++-⨯=⎣⎦, 解得()22221224241670x x x +++=⨯+.第二组的方差为()222222225264011680616s x x x ⎡⎤=+++-⨯=⎣⎦, 解得()2222252640163680x x x +++=⨯+.这40名学生的方差为()()22222222122425264014040s x x x x x x x ⎡⎤=+++++++-⨯⎣⎦()()222124167016368040744840⎡⎤=⨯++⨯+-⨯=⎣⎦,所以7s ==≈.综上,这40名学生测试成绩的平均分为74,标准差为7.(2)由74x =,7s ≈,得μ的估计值为ˆ74μ=,σ的估计值ˆ7σ=. 由(22)0.9544P X μσμσ-<<+=,得(74277427)0.9544P X -⨯<<+⨯=,即(6088)0.9544P X <<=.所以11(60)(88)[1(6088)](10.9544)0.022822P X P X P X <==-<<=-=,从而,在全校1000名学生中,“不合格”的有10000.022822.823⨯=≈(人), 而23505%10001000<=, 故该校学生“体能达标”预测合格.【点睛】本题主要考查用样本估计总体,难点在于运算量较大,属于基础题20.已知椭圆()22122:10x y C a b a b +=>>()2,1P -是1C 上一点.(1)求椭圆1C 的方程;(2)设A B Q 、、是P 分别关于两坐标轴及坐标原点的对称点,平行于AB 的直线l 交1C 于异于P Q 、的两点C D 、.点C 关于原点的对称点为E .证明:直线PD PE 、与y 轴围成的三角形是等腰三角形.【答案】(1)22182x y +=;(2)证明见解析. 【解析】试题分析:(1)因为1C 所以224a b =;即1C 的方程为:222214x y b b +=,代入()2,1P -即可;(2)设直线PD PE 、的斜率为12,k k ,则要证直线PD PE 、与y 轴围成的三角形是等腰三角形需证120k k +=.由已知可得直线l 的斜率为12,则直线l 的方程为:12y x t =+,联立直线和椭圆的方程,找到斜率,代入相应的量即可.试题解析:(1)因为1C 离心率为2,所以224a b =, 从而1C 的方程为:222214x y b b+=代入()2,1P -解得:22b =, 因此28a =.所以椭圆1C 的方程为:22182x y +=(2)由题设知A B 、的坐标分别为()()2,1,2,1--, 因此直线l 的斜率为12, 设直线l 的方程为:12y x t =+, 由2212{182y x t x y =++=得:222240x tx t ++-=, 当0∆>时,不妨设()()1122,,,C x y D x y , 于是212122,24x x t x x t +=-=-,分别设直线PD PE、的斜率为12,k k ,则,则要证直线PD PE 、与y 轴围成的三角形是等腰三角形, 只需证()()()()212112210y x x y ---++=,而()()()()()()212121122112122124y x x y y y x y x y x x ---++=--++--()()211212121212224424240x x x x t x x x x x x t x x t t =---++--=--+-=-++-=所以直线PD PE 、与y 轴转成的三角形是等腰三角形 考点:1.椭圆的方程;2.直线与椭圆综合题. 21.已知函数()1e cos x f x x -=+. (1)求()f x 的单调区间;(2)若12,(,)x x π∈-+∞,12x x ≠,且()()1212e e 4x xf x f x +=,证明:120x x +<.【答案】(1)单调递减区间为32,2,44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ;单调递增区间为52,2,44k k k ππππ⎛⎫--∈ ⎪⎝⎭Z .(2)见解析 【解析】 【分析】(1)先求函数定义域,对函数求导,分别解不等式()0f x >和()0f x <,得函数的增区间和减区间即可; (2)由2112()()4xxe f x e f x +=,得21124xxe cosx e cosx +++=,可构造函数()x g x e cosx =+,则12()()4g x g x +=,探究()g x 在(,)π-+∞上的单调性,构造函数()()()G x g x g x =+-,探究()G x 在(,)π-+∞上的单调性,再结合关系式12()()4g x g x +=,利用单调性可得出结论【详解】(1)()f x 的定义域为(,)-∞+∞,()cos sin sin 4x x x f x e x e x x π---⎛⎫'=--=+ ⎪⎝⎭,由()0f x '<,得sin 04x π⎛⎫+> ⎪⎝⎭,从而322,44k x k k ππππ-<<+∈Z ; 由()0f x '>,得sin 04x π⎛⎫+< ⎪⎝⎭,从而522,44k x k k ππππ-<<-∈Z ; 所以,()f x 的单调递减区间为32,2,44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z ; 单调递增区间为52,2,44k k k ππππ⎛⎫--∈ ⎪⎝⎭Z . (2)()()12124xxe f x e f x +=,即1212cos cos 4xxe x e x +++=, 令()cos xg x e x =+,则()()124g x g x +=,()sin xg x e x '=-.当0x >时,()1sin 0g x x '>-;当0x π-<时,sin 0x ,()sin 0xg x e x '=->,故(,)x π∈-+∞时,()0g x '>恒成立,所以()g x 在(),π-+∞上单调递增,不妨设12x x π-<<,注意到0(0)cos 02g e =+=,所以120x x π-<<<,令()()(),(,0)G x g x g x x π=+-∈-,则'()2sin xxG x e ex -=--,令()2sin x xx e ex ϕ-=+-,则()2cos 2(1cos )0x x x e e x x ϕ-'=+--,所以()x ϕ在(),0π-上单调递增,从而()(0)0x ϕϕ<=,即()0G x '<,所以()G x 在(),0π-上单调递减,于是()(0)(0)(0)4G x G g g >=+-=, 即()()4g x g x +->,又1(,0)x π∈-,所以()()114g x g x +->,于是()()()1124g x g x g x ->-=, 而()g x 在(),0π-上单调递增,所以12x x ->,即120x x +<.【点睛】本题主要考查导数在研究函数中的应用,属于含三角函数与指数函数的极值点偏移问题,难点在于选取合适的函数求导以及通过放缩对不等式进行转换,属于难题请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-4:坐标系与参数方程22.选修4-4:坐标系与参数方程: 在平面直角坐标系xoy 中,已知曲线C 的参数方程为,x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为242,131013x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),点P 的坐标为()2,0-.(1)若点Q 在曲线C 上运动,点M 在线段PQ 上运动,且2PM MQ =,求动点M 的轨迹方程. (2)设直线l 与曲线C 交于,A B 两点,求PA PB ⋅的值.【答案】(1)222439x y =⎛⎫++ ⎪⎝⎭(2)3【解析】 【分析】(1)设()Q cos ,sin θθ,(),M x y ,由2PM MQ =即得动点M 的轨迹方程;(2)由题得直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数),代入曲线C 的普通方程,得2483013t t +=''-,再利用直线参数方程t 的几何意义求解.【详解】(1)设()Q cos ,sin θθ,(),M x y ,则由2PM MQ =,得()()2,2cos sin θθ+=--x y x,y ,即323cos ,32sin .x y θθ+=⎧⎨=⎩ 消去θ,得222439x y =⎛⎫++ ⎪⎝⎭,此即为点M 的轨迹方程. (2)曲线C 的普通方程为221x y +=,直线l 的普通方程()5212y =x +, 设α为直线l 的倾斜角,则5tan 12α=,512sin ,cos 1313αα==, 则直线l 的参数方程可设为122,13513x t y t ⎧=-+⎪⎪⎨⎪='⎩'⎪(t '为参数), 代入曲线C 的普通方程,得2483013t t +=''-, 由于24827612013169⎛⎫∴∆=--=> ⎪⎝⎭, 故可设点,A B 对应的参数为1t ',2t ', 则21213PA PB t t t t ''''⋅=⋅==. 【点睛】本题主要考查参数方程与普通方程的互化,考查动点的轨迹方程,考查直线参数方程t 的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力.选修4-5:不等式选讲23.(1)已知,,+∈a b c R ,且1a b c ++=,证明:1119a b c++; (2)已知,,+∈a b c R ,且1abc =,证明:111c b a b c+++【答案】(1)见解析(2)见解析【解析】【分析】 (1)结合1a b c ++=代人所证不等式的左边中的分子,通过变形转化,利用基本不等式加以证明即可 (2)结合不等式右边关系式的等价变形,通过基本不等式来证明即可【详解】证明:(1)111a b c a b c a b c a b c a b c++++++++=++111b c a c a b a a b b c c=++++++++ 39b a b c a c a b c b c a=++++++, 当a b c ==时等号成立.(2)因为11111111111222a b c a b a c b c ab ⎛⎛⎫++=+++++⨯ ⎪ ⎝⎭⎝, 又因为1abc =,所以1c ab =,1b ac =,1a bc=, 111c b a b c ∴++++.当a b c ==时等号成立,即原式不等式成立.【点睛】本题考查基本不等式的应用,考查推理论证能力,化归与转化思想。

2021届全国天一大联考新高考模拟试卷(九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(九)数学(理)试题

2021届全国天一大联考新高考模拟试卷(九)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12小题,每小题5分,满分60分.)1.集合{|2lg 1}A x x =<,{}2|90B x x =-≤,则A B =( )A. [3,3]-B.C. (0,3]D. [-【答案】C 【解析】 【分析】通过解不等式分别得到集合,A B ,然后再求出A B ⋂即可.【详解】由题意得{}{1|2lg 1|lg |02A x x x x x x ⎧⎫=<=<=<<⎨⎬⎩⎭, {}{}2 |9|33B x x x x =≤=-≤≤,∴{}(]|030,3A B x x ⋂=<≤=.故选C .【点睛】解答本题的关键是正确得到不等式的解集,需要注意的是在解对数不等式时要注意定义域的限制,这是容易出现错误的地方,属于基础题. 2.复数121z i z i =+=,,其中i 为虚数单位,则12z z 的虚部为( ) A. 1- B. 1C. iD. i -【答案】A 【解析】 【分析】根据复数共轭的概念得到__1z ,再由复数的除法运算得到结果即可.【详解】11211,1,z i z i i z i-=-==-- 虚部为-1, 故选A.【点睛】本题考查了复数的运算法则、复数的共轭复数等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算. 3.已知sin α,sin()10αβ-=-,,αβ均为锐角,则β=( ) A.512π B.3π C.4π D.6π 【答案】C 【解析】 【分析】 由题意,可得22ππαβ-<-<,利用三角函数的基本关系式,分别求得cos ,cos()ααβ-的值,利用sin[(]sin )ααββ=--,化简运算,即可求解.【详解】由题意,可得α,β均锐角,∴-2π <α-β<2π. 又.又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=5×310-25×10⎛⎫- ⎪ ⎪⎝⎭=22.∴β=4π. 【点睛】本题主要考查了三角函数的化简、求值问题,其中熟记三角函数的基本关系式和三角恒等变换的公式,合理构造sin[(]sin )ααββ=--,及化简与运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.把60名同学看成一个总体,且给60名同学进行编号,分5为00,01,…,59,现从中抽取一容量为6的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始向右读取,直到取足样本,则抽取样本的第6个号码为( )A. 32B. 38C. 39D. 26【答案】D 【解析】 【分析】从随机数表的倒数第5行第11列开始,依次向右读取两位数,大于等于60的数据应舍去,与前面取到的数据重复的也舍去,直到取足6个样本号码为止.【详解】根据随机数表抽取样本的六个号码分别为:18,00,38,58,32,26; 所以抽取样本的第6个号码为26. 故选:D.【点睛】本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.5.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A. 2B. 3C. 4D. 5【答案】A 【解析】 【分析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥P BCD -的正视图与侧视图都是底边长为2高为1的三角形,其面积都是11212⨯⨯=,正视图与侧视图的面积之和为112+=, 故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.6.在等比数列{}n a 中,“412,a a 是方程2310x x ++=的两根”是“81a =-”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】根据“412,a a 是方程2310x x ++=的两根”与“81a =-”的互相推出情况,判断出是何种条件. 【详解】因为4124123,1a a a a +=-=,所以4120,0a a <<, 所以等比数列中4840a a q =<,所以84121a a a =-=-;又因为在常数列1n a =-中,81a =-,但是412,a a 不是所给方程的两根.所以在等比数列{}n a 中,“412,a a 是方程2310x x ++=的两根”是“81a =-”的充分不必要条件. 故选:A .【点睛】本题考查数列与充分、必要条件的综合应用,难度一般.在等比数列{}n a 中,若()*2,,,,m n p q c m n p q c N +=+=∈,则有2m n p q c a a a a a ==.7.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为1.160.5ˆ37yx =-,以下结论中不正确的为( )A. 15名志愿者身高的极差小于臂展的极差B. 15名志愿者身高和臂展成正相关关系,C. 可估计身高为190厘米的人臂展大约为189.65厘米D. 身高相差10厘米的两人臂展都相差11.6厘米, 【答案】D 【解析】 【分析】根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确. 【详解】A ,身高极差大约为25,臂展极差大于等于30,故正确;B ,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;C ,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;D ,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确. 故答案为D.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.8.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A. 2B. 3C. 4D. 5【答案】C 【解析】 【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】当1n =时,1542a b ==,,满足进行循环的条件; 当2n =时,45,84a b == 满足进行循环的条件; 当3n =时,135,168a b ==满足进行循环的条件; 当4n =时,405,3216a b ==不满足进行循环的条件, 故输出的n 值为4. 故选:C .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答. 9.已知抛物线22y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于M ,N 两点,若3PF MF =,则||MN =A.163B. 83C. 2D.83【答案】B 【解析】 【分析】先根据题意写出直线的方程,再将直线的方程与抛物线y 2=2x 的方程组成方程组,消去y 得到关于x 的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段AB 的长. 【详解】解:抛物线C :y 2=2x 的焦点为F (12,0),准线为l :x =﹣12,设M (x 1,y 1),N (x 2,y 2),M ,N 到准线的距离分别为d M ,d N , 由抛物线的定义可知|MF |=d M =x 1+12,|NF |=d N =x 2+12,于是|MN |=|MF |+|NF |=x 1+x 2+1. ∵3PF MF =,则2PM QM =,易知:直线MN 的斜率为±3,∵F (12,0), ∴直线PF 的方程为y 3(x ﹣12), 将y 3(x ﹣12),代入方程y 2=2x ,得3(x ﹣12)2=2x ,化简得12x 2﹣20x +3=0, ∴x 1+x 253=,于是|MN |=x 1+x 2+153=+183= 故选:B .点睛】本题考查抛物线的定义和性质,考查向量知识的运用,考查学生的计算能力,属于中档题.10.已知圆1C :2220x y kx y +-+=与圆2C :2240x y ky ++-=的公共弦所在直线恒过定点()P a b ,,且点P 在直线20mx ny --=上,则mn 的取值范围是( )A. 104⎛⎫ ⎪⎝⎭, B. 104⎛⎤ ⎥⎝⎦,C. 14⎛⎫-∞ ⎪⎝⎭,D. 14⎛⎤-∞ ⎥⎝⎦,【答案】D 【解析】【详解】2220x y kx y +-+=与2240x y ky ++-=,相减得公共弦所在直线方程:(2)40kx k y +--=,即()(24)0k x y y +-+=,所以由240y x y +=⎧⎨+=⎩得2,2-==y x ,即(2,2)P -,因此2211122201,=(1)()244m n m n mn m m m m m +-=∴+=-=-=--+≤, 选D.点睛:在利用基本不等式求最值或值域时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.已知F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,定点A 为双曲线虚轴的一个顶点,过,F A 的直线与双曲线的一条渐近线在y 轴左侧的交点为B ,若(21)FA AB =-,则此双曲线的离心率是( )C.【答案】A 【解析】 【分析】设(),0,)0,(F c A b - ,渐近线方程为b y x a =,求出AF 的方程与b y x a =联立可得,acbc B a c a c ⎛⎫ ⎪⎝-⎭-,利用 ()21FA AB =-,可得,a c 的关系,即可求出双曲线的离心率.【详解】设(),0,)0,(F c A b -,渐近线方程为by x a=,则 直线AF 的方程为 1x y c b -=,与b y x a = 联立可得,ac bc B a c a c ⎛⎫ ⎪⎝-⎭- , ∵()2 1FA AB =-,),,(()1)ac bcc b b a c a c∴--=+--,)1acca c∴-=-,∴cea==故选:A.【点睛】本题考查双曲线的性质,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.12.已知函数()(2)3,(ln2)()32,(ln2)xx x e xf xx x⎧--+≥⎪=⎨-<⎪⎩,当[,)x m∈+∞时,()f x的取值范围为(,2]e-∞+,则实数m的取值范围是()A.1,2e-⎛⎤-∞⎥⎝⎦B. (,1]-∞ C.1,12e-⎡⎤⎢⎥⎣⎦D. [ln2,1]【答案】C【解析】【分析】求导分析函数在ln2x≥时的单调性、极值,可得ln2x≥时,()f x满足题意,再在ln2x<时,求解()2f x e≤+的x的范围,综合可得结果.【详解】当ln2x≥时,()()()'12xf x x e=---,令()'0f x>,则ln21x<<;()'0f x<,则1x>,∴函数()f x在()ln2,1单调递增,在()1,+∞单调递减.∴函数()f x在1x=处取得极大值为()12f e=+,∴ln2x≥时,()f x的取值范围为(],2e-∞+,∴ln2m1≤≤又当ln2x<时,令()322f x x e=-≤+,则12ex-≥,即1x ln22e-≤<,∴1e22m ln-≤<综上所述,m的取值范围为1,12e-⎡⎤⎢⎥⎣⎦.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知()2sin15,2sin 75a =︒︒,||1a b -=,a 与a b -的夹角为3π,则a b ⋅=__________. 【答案】3. 【解析】 【分析】先求a ,再分别根据向量数量积定义以及数量积运算绿求()a ab -,即可得出结果. 【详解】因为2224sin 4sin 154cos 152a ==+=,()cos13a ab a a b π-=-=,又()241a a b a a b a b -=-⋅=-⋅=, 所以3a b ⋅=. 故答案:3.【点睛】本题考查了向量数量积以及向量的模,考查基本分析求解能力,属于基础题.14.()5212x ⎫+⎪⎭的展开式的常数项是_________.【答案】42- 【解析】 【分析】由于52⎫⎪⎭的通项为()552rr r C -⋅⋅-,可得()5212x⎫+-⎪⎭的展开式的常 【详解】()555221222x x ⎫⎫⎫+-=-+-⎪⎪⎪⎭⎭⎭由于52⎫⎪⎭的通项为()55 2rrr C -⋅⋅-,故由题意得4r =或5,故的展开式的常数项是()()5152242C ⋅-+-=-,故选:42-.【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.15.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________.【答案】(3,0)(3,)-⋃+∞ 【解析】设0x < ,则0x -> ,由题意可得222222f x f x x x x x f x x x -=-=---=+∴=--()()()(),(),故当0x < 时,22f x x x ().=-- 由不等式f x x ()> ,可得20 2x x x x ⎧⎨-⎩>> ,或202x x x x ⎧⎨--⎩<,> 求得3x > ,或30x -<<, 故答案为(303,)(,).-⋃+∞ 16.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是__________. 【答案】甲 【解析】 【分析】若甲正确,则乙与丙错误.则甲不是第三名,乙不是第三名,丙是第一名,矛盾,假设不成立;若乙正确,甲与丙错误.则甲是第三名,乙是第三名,丙是第一名,矛盾,假设不成立;若丙正确,甲与乙错误.则甲是第三名,乙不是第三名,丙不是第一名,即乙是第一名,丙是第二名,甲是第三名,假设成立.【详解】解:若甲的预测正确,乙与丙预测错误.则甲不是第三名,乙不是第三名,丙是第一名,即甲乙丙都不是第三名,矛盾,假设不成立;若乙的预测正确,甲与丙预测错误.则甲是第三名,乙是第三名,丙是第一名,即甲乙都是第三名,矛盾,假设不成立;若丙的预测正确,甲与乙预测错误.则甲是第三名,乙不是第三名,丙不是第一名,即乙是第一名,丙是第二名,甲是第三名,假设成立. 故答案为:甲【点睛】本题主要考查合情推理和演绎推理,考查学生的逻辑推理能力和辨析能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程及演算步骤)17.在平面四边形ABCD中,已知AB =,3AD =,2ADB ABD ∠=∠,3BCD π∠=.(1)求BD ;(2)求BCD ∆周长的最大值. 【答案】(1)5BD =(2)15 【解析】 【分析】(1)设BD x =,ABD α∠=,则2ADB α∠=,利用正弦定理求出6cos α=,在利用余弦定理26cos 32263α==⨯⨯5x =或3x =,最后检验即可得出结果. (2)设CBD β∠=,利用正弦定理有2sin sinsin 33BDBC CDππββ==⎛⎫- ⎪⎝⎭,从而得出 BC 和CD 的表示方法,然后10sin 106BC CD πβ⎛⎫+=+≤ ⎪⎝⎭,即可得出BCD ∆周长最大值.【详解】解:(1)由条件即求BD 的长,在ABD ∆中,设BD x =,ABD α∠=,则2ADB α∠=,∵sin 2sin AB AD αα=,∴6cos 3α=,∴26cos 32263α==⨯⨯整理得28150x x -+=,解得5x =或3x =. 当3x =时可得22ADB πα∠==,与222AD BD AB +≠矛盾,故舍去∴5BD =(2)在BCD ∆中,设CBD β∠=,则2sin sinsin 33BDBC CDππββ==⎛⎫- ⎪⎝⎭∴10323BC πβ⎛⎫=- ⎪⎝⎭,103CD β= ∴10333sin 10sin 103226BC CD πβββ⎛⎫⎛⎫+=+=+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭∴BCD ∆周长最大值为15.【点睛】本题考查正弦定理和余弦定理解三角形,考查三角形周长的最大值,是中档题.18.如图所示,四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠=︒,2AD AP ==,22AB DP ==,E 是CD 中点,点F 在线段PB 上.(Ⅰ)证明:AD PC ⊥; (Ⅱ)若PF = ,PB λ []0,1λ∈,求实数λ使直线EF 与平面PDC 所成角和直线EF 与平面ABCD 所成角相等.【答案】(Ⅰ) 见解析;(Ⅱ) 33-【解析】 【分析】(Ⅰ)由线面垂直的判定定理,先证明AD ⊥平面PAC ,进而可得AD PC ⊥;(Ⅱ)先结合(Ⅰ)证明PD ⊥底面ABCD ,以A 为原点,DA 延长线、AC 、AP 分别为x 、y 、z 轴建系,用λ表示出直线EF 的方向向量与平面PDC 的法向量的夹角余弦值,以及直线EF 的方向向量与平面ABCD 的法向量的夹角余弦值,根据两角相等,即可得出结果.【详解】(Ⅰ)解:PAD 中222PA AD PD +=,∴90PAD ∠=︒∴AD PA ⊥; 连AC ,ABC 中2222cos 4AC AB BC AB BC ABC =+-⋅∠= ∴222AC BC AB +=∴AC BC ⊥,∴AD AC ⊥ 又PA AC A ⋂=∴AD ⊥平面PAC ∴AD PC ⊥(Ⅱ)由(1):PA AD ⊥,又侧面PAD ⊥底面ABCD 于AD ,∴PD ⊥底面ABCD ,∴以A 为原点,DA 延长线、AC 、AP 分别为x 、y 、z 轴建系;∴()000A ,,,()220B ,,,()020C ,,,()200D -,,,()110E -,,,()002P ,,∴()022PC =-,,,()202PD =--,,,()222PB ,,=-, 设PFPBλ=,([]01,λ∈),则()222PF λλλ=-,, ()2222F λλλ-+,,,()212122EF ,,λλλ=+--+ 设平面PCD 的一个法向量()m x y z =,,,则00m PC m PD ⎧⋅=⎨⋅=⎩,可得()111m =--,, 又平面ABCD 的一个法向量()001n =,,由题:cos cos EF m EF n =,,,即2223EFEFλλ-=解得:332λ-=【点睛】本题主要考查线面垂直的性质和已知线面角之间的关系求参数的问题,对于线面角的问题,通常用空间向量的方法,求出直线的方向向量以及平面的法向量,即可求解,属于常考题型.19.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.【答案】(1);(2)详分布列见解析,35. 【解析】 【分析】(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖},则可知1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥,且1B =12A A ,2B =12A A +12A A ,12C B B =+,再利用概率的加法公式即可求解;(2)分析题意可知1(3,)5X B ~,分别求得0331464(0)()()55125P X C ===;11231448(1)()()55125P X C ===;22131412(2)()()55125P X C ===;3303141(3)()()55125P X C ===,即可知的概率分布及其期望.【详解】(1)记事件1A ={从甲箱中摸出的1个球是红球},2A ={从乙箱中摸出的1个球是红球}, 1B ={顾客抽奖1次获一等奖},2B ={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}, 由题意,1A 与2A 相互独立,12A A 与12A A 互斥,1B 与2B 互斥, 且1B =12A A ,2B =12A A +12A A ,12CB B =+, ∵142()105P A ==,251()102P A ==, ∴11212211()()()()525P B P A A P A P A ===⨯=,2121212121212()()()()()(1())(1())()P B P A A A A P A A P A A P A P A P A P A =+=+=-+-21211(1)(1)52522=⨯-+-⨯=, 故所求概率为1212117()()()()5210P C P B B P B P B =+=+=+=; (2)顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15, ∴1(3,)5X B ~,于是00331464(0)()()55125P X C ===;11231448(1)()()55125P X C ===;22131412(2)()()55125P X C ===;3303141(3)()()55125P X C ===,故的分布列为123P6412548125121251125的数学期望为13()355E X =⨯=. 考点:1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以关注.20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率22e =,过右焦点F 且垂直于x 轴的弦长为2.(1)求椭圆C 的方程;(2)若直线:l y x m =+与椭圆C 交于,M N 两点,求MFN △的面积取最大值时m 的值.【答案】(1)22142x y +=;(2)2m =. 【解析】 【分析】(1)根据椭圆的离心率和椭圆的几何性质,即可求出结果;(2)联立方程得22142x y y x m ⎧+=⎪⎨⎪=+⎩消去y ,得2234240x mx m ++-=,再根据韦达定理和弦长公式可得2126||2|=3m MN x x -=-,由点到直线的距离公式可得点(2,0)F 到直线MN 的距离22d =22|2|6FMN S m m =⋅-△()22()6(2)(||6)u m m m m =-<,利用导数在函数最值中的应用,即可求出结果.【详解】解:(1)设右焦点(c,0)F ,x c =代入椭圆方程得2by a=±由题意知2222222c ab a a bc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2a b =⎧⎪⎨=⎪⎩C 的方程为22142x y +=.(2)联立方程得22142x y y x m ⎧+=⎪⎨⎪=+⎩消去y ,得2234240x mx m ++-=, ()2221612248480m m m ∆=--=-+>,∴||m <. 设()11,M x y ,()22,N x y ,∴1243m x x +=-,212243m x x -=,∴12|||3MN x x =-===. 又点F 到直线MN的距离d =∴1|||||2FMN S MN d m m =⋅=<△.令()22()6((||u m mm m =-<,则()2(2u m m m m '=-++,令()0u m '=,得m=或m =或m =,当2m <-时,()0um '>;当2m -<<()0u m '<;当m <时,()0um '>m <<()0u m '<. 又324u ⎛-=⎝⎭,32u=,∴max()32u m=,∴当m =时,MFN △的面积取得最大值,最大值为833=. 【点睛】本题主要考查了椭圆的几何性质,以及直线与椭圆的位置关系和椭圆中三角形面积最值的求法,属于中档题.21.已知函数()()1xf x a x e =--,x ∈R .(1)求函数()f x 的单调区间及极值; (2)设()()22ln m g x x t x t ⎛⎫=-+- ⎪⎝⎭,当1a =时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使方程()()12f x g x =成立,求实数m 的最小值.【答案】(1)单调递增区间为(,1)x a ∈-∞-,单调递减区间为(1,)x a ∈-+∞.函数()f x 有极大值且为1(1)1a f a e --=-,()f x 没有极小值.(2)1e-【解析】 【分析】(1)通过求导,得到导函数零点为1x a =-,从而可根据导函数正负得到单调区间,并可得到极大值为()1f a -,无极小值;(2)由()f x 最大值为0且()0g x ≥可将问题转化为ln x xm=有解;通过假设()ln h x x x =,求出()h x 的最小值,即为m 的最小值.【详解】(1)由()()1x f x a x e =--得:()()1x f x a x e '=--令()0f x '=,则()10xa x e --=,解得1x a =-当(),1x a ∈-∞-时,()0f x '> 当()1,x a ∈-+∞时,()0f x '<()f x 的单调递增区间为(),1x a ∈-∞-,单调递减区间为()1,x a ∈-+∞当1x a =-时,函数()f x 有极大值()111a f a e--=-,()f x 没有极小值(2)当1a =时,由(1)知,函数()f x 在10x a =-=处有最大值()0010f e =-= 又因为()()22ln 0m g x x t x t ⎛⎫=-+-≥ ⎪⎝⎭∴方程()()12f x g x =有解,必然存在()20,x ∈+∞,使()20g x =x t ∴=,ln mx t =等价于方程ln x xm=有解,即ln m x x =在()0,∞+上有解记()ln h x x x =,()0,x ∈+∞()ln 1h x x '∴=+,令()0h x '=,得1x e=当10,e x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 单调递增所以当1x e =时,()min 1h x e=- 所以实数m 的最小值为1e-【点睛】本题考查利用导数求解函数单调区间和极值、能成立问题的求解.解题关键是能够将原题的能成立问题转化为方程有解的问题,从而进一步转化为函数最值问题的求解,对于学生转化与化归思想的应用要求较高.【选修4-4:极坐标与参数方程】22.在平面直角坐标系xOy 中,曲线1:y t C x t ⎧=-+⎪⎨=⎪⎩t 为参数).在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2226:2cos C ρθ=+.(1)求曲线1C 的普通方程及2C 的直角坐标方程;(2)设121,1t t ==-在曲线1C 上对应的点分别为,,A B P 为曲线2C 上的点,求PAB △面积的最大值和最小值.【答案】(1)0x y +-=,22123x y +=;(2)最大值和最小值分别为 【解析】 【分析】(1)先把参数方程化成普通方程,再利用极坐标的公式把极坐标方程化成普通方程;(2)由(1)得点)P θθ,利用点到直线距离公式可得点P 到直线AB距离d =;再由121,1t t ==-,可得||AB =,由此即可求出PAB △面积的最值.【详解】(1)由曲线1:y t C x t ⎧=-+⎪⎨=⎪⎩1C 的普通方程为0x y +-=.由2226:2cos C ρθ=+得()222cos 6ρθ+=,2222cos 6ρρθ+=,22326x y +=,所以曲线2C 的直角坐标方程为22123x y+=.(2)由(1)得点)P θθ,点P 到直线AB 的距离d ==tan ϕ=,所以max d ==,min d ==.又当121,1t t ==-时,(1,1A -+,(1,1B -+,||AB =所以PAB △面积的最大值和最小值分别为.【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程和参数方程求解面积最值问题,考查计算能力,属于中档题.【选修4-5:不等式选讲】23.已知函数()|||2|(0)f x x m x m =-++>. (1)若函数()f x 的最小值为3,求实数m 的值;(2)在(1)的条件下,若正数,,a b c 满足2a b c m ++=,求证:114a b b c+≥++. 【答案】(1)1m =;(2)证明见解析. 【解析】 【分析】(1)利用绝对值三角不等式可得()|||2||()(2)||2|f x x m x x m x m =-++≥--+=+,则|2|3m +=,即可求解;(2)由(1)可得21a b c ++=,即()()1a b b c +++=,则1111[()()]a b b c a b b c a b b c ⎛⎫+=++++ ⎪++++⎝⎭,进而利用均值不等式证明即可.【详解】(1)解:∵()|||2||()(2)||2|f x x m x x m x m =-++≥--+=+, ∴|2|3m +=, 又∵0m >,∴1m =.(2)证明:由(1)知1m =,∴21a b c ++=,即()()1a b b c +++=,正数,,a b c,∴1111[()()]2224b c a ba b b ca b b c a b b c a b b c++⎛⎫+=++++=++≥+= ⎪++++++⎝⎭,当且仅当b c a ba b b c++=++时等号成立.【点睛】本题考查利用绝对值三角不等式求最值,考查利用均值不等式证明不等式,考查“1”的代换的应用.。

2021届全国天一大联考新高考模拟考试(九)数学(理科)

2021届全国天一大联考新高考模拟考试(九)数学(理科)

2021届全国天一大联考新高考模拟考试(九)理科数学★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填涂在答题卡上.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题. 2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( )A.B.C. 2D.【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力.3.已知某企业2020年4月之前的过去5个月产品广告投入与利润额依次统计如下:由此所得回归方程为ˆ12yx a =+,若2020年4月广告投入9万元,可估计所获利润约为( ) A. 100万元 B. 101 万元C. 102万元D. 103万元.【答案】C 【解析】 【分析】由题意计算出x 、y ,进而可得12a y x =-,代入9x =即可得解. 【详解】由题意()18.27.887.98.185x =++++=,()19289898793905y =++++=, 所以12901286a y x =-=-⨯=-,所以ˆ126y x =-, 当9x =时,ˆ1296102y=⨯-=. 故选:C.【点睛】本题考查了线性回归方程的应用,考查了运算求解能力,属于基础题. 4.已知向量()()3,2,1,1a x b =-=,则“1x >”是“a 与b 夹角为锐角”的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【详解】当51x =>时,()()2,2,1,1,a b a ==与b 的夹角为0, 不是锐角,所以充分性不成立,若a 与b 的夹角为锐角,则320,1a b x x ⋅=-+>>必要性成立,∴“1x >”是“a 与b 夹角为锐角”的必要不充分条件.故选:A .5.已知函数()y f x =的部分图象如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()sin 2f x x x =+ C. 1()sin 22f x x x =- D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】首先通过函数的定义域排除选项A ,再通过函数的奇偶性排除选项D,再通过函数的单调性排除选出B ,确定答案.【详解】由图象可知,函数的定义域为R ,而函数()tan f x x x =+的定义域不是R,所以选项A 不符合题意; 由图象可知函数是一个奇函数,选项D 中,存在实数x , 使得1()cos ()2f x x x f x -=--≠-,所以函数不是奇函数,所以选项D 不符合题意; 由图象可知函数是增函数,选项B ,()12cos 2[1,3]f x x =∈-'+,所以函数是一个非单调函数,所以选项C 不符合题意;由图象可知函数是增函数,选项C ,()1cos 20f x x =-≥,所以函数是增函数,所以选项C 符合题意. 故选:C【点睛】本题主要考查函数的图象和性质,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平.6.已知二项式121(2)n x x+的展开式中,二项式系数之和等于64,则展开式中常数项等于( ) A. 240 B. 120 C. 48 D. 36【答案】A 【解析】 【分析】由题意结合二项式系数和的性质可得264n =即6n =,写出二项式展开式的通项公式3362162r rr r T C x--+=⋅⋅,令3302r -=即可得解. 【详解】由题意264n=,解得6n =,则1162211(2)(2)n x x x x+=+,则二项式1621(2)x x +的展开式的通项公式为6133622166122rrr r r r r T C x C x x ---+⎛⎫⎛⎫=⋅⋅=⋅⋅ ⎪⎪⎝⎭⎝⎭, 令3302r -=即2r ,则6426622240rr C C -⋅=⋅=.故选:A.【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.7.已知三棱锥A BCD -中,侧面ABC ⊥底面BCD ,ABC 是边长为3的正三角形,BCD 是直角三角形,且90BCD ∠=︒,2CD =,则此三棱锥外接球的体积等于( )A. B.323π C. 12π D.643π【答案】B 【解析】 【分析】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O ,过点O 作OH AG ⊥于H ,连接AO 、BO ,设1OO m =,由勾股定理可得22134OD m =+、221OA m ⎫=+-⎪⎪⎝⎭,利用22OD OA =即可得m =,进而可得外接球半径2R =,即可得解.【详解】取BD 的中点1O ,BC 中点G ,连接1GO 、AG ,由题意可得1O 为BCD 的外心,AG ⊥平面BCD ,过点1O 作直线垂直平面BCD ,可知三棱锥外接球的球心在该直线上,设为O , 过点O 作OH AG ⊥于H ,连接AO 、OD ,可知四边形1OHGO 为矩形,ABC 是边长为3,2CD =,∴33AG =,13BD =11O G =,设1OO m =,则33HA m =, ∴222211134OD DO OO m =+=+,22223312OA OH HA m ⎛⎫=+=+- ⎪ ⎪⎝⎭, 由22OD OA =可得22133314m m ⎫+=+⎪⎪⎝⎭,解得32m =, ∴三棱锥A BCD -外接球的半径21324R m =+=, ∴此三棱锥外接球的体积343233V R ππ==. 故选:B.【点睛】本题考查了三棱锥几何特征的应用及外接球的求解,考查了面面垂直性质的应用和空间思维能力,属于中档题.8.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+ ⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=, ()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+, 13a =,20a =,332a =-,432a =-,50a =,632a =,每个周期和为0, 故202012343S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力. 9.从0,1,2,3,4,5,6,7,8,9这十个数中任取6个不同的数,则这6个数的中位数恰好是112的概率为( ) A.11050B.1525C.435D.635【答案】D 【解析】 【分析】首先利用组合求出任取6个不同的数的取法,然后再分类讨论:以5,6为中间两个数或以4,7为中间两个数,利用组合分别求出取法,再利用古典概型的概率公式即可求解.【详解】从10个数中任取6个不同的数的取法有610210C =种,其中中位数是112的取法要分两类: 一类以5,6为中间两个数,取法共有225330C C =种;另一类以4,7为中间两个数,取法共有22426C C =. 则所求的概率为306621035+=. 故选:D【点睛】本题考查了计数原理、古典概型,考查了计算能力,属于基础题.10.在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值; ②三棱锥1B A EF -的体积是定值;③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是( ) A. 3 B. 2C. 1D. 0【答案】B 【解析】 【分析】以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 可得1AC =(1,1,1),1B F =(t-1,1,-t),可得11AC B F =0,可得①正确; 由三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,可得②正确;可得1A F =(t ,1,-t),平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值可得③错误,可得答案.【详解】解:以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,可得B(1,0,0),C(1,1,O),D(0,1,0),1A (0,0,1),1B (1,0,1),1C (1,1,1),1D (0,1,1),设F(t ,1,1-t),(0≤t≤1),可得1AC =(1,1,1),1B F =(t-1,1,-t),可得11AC B F =0,故异面直线1AC 与1B F 所的角是定值,故①正确;三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,点F 是线段1CD 上的一个动点,可得F 点到底面1A BE 的距离为定值,故三棱锥1B A EF -的体积是定值,故②正确;可得1A F =(t ,1,-t),1B C =(0,1,-1),11B D =(-1,1,0),可得平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值,故③错误; 故选B.【点睛】本题主要考查空间角的求解及几何体体积的求解,建立直角坐标系,是解题的关键. 11.抛物线22(0)y px p =>的焦点为F ,准线为l ,点,A B 是抛物线上的两个动点,且满足3AFB π∠=,点,A B 在l 上的投影分别为点,M N ,若四边形ABNM 的面积为S ,则2S AB的最大值为( )A.12B. 1C.32D. 2【答案】B 【解析】 【分析】设AF x =,BF y =,由抛物线的定义得AF AM x ==,BF BN y ==,在ABF 中,根据余弦定理可得()22AB x y xy --=,从而求出梯形ABNM =,利用梯形的面积公式结合基本不等式即可求解.【详解】设AF x =,BF y =,则由抛物线的定义得AF AM x ==,BF BN y ==, 在ABF 中,由余弦定理得2222cos AB AF BF AF BF AFB =+-⋅∠ ()2222cos3x y xy x y xy π=+-=-+,即()22AB x y xy --=, 所以梯形ABNM=,所以四边形ABNM的面积为S =故()22222222x yx y S x y AB x y ++⋅=≤⎛⎫++- ⎪⎝⎭()()()22222222222122x y x y x y xy x y x y +++++=≤=++, 当且仅当x y =时取等号,所以2S AB的最大值为1.故选:B【点睛】本题考查了抛物线的定义与几何性质、基本不等式的应用、余弦定理,属于中档题.12.已知2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,则t 的取值范围是( )A. 1(]46e ⎧⎫-∞⋃⎨⎬⎩⎭, B. 1(,]6-∞C. 1[0]46e ⎧⎫⋃⎨⎬⎩⎭,D. 1(,]4-∞【答案】D 【解析】 【分析】由题意结合导数转化条件得()22x t e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,求导后确定函数()g x 的值域即可得解.【详解】由题意,函数()f x 的定义域为()0,∞+, 对函数()f x 求导得()()()2221212()2(1)21xx x e x e f x t x x xt x x ⎡⎤-+⎣⎦'--=-+-=,2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,∴()220xe x t +=-在()0,∞+上无解,即()22xt e x =+在()0,∞+上无解,令()()()022xe g x x x =≥+,则()()()()()222222102222x x x e x e e x g x x x +-+'==>++, ∴函数()g x 在[)0,+∞单调递增,当()0,x ∈+∞时,()()104g x g >=, ∴14a ≤. 故选:D.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于基础题.二、填空题:本大题4个小题,每小题5分,共20分,把答案填写在答题卡相应的位置上.13.已知0a >,0b >,且2a b +=,则515a b+的最小值是________. 【答案】185【解析】 【分析】 由条件可得511511526()525255b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,然后利用基本不等式求解即可. 【详解】因为2a b +=,所以511511526()525255b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭. 因为0,0a b >>,所以525b a a b +≥(当且仅当53a =,13b =时,等号成立), 所以511261825255a b ⎛⎫+≥⨯+= ⎪⎝⎭. 故答案为:185【点睛】本题考查的是利用基本不等式求最值,属于典型题.14.已知正项等比数列{}n a 中, 11a =,其前n 项和为()*n S n N ∈,且123112a a a -=,则4S =__________. 【答案】15 【解析】解:由题意可知:2111111a a q a q -= ,结合11,0a q => 解得:2q ,则4124815S =+++= .15.已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为34yx ,点P 是双曲线的左支上异于顶点的一点,12,F F 分别为双曲线的左、右焦点,M 为12PF F ∆的内心,若1MPF ∆,2MPF ∆,12MF F ∆的面积满足1212MPF MPF MF F S S S λ∆∆∆=-,则λ的值为_____. 【答案】45【解析】 【分析】先根据双曲线的渐近线方程为34yx ,得到34b a,再根据1212MPFMPF MF F S S S λ∆∆∆=-,结合双曲线的定义得到a c λ==.【详解】因为双曲线22221(0,0)x y a b a b-=>>的渐近线方程为34yx , 所以34b a , 设内切圆的半径为r ,因为1212MPF MPF MF F S S S λ∆∆∆=-, 所以1212111222PF r PF r F F r λ⋅=⋅-⋅, 所以2112PF PF F F λ-=, 所以22a c λ=,所以a c λ==45===.故答案为:45【点睛】本题主要考查双曲线定义和几何性质以及内切圆问题,还考查了数形结合的思想和运算求解的能力,属于中档题.16.已知定义在R 上的函数()y f x =为增函数,且函数()1y f x =+的图象关于点()1,0-成中心对称,若实数a 、b 满足不等式()()224230f a a f bb -+--≤,则当24a ≤≤时,()221a b +-的最大值为_________. 【答案】20 【解析】 【分析】推导出函数()y f x =为奇函数,且在R 上为增函数,由()()224230f a af bb -+--≤得出()()130a b a b --+-≥,由此将问题转转化为在约束条件()()13024a b a b a ⎧--+-≥⎨≤≤⎩下求()221a b +-的最大值,作出不等式组所表示的平面区域,将代数式()221a b +-转化为点()0,1P 到平面区域内的动点(),M a b 的距离的平方,数形结合可得出结果.【详解】函数()1y f x =+的图象关于点()1,0-成中心对称,则函数()y f x =的图象关于原点对称,所以,函数()y f x =为奇函数,且该函数在R 上为增函数, 由()()224230f a af bb -+--≤,得()()22423f a a f b b -≥--,22423a a b b ∴-≥--,()()2221a b ∴-≥-,则有()()130a b a b --+-≥,不等式组()()13024a b a b a ⎧--+-≥⎨≤≤⎩所表示的平面区域如下图所示的ABC :联立410a a b =⎧⎨--=⎩,得43a b =⎧⎨=⎩,可得点()4,3A ,同理可得点()4,1B -,代数式()221a b +-可视为点()0,1P 到平面区域内的动点(),M a b 的距离的平方, 由图象可知,当点M 与点A 或点B 重合时,()221a b +-取最大值()2243120+-=. 故答案为:20.【点睛】本题考查抽象函数单调性与奇偶性的应用,将问题转化为线性规划下非线性目标函数的最值问题是解答的关键,考查化归与转化思想以及数形结合思想的应用,属于难题.三、解答题:解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.17.在锐角△ABC 中,3a =________, (1)求角A ;(2)求△ABC 的周长l 的范围.注:在①(cos ,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(623,63+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案. (2)根据正弦定理得到4sin sin sin a b c ABC ===,故43236ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b cA B C===, 故24sin 4sin 234sin 4sin 233ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△, 43sin 236ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(623,63ABC l ⎤∴∈+⎦△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cos b A a C c A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③131()cos (cos sin )224f x x x x =+-=21cos 2x +3cos sin x x -14=12×1+cos 22x +3×sin 22x -141131=(cos 2sin 2)=sin(2)2226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 18.2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在[2585],之间,根据统计结果,做出频率分布直方图如下:(Ⅰ)求这100位作者年龄的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,作者年龄X 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求(6073.4)P X <<;(ii )央视媒体平台从年龄在[4555],和[6575],的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间[4555],的人数是Y ,求变量Y13.4≈,若2~(,)X N μσ,则()0.683P X μσμσ-<<+=,(22)0.954P X μσμσ-<<+=【答案】(1)60x =,2180s =;(2)(i )0.3415;(ii )详见解析. 【解析】 【分析】(1) 利用离散型随机变量的期望与方差的公式计算可得答案;(2)(i )由(1)知,~(60180X N ,),从而可求出(6073.4)P X <<; (ii )可得Y 可能的取值为0,1,2,3,分别求出其概率,可列出Y 的分布列,求出其Y 的数学期望. 【详解】解:(1)这100位作者年龄的样本平均数x 和样本方差2s 分别为300.05400.1500.15600.35700.2800.1560x =⨯+⨯+⨯+⨯+⨯+⨯=()()()222222300.05200.1100.1500.35100.2200.15180s =-⨯+-⨯+-⨯⨯+⨯+⨯+⨯=(2)(i )由(1)知,()~60180X N ,, 从而1(6073.4)(6013.46013.4)0.34152P X P X <<=-<<+=; (ii )根据分层抽样的原理,可知这7人中年龄在[]4555,内有3人,在[]6575,内有4人, 故Y 可能的取值为0,1,2,3()0334374035C C P Y C ===,()12343718135C C P Y C ===, ()21343712235C C P Y C === ()3034371335C C P Y C === 所以Y 的分布列为P 435 1835 1235 135所以Y 的数学期望为()41812190123353535357E Y =⨯+⨯+⨯+⨯= 【点睛】本题主要考查了离散型随机变量的期望与方差,正态分布的应用,其中解答涉及到离散型随机变量的期望与方差公式的计算、正态分布曲线的概率的计算等知识点的考查,着重考查了学生分析问题,解答问题的能力及推理与运算的能力,属于中档题型. 19.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.【答案】(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形, 且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD = 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD , 平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π22412224(2)λλλ=+-, 解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做.20.己知椭圆22221(0)y x C a b a b +=>>:过点2P ,1(0,1)F -,2(0,1)F 是两个焦点.以椭圆C 的上顶点M 为圆心作半径为()0r r >的圆, (1)求椭圆C 的方程;(2)存在过原点的直线l ,与圆M 分别交于A ,B 两点,与椭圆C 分别交于G ,H 两点(点H 在线段AB 上),使得AG BH =,求圆M 半径r 的取值范围.【答案】(1)22:12y C x +=(2)【解析】 【分析】(1)由题意结合椭圆性质可得122|a PF PF =+=2221b a c =-=,即可得解; (2)当直线斜率不存在时,r =当直线斜率存在时,设直线l 方程为:y kx =, ()11,G x y ,()22,H x y ,联立方程后利用弦长公式可得||GH =||AB =||||AB GH =,可得24212132r k k ⎛⎫=+ ⎪++⎝⎭,即可得解. 【详解】(1)设椭圆的焦距为2c ,由题意1c =,122|a PF PF =+=,所以22a =,2221b a c =-=,故椭圆C 的方程为2212y x +=;(2)当直线斜率不存在时,圆M 过原点,符合题意,r =当直线斜率存在时,设直线l 方程:y kx =,()11,G x y ,()22,H x y ,由直线l 与椭圆C 交于G 、H 两点,则2212y kx y x =⎧⎪⎨+=⎪⎩,所以()22220k x +-=,>0∆, 则1212220,2x x x x k+==-+,所以||H G ==点M到直线l的距离d =,则||AB =, 因为AG BH =,点H 在线段AB 上,所以点G 在线段AB 的延长线上, 只需||||AG BH =即||||AB GH =,所以()2222812421k r k k +⎛⎫=- ⎪++⎝⎭, 则()()2422224242212332*********k k k r k k k k k k +++⎛⎫=+==+ ⎪++++++⎝⎭因为24223132224k k k ⎛⎫++=+-≥ ⎪⎝⎭,所以42110322k k <≤++,所以(]22,3r ∈,r ∈;综上,r 的取值范围为.【点睛】本题考查了椭圆方程的确定,考查了直线、圆、椭圆的综合应用,属于中档题. 21.已知函数()1ln f x ax x =++. (1)221()()(1)2g x af x x a a x =+-++,求函数()g x 的单调区间: (2)对于任意0x >,不等式()xf x xe ≤恒成立,求实数a 的取值范围. 【答案】(1)见解析(2)1a ≤ 【解析】 【分析】(1)求导后,按照1a >、1a =、01a <<与0a ≤分类,分别解出不等式()0g x '>,即可得解;(2)转化条件得对于任意0x >,不等式ln 1x xe x a x --≤恒成立,设ln 1()x xe x F x x --=,则22ln ()x x e x F x x +'=,设2()ln xh x x e x =+,求导后可得()h x 在(0,)+∞上单调递增,进而可得01,1x e ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即0()0F x '=,则()0()F x F x ≥,设()()0xx xe x ϕ>=,求导后可得()x ϕ在(0,)+∞上单调递增,即可证000011ln x x e x x ⎛⎫=⇔= ⎪⎝⎭,代入求出()0F x 后,即可得解.【详解】(1)由题意21()ln (1),(0)2g x a x x a x a x =+-++>, 则2(1)(1)()()(1)a x a x a x x a g x x a x x x'-++--=+-+==, (i )当1a >时,()0g x '>的解集为((,1))0,a +∞,则()g x 的单调增区间为(0,1)和(,)a +∞,单调减区间为(1,)a ;(ii )当1a =时,()0g x '≥,则()g x 的单调增区间为(0,)+∞,无单调减区间; (iii )当01a <<时,()0g x '>的解集为(0,)(1,)a +∞,则()g x 的单调增区间为(0,)a 和(1,)+∞,单调减区间为(,1)a ;(iiii )当0a ≤时,()0g x '>的解集为(1,)+∞,则()g x 的单调增区间为(1,)+∞,单调减区间为(0,1).(2)由已知,问题等价于对于任意0x >,不等式ln 1x xe x a x--≤恒成立,设ln 1()x xe x F x x --=,则22ln ()x x e xF x x+'=, 设2()ln xh x x e x =+,则()21()2xh x x x e x'=++, 在(0,)+∞上,()0h x '>,()h x 单调递增,又12110e h e e -⎛⎫=-< ⎪⎝⎭,(1)0h e =>,所以1(1)0h h e ⎛⎫< ⎪⎝⎭,所以01,1x e ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即0()0F x '=,在()00,x 上,()0F x '<,()F x 单调递减; 在()0x +∞上,()0F x '>,()F x 单调递增; 所以()0()F x F x ≥,又有00001ln 20000000111ln ln ln x x x x x e x x e x e ex x x ⎛⎫⎪⎝⎭⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭⇔⇔,设()()0xx xe x ϕ>=,则有()001ln x x ϕϕ⎛⎫= ⎪⎝⎭和()(1)0x x x e ϕ'=+>, 所以在(0,) +∞上,()x ϕ单调递增,所以000011ln x x e x x ⎛⎫=⇔= ⎪⎝⎭, 所以()0000000ln 111()1x x e x x F x F x x x --+-≥===, 故实数a 的取值范围为1a ≤.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于难题.选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值. 【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】【分析】 (1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=. 【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=, 即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=,即22(3)9x y -+=.(2)设直线l的参数方程为1,x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t +=所以M对应的参数1202t t t +==120|t ||t |||||=||||AP AQ AM t ==【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-.所以a的取值范围为2 2,3⎡⎤--⎢⎥⎣⎦.【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。

2021届全国天一大联考新高考模拟考试(二十)数学(理)试题

2021届全国天一大联考新高考模拟考试(二十)数学(理)试题

2021届全国天一大联考新高考模拟考试(二十)理科数学试卷★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A. {2}B. {1,0}-C. {}1-D. {1,0,1}-【答案】B 【解析】 【分析】求出集合B ,利用集合的基本运算即可得到结论. 【详解】由10x ->,得1x <,则集合{}|1B x x =<, 所以,{}1,0A B ⋂=-. 故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合B 是解决本题的关键,属于基础题. 2.已知复数z 满足i z11=-,则z =( ) A.1122i + B.1122i -C. 1122-+i D. 1122i -- 【答案】B 【解析】 【分析】利用复数的代数运算法则化简即可得到结论.【详解】由i z11=-,得()()11111111222i i z i i i i ++====+--+, 所以,1122z i =-. 故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题. 3.已知向量a b (3,1),(3,3)=-=,则向量b 在向量a 方向上的投影为( )A. B.C. 1-D. 1【答案】A 【解析】 【分析】投影即为cos a b b aθ⋅⋅=,利用数量积运算即可得到结论.【详解】设向量a 与向量b 的夹角为θ,由题意,得331a b ⋅=-⨯+=-()312a =-+=,所以,向量b 在向量a 方向上的投影为23cos 2a b b a θ⋅-⋅===故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.4.已知,m n 为两条不重合直线,,αβ为两个不重合平面,下列条件中,αβ⊥的充分条件是( ) A. m ∥n m n ,,αβ⊂⊂ B. m ∥n m n ,,αβ⊥⊥ C. m n m ,⊥∥,n α∥β D. m n m ,⊥n ,αβ⊥⊥【答案】D 【解析】【分析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A ,当//m n ,m α⊂,n β⊂时,则平面α与平面β可能相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故A 错误;对于B ,当//m n ,m α⊥,n β⊥时,则//αβ,故不能作为αβ⊥的充分条件,故B 错误; 对于C ,当m n ⊥,//m α,//n β时,则平面α与平面β相交,αβ⊥,//αβ,故不能作为αβ⊥的充分条件,故C 错误;对于D ,当m n ⊥,m α⊥,n β⊥,则一定能得到αβ⊥,故D 正确. 故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题. 5.一个几何体的三视图如图所示,则该几何体的体积为( )A. 103B. 3C.83D.73【答案】A 【解析】 【分析】根据题意,可得几何体,利用体积计算即可. 【详解】由题意,该几何体如图所示:该几何体的体积11110222222323V =⨯⨯⨯-⨯⨯⨯=. 故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.6.人们通常以分贝(符号是dB )为单位来表示声音强度的等级,30~40分贝是较理想的安静环境,超过50分贝就会影响睡眠和休息,70分贝以上会干扰谈话,长期生活在90分贝以上的嗓声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病,如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力,为了保护听力,应控制噪声不超过90分贝,一般地,如果强度为x 的声音对应的等级为()f x dB ,则有12()10lg 110x f x -=⨯⨯,则90dB 的声音与50dB 的声音强度之比为( ) A. 10 B. 100 C. 1000 D. 10000【答案】D 【解析】 【分析】设90dB 的声音与50dB 的声音对应的强度分别为1x 、2x ,由题意1219010lg 110x -=⨯⨯,1225010lg 110x -=⨯⨯,计算即可得解.【详解】设90dB 的声音与50dB 的声音对应的强度分别为1x 、2x , 由题意1219010lg110x -=⨯⨯,1225010lg110x -=⨯⨯,所以3110x -=,7210x -=,所以3417210101000010x x --===. 故选:D.【点睛】本题考查了对数运算的应用,考查了对于新概念的理解,属于基础题. 7.把函数()sin 2(0)6f x A x A π⎛⎫=-≠ ⎪⎝⎭的图象向右平移4π个单位长度,得到函数()g x 的图象,若函数()()0g x m m ->是偶函数,则实数m 的最小值是( )A.512πB.56π C.6π D.12π【答案】A 【解析】 【分析】先求出()g x 的解析式,再求出()()0g x m m ->的解析式,根据三角函数图象的对称性可求实数m 满足的等式,从而可求其最小值. 【详解】()sin 2(0)6f x A x A π⎛⎫=-≠ ⎪⎝⎭的图象向右平移4π个单位长度, 所得图象对应的函数解析式为()2sin 2sin 2263g x A x A x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭, 故()2sin 223g x m A x m π⎛⎫-=-- ⎪⎝⎭. 令22232x m k πππ--=+,k Z ∈,解得7122k x m ππ=++,k Z ∈. 因为()y g x m =-为偶函数,故直线0x =为其图象的对称轴, 令07122ππ++=k m ,k Z ∈,故7122k m ππ=--,k Z ∈, 因0m >,故2k ≤-,当2k =-时,min 512m π=. 故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量x 做加减,比如把()2y f x =的图象向右平移1个单位后,得到的图象对应的解析式为()()2122y f x f x =-=-⎡⎤⎣⎦,另外,如果x m =为正弦型函数()()sin f x A x =+ωϕ图象的对称轴,则有()=±f m A ,本题属于中档题. 8.已知数列{}n a 为等比数列,若a a a 76826++=,且a a 5936⋅=,则a a a 768111++=( ) A.1318B.1318或1936C.139 D.136【答案】A 【解析】 【分析】根据等比数列的性质可得25968736a a a a a ⋅=⋅==,通分化简即可. 【详解】由题意,数列{}n a 为等比数列,则25968736a a a a a ⋅=⋅==,又a a a 76826++=,即68726a a a +=-,所以,()()76877786867678777683636261113636a a a a a a a a a a a a a a a a a a a +⋅++⋅-⋅+⋅+⋅++===⋅⋅⋅⋅, ()277777777773626362636263626133636363618a a a a a a a a a a +⋅-+⋅-+⋅-⋅=====⋅⋅⋅⋅.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.9.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若2||2PF =,则12F PF ∠的大小为( )A. 150︒B. 135︒C. 120︒D. 90︒【答案】C 【解析】 【分析】根据椭圆的定义可得14PF =,12F F =,再利用余弦定理即可得到结论.【详解】由题意,12F F =126PF PF +=,又22PF =,则14PF =, 由余弦定理可得22212121212164281cos 22242PF PF F F F PF PF PF +-+-∠===-⋅⨯⨯.故12120F PF ︒∠=.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.10.已知ba b c a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( )A. a b c <<B. c a b <<C. a c b <<D. b c a <<【答案】B 【解析】 【分析】利用函数12xy ⎛⎫= ⎪⎝⎭与函数12log y x =互为反函数,可得01a b <<<,再利用对数运算性质比较a,c 进而可得结论.【详解】依题意,函数12x y ⎛⎫= ⎪⎝⎭与函数12log y x =关于直线y x =对称,则0.21210log 0.22⎛⎫<< ⎪⎝⎭,即01a b <<<,又0.211220.2log 0.2log 0.20.20.20.211110.22252bc a a ⨯⎛⎫⎛⎫⎛⎫⎛⎫=====<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,c a b <<. 故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.11.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A.213B.413C. 77D.47【答案】D 【解析】 【分析】设AF a '=,则2A F a ''=,小正六边形的边长为2A F a ''=,利用余弦定理可得大正六边形的边长为7AB a ,再利用面积之比可得结论.【详解】由题意,设AF a '=,则2A F a ''=,即小正六边形的边长为2A F a ''=, 所以,3FF a '=,3AF F π'∠=,在AF F '∆中,由余弦定理得2222cos AF AF FF AF FF AF F '''''=+-⋅⋅∠, 即()222323cos3AF a a a a π=+-⋅⋅,解得7AF a =,所以,大正六边形的边长为7AF a =,所以,小正六边形的面积为211222222S a a a =⨯⨯⨯+⨯=,大正六边形的面积为2212222S =⨯⨯=, 所以,此点取自小正六边形的概率1247S P S ==. 故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.12.已知12,F F 分别为双曲线2222:1x y C a b-=的左、右焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,若12PF F ∆的面积为23,则双曲线的离心率为( )B. 2D. 3【答案】B 【解析】 【分析】根据题意,设点()00,P x y 在第一象限,求出此坐标,再利用三角形的面积即可得到结论. 【详解】由题意,设点()00,P x y 在第一象限,双曲线的一条渐近线方程为by x a=, 所以,00by x a=, 又以12F F 为直径的圆经过点P ,则OP c =,即22200x y c +=,解得0x a =,0y b =,所以,1220122PF F S c y c b ∆=⋅⋅=⋅=,即c =,即()22243c c a =-,所以,双曲线的离心率为2e =. 故选:B.【点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出a 与c 的关系,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.在()52x -的展开式中,3x 项的系数是__________(用数字作答). 【答案】40- 【解析】()52x -的展开式的通项为:552()r rr C x --.令3r =,得5352()40rrr C x x --=-.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.14.已知两圆相交于两点(),3A a ,()1,1B -,若两圆圆心都在直线0x y b ++=上,则+a b 的值是________________ . 【答案】1- 【解析】 【分析】根据题意,相交两圆的连心线垂直平分相交弦,可得AB 与直线0x y b ++=垂直,且AB 的中点在这条直线0x y b ++=上,列出方程解得即可得到结论. 【详解】由(),3A a ,()1,1B -,设AB 的中点为1,22a M -⎛⎫⎪⎝⎭, 根据题意,可得1202a b -++=,且3111AB k a -==+, 解得,1a =,2b =-,故1a b +=-. 故答案为:1-.【点睛】本题考查相交弦的性质,解题的关键在于利用相交弦的性质,即两圆的连心线垂直平分相交弦,属于基础题.15.等差数列{}n a 的前n 项和为n S ,34310a S ==,,则11nk kS ==∑_____. 【答案】21nn + 【解析】 【分析】 计算得到()12n n n S +=,再利用裂项相消法计算得到答案.【详解】3123a a d =+=,414610S a d =+=,故11a d ==,故()12n nn S +=, ()1111211122211111nn nk k k k n S k k k k n n ===⎛⎫⎛⎫==-=-= ⎪ ⎪++++⎝⎭⎝⎭∑∑∑. 故答案为:21nn +. 【点睛】本题考查了等差数列的前n 项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用. 16.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.【答案】 (1). 26(2). 86π【解析】 【分析】(1)先算出正四面体的体积,六面体的体积是正四面体体积的2倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【详解】(1)每个三角形面积是13312S ⎛=⨯= ⎝⎭,由对称性可知该六面是由两个正四面合成的, 236133⎛⎫-= ⎪ ⎪⎝⎭,故四面体体积为13623=, 因此该六面体体积是正四面体的2倍, 所以六面体体积是26; (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为R ,所以166349R R ⎛⎫=⨯⨯⇒= ⎪ ⎪⎝⎭,所以球的体积334433V R ππ===⎝⎭.故答案为:6【点睛】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题, (一)必考题:共60分17.在ABC ∆中,角,,A B C 的对边分别为,,a b c b C C (sin )=+. (1)求角B的大小; (2)若3A π=,D 为ABC ∆外一点,DB CD 2,1==,求四边形ABDC 面积的最大值.【答案】(1)3B π=(22+ 【解析】 【分析】(1)根据正弦定理化简等式可得tan B =3B π=;(2)根据题意,利用余弦定理可得254cos BC D =-,再表示出sin BDCS D ∆=,表示出四边形ABCDS ,进而可得最值. 【详解】(1)3(sin )a b C C =,由正弦定理得:sin (sin )A B C C =+在ABC ∆中,()sin sin A B C =+)sin sin cos B C B C B C +=, sin sin sin B C B C =,sin 0,sin C B B ≠=,即tan B =()0,,3B B ππ∈∴=.(2)在BCD ∆中,2,1BD CD ==22212212cos BC D ∴=+-⨯⨯⨯54cos D =- 又3A π=,则ABC ∆等边三角形,21sin 23ABCSBC π=⨯=D 又1sin sin 2BDCSBD DC D D =⨯⨯⨯=,sin 4ABCD S D D ∴=+-=2sin()43D π+--∴当56D π=时,四边形ABCD 的面积取最大值,最大值为24+. 【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题.18.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占8,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是X ,求X 的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差. (下面的临界值表供参考)(参考公式22()()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++)【答案】(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)①详见解析②期望12;方差4.8 【解析】 【分析】(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得X 的取值,进而得到概率,列出分布列;根据分析知(20,0.6)Y B ,计算出期望与方差. 【详解】(1)2245(1516104)7.29 6.63525201926K ⨯-⨯=≈>⨯⨯⨯∴有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)①由分层抽样知,需要从不足120分的学生中抽取209445⨯=人, X 的可能取值为0,1,2,3,4,44420(0)C P X C ==,31416420(1)C C P X C ==,22416420(2)C C P X C ==13416420(3)C C P X C ==,416420(4)C P X C ==,所以,X 的分布列:②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为150.625=,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为Y ,则(20,0.6)YB ,故()200.612E Y =⨯=,()200.6(10.6) 4.8D Y =⨯⨯-=.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题. 19.如图所示,在四棱锥P ABCD -中,AB ∥CD ,AD AB CD DAB 1,602==∠=︒,点,E F 分别为CD AP ,的中点.(1)证明:PC ∥面BEF ;(2)若PA PD ⊥,且PA PD =,面PAD ⊥面ABCD ,求二面角F BE A --的余弦值. 【答案】(1)证明见解析(2239【解析】 【分析】(1)根据题意,连接AC 交BE 于H ,连接FH ,利用三角形全等得//FH PC ,进而可得结论; (2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角F BE A --的余弦值. 【详解】(1)证明:连接AC 交BE 于H ,连接FH ,,,AB CE HAB HCE =∠=∠BHA CHA ∠=∠,ABH ∴∆≌CEH ∆,AH CH ∴=且//FH PC ,FH ⊂面,FBE PC ⊄面FBE ,//PC ∴面FBE ,(2)取AD 中点O ,连PO ,OB .由PA PD =,PO AD ∴⊥ 面PAD ⊥面ABCDPO ∴⊥面ABCD ,又由60DAB ∠=,AD AB =OB AD ∴⊥以,,OA OB OP 分别为,,x y z 轴建立如图所示空间直角坐标系,设2AD =,则(1,0,0)A ,3,0)B ,(1,0,0)D -,11(0,0,1),(,0,)22P F ,(2,0,0)EB DA ==,11(,3,)22BF =-,1(0,0,1)n =为面BEA 的一个法向量,设面FBE 的法向量为2000(,,)n x y z =,依题意,2200EB n BF n ⎧⋅=⎪⎨⋅=⎪⎩即000020113022x x z =⎧⎪⎨+=⎪⎩, 令03y =,解得06z =,00x =所以,平面FBE 的法向量2(0,3,6)n =,121212,239cos ,39n n n n n n ===⋅,又因二面角为锐角,故二面角F BE A --239【点睛】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题. 20.已知倾斜角为4π的直线经过抛物线2:2(0)C x py p =>的焦点F ,与抛物线C 相交于A 、B 两点,且||8AB =.(1)求抛物线C 的方程;(2)设P 为抛物线C 上任意一点(异于顶点),过P 做倾斜角互补的两条直线1l 、2l ,交抛物线C 于另两点C 、D ,记抛物线C 在点P 的切线l 的倾斜角为α,直线CD 的倾斜角为β,求证:α与β互补. 【答案】(1)24x y =(2)证明见解析 【解析】 【分析】(1)根据题意,设直线方程为2py x =+,联立方程,根据抛物线的定义即可得到结论; (2)根据题意,设1l 的方程为()2004x y k x x -=-,联立方程得04C x x k +=,同理可得04D x x k +=-,进而得到02C D x x x +=-,再利用点差法得直线CD 的斜率,利用切线与导数的关系得直线l 的斜率,进而可得α与β互补.【详解】(1)由题意设直线AB 的方程为2py x =+,令11(,)A x y 、22(,)B x y , 联立222p y x x py⎧=+⎪⎨⎪=⎩,得22304p y py -+=123y y p ∴+=,根据抛物线的定义得124AB y y p p =++=, 又8AB =,48,2p p ∴== 故所求抛物线方程为24x y =.(2)依题意,设200(,)4x P x ,2(,)4C C x C x ,2(,)4DD x D x设1l 的方程为200()4x y k x x -=-,与24x y =联立消去y 得2200440x kx kx x -+-=,04C x x k ∴+=,同理04D x x k +=- 02C D x x x ∴+=-,直线CD 的斜率2221214()CDx x k x x -=-=1()4C D x x +012x =-切线l 的斜率0012l x x k y x =='=, 由0l CD k k +=,即α与β互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.21.已知函数2()ln (1)1(,).f x x ax a b x b a b R =-+--++∈ (1)若0a =,试讨论()f x 的单调性;(2)若02,1a b <<=,实数12,x x 为方程2()f x m ax =-的两不等实根,求证:121142a x x +>-. 【答案】(1)答案不唯一,具体见解析(2)证明见解析 【解析】 【分析】(1)根据题意得()f x ',分1b ≤-与1b >-讨论即可得到函数()f x 的单调性; (2)根据题意构造函数()g x ,得12()()g x g x m ==,参变分离得2112ln ln 2x x a x x --=-,分析不等式121142a x x +>-,即转化为1222112ln x x x x x x -<-,设21(1)x t t x =>,再构造函数()12ln g t t t t=-+,利用导数得单调性,进而得证.【详解】(1)依题意0x >,当0a =时,1()(1)f x b x'=-+, ①当1b ≤-时,()0f x '>恒成立,此时()f x 在定义域上单调递增; ②当1b >-时,若10,1x b ⎛⎫∈ ⎪+⎝⎭,()0f x '>;若1,1x b ⎛⎫∈+∞⎪+⎝⎭,()0f x '<; 故此时()f x 的单调递增区间为10,1b ⎛⎫ ⎪+⎝⎭,单调递减区间为1,1b ⎛⎫+∞ ⎪+⎝⎭.(2)方法1:由2()f x m ax =-得ln (2)20x a x m +-+-= 令()ln (2)2g x x a x =+-+,则12()()g x g x m ==, 依题意有1122ln (2)ln (2)x a x x a x +-=+-,即2112ln ln 2x x a x x --=-,要证121142a x x +>-,只需证()211212122ln ln 2(2)x x x x a x x x x --+>-=-(不妨设12x x <),即证1222112ln x x x x x x -<-, 令21(1)x t t x =>,设()12ln g t t t t=-+,则22211()1(1)0g t t t t '=--=--<, ()g t ∴在(1,)+∞单调递减,即()(1)0g t g <=,从而有121142a x x +>-. 方法2:由2()f x m ax =-得ln (2)20x a x m +-+-= 令()ln (2)2g x x a x =+-+,则12()()g x g x m ==,1()(2)g x a x'=-- 当1(0,)2x a ∈-时()0g x '>,1(,)2x a∈+∞-时()0g x '<, 故()g x 1(0,)2a -上单调递增,在1(,)2a+∞-上单调递减, 不妨设12x x <,则12102x x a<<<-, 要证121142a x x +>-,只需证212(42)1x x a x <--,易知221(0,)(42)12x a x a ∈---, 故只需证212()()(42)1x g x g a x <--,即证222()()(42)1x g x g a x <--令()()()(42)1x h x g x g a x =---,(12x a>-),则()21()()()(42)1421xh x g x g a x a x '''=+----⎡⎤⎣⎦=()21(2)1(2)1421a x a x x x a x ----⎡⎤+⎢⎥⎣⎦--⎡⎤⎣⎦=()()224(2)210421a a x a x ----⎡⎤⎣⎦<--⎡⎤⎣⎦, (也可代入后再求导)()h x ∴在1,2a ⎛⎫+∞ ⎪-⎝⎭上单调递减,1()()02h x h a ∴<=-,故对于12x a>-时,总有()()(42)1x g x g a x <--.由此得121142a x x +>- 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()26πρθ+=.(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设,A B 为曲线1C 上位于第一,二象限的两个动点,且2AOB π∠=,射线,OA OB 交曲线2C 分别于,D C ,求AOB ∆面积的最小值,并求此时四边形ABCD 的面积.【答案】(1)2213x y +=;40x -=(2)AOB 面积的最小值为34;四边形的面积为294 【解析】 【分析】(1)将曲线1C 消去参数即可得到1C 的普通方程,将cos x ρθ=,sin y ρθ=代入曲线2C 的极坐标方程即可;(2)由(1)得曲线1C 的极坐标方程,设1,()A ρθ,2(,)2B πρθ+,3(,)D ρθ,4(,)2C πρθ+利用方程可得22121143ρρ+=,再利用基本不等式得22121221143ρρρρ≤+=,即可得121324AOB S ρρ∆=≥,根据题意知ABCD COD AOB S S S ∆∆=-,进而可得四边形ABCD 的面积.【详解】(1)由曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数)消去参数得2213xy +=曲线2C 的极坐标方程为sin()26πρθ+=,即sin cos cos sin266ππρθρθ+=,所以,曲线2C的直角坐标方程40x +-=. (2)依题意得1C 的极坐标方程为2222cos sin 13ρθρθ+=设1,()A ρθ,2(,)2B πρθ+,3(,)D ρθ,4(,)2C πρθ+则222211cos sin 13ρθρθ+=,222222sin cos 13ρθρθ+=,故22121143ρρ+=22121221143ρρρρ∴≤+=,当且仅当12ρρ=(即4πθ=)时取“=”,故121324AOB S ρρ∆=≥,即AOB ∆面积的最小值为34. 此时34112222sin()cos()4646COD S ρρππππ∆==⋅++48cos 3π==, 故所求四边形的面积为329844ABCD COD AOB S S S ∆∆=-=-=. 【点睛】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题. 23.已知,,a b c 均为正实数,函数()2221114f x x x a b c =++-+的最小值为1.证明: (1)22249a b c ++≥; (2)111122ab bc ac++≤. 【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件. 【详解】(1)由题意,,0a b c >,则函数222111()4f x x x a b c =++-+222111()4x x a b c ≥+--+2221114a b c =++, 又函数()f x 的最小值为1,即2221114a b c ++1=, 由柯西不等式得222(4)a b c ++2221114a b c ⎛⎫++ ⎪⎝⎭2(111)9≥++=,当且仅当2a b c ===时取“=”. 故22249a b c ++≥.(2)由题意,利用基本不等式可得22121a b ab ,221114b c bc +≥,221114a cac +≥,(以上三式当且仅当2a b c ===时同时取“=”)由(1)知,22211114a b c++=, 所以,将以上三式相加得211ab bc ac ++≤222111224a b c ⎛⎫++= ⎪⎝⎭ 即111122ab bc ac++≤. 【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.。

天一大联考2021届高中毕业班考前定位联合考试理科数学

天一大联考2021届高中毕业班考前定位联合考试理科数学

天一大联考2021届高中毕业班考前定位联合考试理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合(){}2,A x y y x ==,(){}22,2B x y xy =+=,则A∩B 中的元素个数为A .1B .2C .4D .82.在正方体ABCD-A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,则在直线CD 1,BA 1,DB 1,AC 1中,与MN 异面且垂直的直线的条数为 A .1 B .2 C .3 D .43.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且4sin cos sin a B A b A =+,则A = A .π6B .π4C .π3D .2π34.已知复数z 满足(1+i )z=1+2i ,则)i z b b +≤∈R 的一个充分不必要条件是 A .b ∈(–1,0) B .b ∈[–1,0]C .b ∈(0,1)D .b ∈[–1,2]5.基尼系数是国际上用来综合衡量居民内部收入分配差异状况的一个重要指标,它的一种简便易行的计算方法是根据中位数对平均数的占比来估计基尼系数(换算表如下表所示).假设某地从事自媒体的人员仅有4人,年收入分别为5万元,10万元,30万元,55万元,则这4人的年收入的基尼系数为中位数占比—基尼系数换算表A .0.595B .0.525C .0.450D .0.3636.2021年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y (元)=1200+4.1×年扶贫资金(元)+4.3×年自投资金元)+900×自投劳力(个).若一个贫困户家中只有两个劳力,2016年自投资金5000元,以后每年的自投资金均比上一年增长10%,2016年获得的扶贫资金为30000元,以后每年获得的扶贫资金均比上一年减少5000元,则该贫困户在2021年的年总收入约为(1.15≈1.6) A .48100元 B .57900元 C .58100元 D .64800元 7.若曲线3213y x x =-在点x=a 处的切线的斜率与直线(1-b )x-y+2=0的斜率相等,则b 的最大值为A .-1B .1C .2D .3 8.已知过抛物线C :y 2=4x 的焦点F 且倾斜角为30°的直线交C 于A ,B 两点,Q 为AB 的中点,P 为C 上一点,则|PF|+|PQ|的最小值为 A .5 B .6 C .7 D .89.将函数()5π4sin 2112f x x ⎛⎫=+- ⎪⎝⎭的图象向右平移π12个单位长度后,所得图象对应的函数g (x )在π,8m ⎡⎤-⎢⎥⎣⎦上的值域为[-1,3],则m 的取值范围是A .3π0,8⎡⎤⎢⎥⎣⎦B .ππ,82⎡⎤⎢⎥⎣⎦C .π3π,88⎡⎤⎢⎥⎣⎦D .π5π,88⎡⎤⎢⎥⎣⎦10.已知球被平面所截得的一部分叫做球缺,截面叫做球缺的底,垂直于截面的球的直径被截得的一段叫做球缺的高.如果球的半径是R ,球缺的高是h ,那么球缺的体积()21πh 33V R h =-.若一个儿童储糖罐可以看成是一个球被一个正方体的6个面所截后剩余的部分(球心与正方体的中心重合)与一个圆柱组合而成的几何体,其三视图如图所示,则该储糖罐的体积为A .443π3B .157π3C .476π3D .485π311.已知双曲线2y x=绕原点顺时针转动45°,就会得到双曲线x 2-y 2=4,类比可知,以双曲线221x y x +=-的对称中心为圆心,焦距为直径的圆的标准方程为 A .(x-1)2+(y-2)2=16 B .(x-1)2+(y+2)2=8 C .(x-1)2+(y-2)2=8 D .(x+1)2+(y-2)2=16 12.已知函数()()()1213ln e 1ln e 122x f x x -=+-+-+.若()()4,,,x x g x f x x λλ-≥⎧⎪=⎨<⎪⎩的零点恰有2个,则λ的取值范围是 A .(]()1,34,+∞ B .(][)1,24,+∞C .(]()1,34,-+∞D .(]()1,14,-+∞二、填空题:13.如图,在边长为1的正方形组成的网格中,△ABC 的顶点C (2,t )被阴影遮住,22BC =则AB BC ⋅=________.14.()711x x x ⎛⎫-- ⎪⎝⎭的展开式中x 3的系数为________.15()0a a >,则1tan 2=________.(用含a 的式子表示).16.数学中有许多形状优美的曲线,如星形线,让一个半径为r 的小圆在一个半径为4r 的大圆内部,沿着圆的圆周滚动,小圆圆周上的任一点形成的轨迹即为星形线.如图,已知星形线C 的方程为222333x y a +=,周长为6a .有如下结论:①曲线D :|x|+|y|=a 的周长大于星形线的周长; ②曲线C 上任意两点距离的最大值为2a ;③曲线C 与圆2224a x y +=有且仅有4个公共点;④从曲线C 上任一点作x ,y 轴的垂线,垂线与x ,y 轴所围成图形的面积最大值为24a .其中所有正确结论的序号是________.三、解答题:解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (―)必考题:17.已知正项等比数列{}n a 的公比为q ,a 2=4,6a 1=a 2+a 3,数列{}n b 的前n 项和()12n n n S +=.(Ⅰ)求{}n a 及{}n b 的通项公式;(Ⅱ)若对任意正整数n 恒有()1112233n n n n m a a b a b a b a b ++≥+++⋅⋅⋅+成立,求m 的最小值.18.如图,三棱柱ABC-A 1B 1C 1在圆柱中,等腰直角三角形A 1B 1C 1,ABC 分别为上、下底面的内接三角形,点D ,E 分别在棱BB 1和AC 上,AB=BC=AA 1,AC=3AE ,BE ∥平面A 1CD .(Ⅰ)求11B DBB 的值;(Ⅱ)求平面B 1BE 与平面A 1CD 所成锐二面角的余弦值.19.小李在县城租房开了一间服装店,每年只卖甲品牌和乙品牌中的一种.若当年卖甲品牌,则下一年卖甲品牌的概率为23,卖乙品牌的概率为13;若当年卖乙品牌,则下一年卖甲品牌的概率为14,卖乙品牌的概率为34.已知第一年该店卖甲品牌,且第x 年卖甲品牌有6.5+0.5x 万元利润,卖乙品牌有9.5+0.5x 万元利润.(Ⅰ)求前3年的利润之和超过25万元的概率; (Ⅱ)求该服装店第四年的利润的数学期望.20.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为F 1,F 2,短轴端点为A ,B ,四边形AF 1BF 2的面积为2(Ⅰ)求椭圆C 的标准方程.(Ⅱ)试问:在椭圆C 的长轴上是否存在定点P ,使得过P 的动直线交椭圆C 于M ,N两点,且恒满足NP =⋅?若存在,请求出点P 的坐标;若不存在,请说明理由.21.在数学中,双曲函数是一类与常见的三角函数类似的函数,其中e e 2x x shx --=,e e 2x xchx -+=分别称为双曲正弦、余弦函数.(Ⅰ)若λx 2+lnchx≤0对任意x ∈R 恒成立,求实数λ的取值范围. (Ⅱ)(i )类比同角三角函数的平方关系,试写出chx 与shx 的一个关系式(无需证明); (ⅱ)若a>0,存在x 1,x 2∈[1,+∞),使得2chx 1<a (–ch 2x 2+4shx 2-1)成立,试比较a-1与(e-1)lna 的大小,并证明你的结论.(二)选考题:请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩(m 为参数),曲线C 1的参数方程是24cos 4sin cos x y α,αα⎧=⎨=⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 2的极坐标方程为ρsinθ-kρcosθ+2k=0,设l 1与l 2的交点为P .(Ⅰ)当k 变化时,求P 的轨迹C 2的极坐标方程;(Ⅱ)设射线π6θ=与曲线C 1与C 2的交点分别为A (非原点),B ,求|AB|. 23.[选修4-5:不等式选讲] 已知函数f (x )=|x-1|+2|x|. (Ⅰ)解不等式f (x )≥2; (Ⅱ)设f (x )的图象与直线y=2围成的图形的面积为S ,若a+b+c=S (a>0,b>0,c>0),求证:bc +4ac+9ab≥54abc .。

2021届全国天一大联考新高考模拟考试(十七)数学(理科)

2021届全国天一大联考新高考模拟考试(十七)数学(理科)

2021届全国天一大联考新高考模拟考试(十七)数学(理)★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若21iz i-=+,则z z +=( ) A. 1- B. 1C. 3-D. 3【答案】B 【解析】 【分析】复数(,)z a bi a b R =+∈的共轭复数是(i ,)z a b a b =-∈R ,复数除法运算是将分母实数化,即()()()()()22(,,,)c di a bi ac bd ad bc ic di a b cd R a bi a bi a bi a b +⋅-++-+==∈++⋅-+. 【详解】∵()()2113222i i z i --==-,∴1z z +=.【点睛】本题考查复数的四则运算,考查运算求解能力. 2.设集合{}2A x x a=>,{}32B x x a =<-,若AB =∅,则a 的取值范围为( )A. ()1,2B. ()(),12,-∞⋃+∞C. []1,2D. (][),12,-∞+∞【答案】D 【解析】 【分析】集合的交集运算即求两个集合的公共元素,AB =∅说明集合,A B 没有公共元素,借助于数轴列式计算.【详解】因为A B φ⋂=,所以232a a ≥-,解得1a ≤或2a ≥. 【点睛】本题考查集合的交集运算,考查运算求解能力与推理论证能力.3.若曲线()()sin 402y x ϕϕπ=+<<关于点,012π⎛⎫⎪⎝⎭对称,则ϕ=( )A.23π或53πB.3π或43π C.56π或116π D.6π或76π【答案】A 【解析】 【分析】正弦函数sin y x =的对称中心是()(),0k k Z π∈,由“五点法”作图得,将12x π=代入.【详解】因为曲线()()sin 402y x ϕϕπ=+<<关于点,012π⎛⎫⎪⎝⎭对称, 所以()412k k Z πϕπ⨯+=∈,又02ϕπ<<,所以1k =时23ϕπ=,2k =时5=3ϕπ. 【点睛】本题考查三角函数的图象及其性质,考查运算求解能力. 4.若0x >,0y <,则下列不等式一定成立的是( ) A. 222xyx -> B.()1222log 1x yx ->+ C. 222y x x -> D. ()1222log 1yxx ->+【答案】B 【解析】 【分析】比较两个数或式子的大小,可以用不等式的性质,如0,0a b ><,则a b >. 详解】∵0x >,0y <,∴22x y >,∴220x y ->.∵0x >,∴()12log 10x +<,∴()1222log 1x yx ->+,∴B 一定成立. 【点睛】本题考查指数、对数函数与不等式的交汇,考查逻辑推理的核心素养. 5.如图,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB =( )A. AC AD -B. 22AC AD -C. AD AC -D. 22AD AC -【答案】D 【解析】 【分析】本题是用,AC AD 当基底向量,来表示AB ,所以先在 ACD ∆中根据向量减法的三角形法则,用,AC AD 表示CD ,再探究CD 、AB 的线性关系即可.【详解】因为C ,D 是半圆弧的两个三等分点,所以//CD AB ,且2AB CD =,所以()2222AB CD AD AC AD AC ==-=-. 【点睛】本题考查平面向量的线性运算,考查运算求解能力与数形结合的数学方法.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,512BC AC -=.根据这些信息,可得sin 234︒=( )A.1254- B. 358+-C. 514-D. 458+-【答案】C 【解析】 【分析】根据题意得到72ACB ∠=,利用三角函数的定义得到cos 72,再由二倍角公式得到cos144,进而用诱导公式,由()sin 234sin 14490cos144=+=求解.【详解】由题意可得:72ACB ∠=,且12cos BCACB AC ∠==, 所以251cos1442cos 7214=-=-, 所以()51sin 234sin 14490cos1444+=+==-, 故选:C【点睛】本题主要考查二倍角公式和诱导公式的应用,还考查了运算求解的能力,属于中档题.7.若函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩在(],a -∞上的最大值为4,则a 的取值范围为( )A. []0,17B. (],17-∞C. []1,17D. [)1,+∞ 【答案】C 【解析】 【分析】要求函数()f x 的最大值,可先分别探究函数()122,1xf x x =+≤与()()22log 1,1f x x x =->的单调性,从而得到()f x 的最大值.【详解】易知()122,1xf x x =+≤在(],1-∞上单调递增,()()22log 1,1f x x x =->()1,+∞上单调递增.因为()14f =,()174f =,所以a 的取值范围为[]1,17.【点睛】本题考查分段函数的单调性,考查运算求解能力与数形结合的数学方法.8.如图,圆C 的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C 经过点()2,15A ,则圆C 的半径为( )A. 72B. 8C. 82D. 10【答案】A 【解析】 【分析】题中的网格,相当于给出了点的坐标,由此可求出直线的方程、切点的坐标;要求圆的半径,可考虑求出圆心坐标,这样圆心与点A 之间的距离即是半径.【详解】由图可知,直线与圆C 切于点()2,1,即圆C 经过点()2,1,又圆C 经过点()2,15,所以圆C 的圆心在直线8y =上.又直线过点()()0,33,0,,所以直线的斜率30103k -==--, 因为直线与圆C 切于点()2,1,所以圆心在直线()1121y x --=--,即10x y --=上.联立8,10,y x y =⎧⎨--=⎩得圆C 的圆心为()9,8,则圆C 的半径为()()22928172-+-=.【点睛】本题考查直线与圆,考查数形结合的数学方法.圆心的性质:圆心在弦的垂直平分线上;圆心与切点的连线与切线垂直(121k k ).9.函数()()33lg xxf x x -=+⋅的图象大致为( )A. B.C. D.【答案】D 【解析】 【分析】先确定函数的定义域,再判断函数的奇偶性和值域,由此确定正确选项。

2021届全国天一大联考新高考模拟考试(十二)数学(理)试题

2021届全国天一大联考新高考模拟考试(十二)数学(理)试题

2021届全国天一大联考新高考模拟考试(十二)数学试卷(理科)★祝你考试顺利★注意事项:1、考试范围:高考考查范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损。

7、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题1.已知集合2{|20}A x x x =+->,{1,0,1,2}B =-,则( )A. {2}A B =B. A B R =C. (){1,2}R BC A =-D. (){|12}R BC A x x =-<<【答案】A 【解析】 【分析】首先解不等式220x x +->得到{|2A x x =<-或1}x >,再根据{2}AB =即可得到答案.【详解】因为2{|20}{|2A x x x x x =+->=<-或1}x >,{1,0,1,2}B =-, 所以{2}A B =,AB R ≠,(){1,0,1}RC A B =-,()[2,1]{2}R C A B =-故选:A【点睛】本题主要考查集合的运算,同时考查了一元二次不等式的解法,属于简单题. 2.已知a 是实数,1a ii+-是纯虚数,则 a 等于( )A. B. 1-D. 1【答案】D 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:()()()()()()1111112a i i a a ia i i i i ++-+++==--+, 1a ii +-为纯虚数,则:1010a a -=⎧⎨+≠⎩,据此可知1a =.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力. 3.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.4.下边程序框图的算法源于我国古代闻名中外的《中国剩余定理》.()modm n N ≡表示正整数n 除以正整数m 的余数为N ,例如()104mod6≡.执行该程序框图,则输出的n 等于( )A. 11B. 13C. 14D. 17【答案】D 【解析】 【分析】根据程序框图依次执行循环,直至跳出循环,输出结果. 【详解】()()11,112mod3,113mod4n =≡≡ 继续执行循环:()12,120mod3,n =≡ 继续执行循环:()13,131mod3,n =≡继续执行循环:()()14,142mod3,142mod4n =≡≡ 继续执行循环:()15,150mod3,n =≡ 继续执行循环:()16,161mod3,n =≡继续执行循环:()()17,172mod3,171mod4n =≡≡ 跳出循环,输出17n = 故选:D【点睛】本题考查循环结构流程图,考查基本分析求解能力,属基础题.5.若,a b 是两个非零向量,且+==a b m a m b ,3m ⎡∈⎣,则向量b 与a b -夹角的取值范围是( ) A. 2,33ππ⎡⎤⎢⎥⎣⎦B. 5,36ππ⎡⎤⎢⎥⎣⎦C. 25,36ππ⎡⎤⎢⎥⎣⎦ D. 5,6ππ⎡⎤⎢⎥⎣⎦【答案】C【分析】根据题意,设||||a b t ==,向量b 与a b -夹角为θ,又由||a b mt +=,由向量模的计算公式变形可得:2222m t a b t =-,进而可得||a b -的值,由数量积公式可得2()1cos 42||||b a b m b a b θ-==-⨯--,结合m 的范围,分析可得cos θ的范围,结合余弦函数的性质分析可得答案.【详解】解:根据题意,设||||a b t ==,则||a b mt +=,再设向量b 与a b -夹角为θ,则有222222||()2a b a b a b a b m t +=+=++=,变形可得:2222m t a b t =-, 则有22222222222||()222()42m t a b a b a b a b t t t m t -=-=+-=--=-,变形可得2||4a b m t -=-, 则()222222222112cos 42244m t t t b a b a b b m b a b b a b t m t m θ----====⨯=-⨯---⨯--,又由13m,则2143m -,则有31cos 2θ--, 又由0θπ,则有2536ππθ,即θ的取值范围为25,36ππ⎡⎤⎢⎥⎣⎦; 故选:C .【点睛】本题考查向量数量积的计算,涉及向量夹角的计算,属于中档题. 6.函数()()1ln 1f x x x =-+的图象大致为( )A. B.C. D.【答案】A 【解析】设()1ln ,0=-->f x x x x ,用导数法可得ln 1x x <-,从而有()ln 1,1+<>-x x x ,可得()0f x >确定选项.【详解】设()1ln ,0=-->f x x x x , 所以()11f x x'=-, 当01x <<时,()0f x '<,当1x >时,()0f x '>, 所以()()10f x f >=, 所以ln 1x x <-,所以()ln 1,1+<>-x x x , 所以()()10ln 1=>-+f x x x ,排除B ,C ,D.故选A【点睛】本题主要考查由函数的解析式识别函数图象,还考查了转化求解问题的能力,属于中档题. 7.圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N 人,让每人随机写出一对小于1的正实数a ,b ,再统计出a ,b ,1能构造锐角三角形的人数M ,利用所学的有关知识,则可估计出π的值是( ) A.4MNB.()4N M N- C.2M NN+ D.42M NN+ 【答案】B 【解析】 【分析】首先求出0<a <1,0<b <1,构成的区域面积,然后利用余弦定理求出满足是锐角三角形所构成的区域,然后利用几何概型—面积比即可求解.【详解】学校共有学生N 人,每人随机写出一对小于1的正实数a ,b , 得到N 个实数对(a ,b ),因为0<a <1,0<b <1,所以N 个实数对(a ,b )都在边长为1的正方形AOBC 内, 如图所示:若a ,b ,1能构造锐角三角形,因为1是最长边,所以1所对的角为锐角,所以1a b +>,22102a b ab+->,即a 2+b 2>1,1a b +>所以N 对实数对落在单位圆x 2+y 2=1外的有M 对,由几何概率的概率公式可得:21111411M N π⨯-⨯==⨯114π-, 所以π()4N M N-=,故选:B .【点睛】本题考查了几何概型—面积比,几何概型的应用,解题的关键是求出满足条件的事件所构成的区域面积,属于基础题.8.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A. (10)(1)-⋃+∞,, B. (1)(01)-∞-⋃,, C. (1)(1)-∞-⋃+∞,, D. (10)(01)-⋃,, 【答案】D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数.所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内9.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A ,B 两点,设点M (3,0).若△MAB的面积为|AB |=( ) A. 2 B. 4C. D. 8【答案】D 【解析】 【分析】设直线l 的方程为x =ty +1,将直线与抛物线联立,利用韦达定理以及弦长公式表示出|AB |,根据三角形的面积求出|y 1﹣y 2|=,代入计算即可求解. 【详解】抛物线y 2=4x 的焦点F 为(1,0), 可设直线l 的方程为x =ty +1,代入抛物线方程,可得y 2﹣4ty ﹣4=0,设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4t ,y 1y 2=﹣4,则|AB|=.|y 1﹣y 2|=.=, △MAB 的面积为12|MF |.|y 1﹣y 2|12=⨯2|y 1﹣y 2|=,=,解得t =±1, 则|AB|=.=8, 故选:D .【点睛】本题考查了直线与抛物线的位置关系、弦长公式,考查了基本运算求解能力,属于基础题. 10.已知数列{a n }的前n 项和为S n ,且满足a n ()21n nS S -=.数列{b n }满足(1)(21)n n n b n a =-⋅+则数列{b n }的前100项和T 100为( ) A.101100B. 101100-C. 100101-D.100101【答案】C 【解析】【分析】由已知求出12,a a ,归纳猜测出n a ,再用数学归纳法证明猜测n a 对于*n N ∈成立,进而求出数列{b n }通项公式,用裂项相消法,即可求出结论. 【详解】∵()21nnnS a S -=,∴当n =1时,有a 1211(1)S S -=,解得a 112=;当n =2时,可解得a 216=,故猜想:a n ()11n n =+,下面利用数学归纳法证明猜想: ①当n =1,2时,由以上知道a n ()11n n =+显然成立;②假设当n =k (k ≥2)时,有a k ()11k k =+成立,此时S k ()11111111112231122311k k k k k k =+++=-+-++-=⨯⨯+++成立, 那么当n =k +1时,有2221111111(1)(1)(1)11k k k k k k k k k ka S S a k a k S S a a k ++++++++--+-+===+++,解得a k +1()()1111k k =⎡⎤+++⎣⎦,这说明当n =k +1时也成立. 由①②知:a n ()11n n =+.∵(1)(21)n n n b n a =-⋅+,∴111(1)(21)(1)()(1)1nn n b n n n n n =-⋅+⋅=-+++,∴数列{b n }的前100项和1001111111(1)()()()22334100101T =-+++-++++ 11001101101=-+=-. 故选:C .【点睛】本题考查数学归纳法证明数列通项公式,以及裂项相消法求数列前n 项和,考查计算求解能力,属于中档题.11.对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】根据题意,先得到()cosx sinx cosxf x sinx sinx cosx ≥⎧=⎨<⎩,,,作出函数的图像,结合函数图像,逐项判断,即可得出结果.【详解】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx ≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为2⎡-⎢⎣⎦,①错误;函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 故选:B.【点睛】本题主要考查三角函数的性质,熟记正弦函数与余弦函数的图像和性质即可,属于常考题型.12.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为63-,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A. 1 B. 2C.12D.13【答案】D 【解析】 【分析】由已知作出图象,找出二面角P AC B --的平面角,设出AB BC AC ,,的长,即可求出三棱锥P ABC -的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC 长度的字母表示),再设出球心O ,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC 的长度,则三棱锥体积的最大值可求.【详解】如图所示,过点P 作PE ⊥面ABC ,垂足为E ,过点E 作ED AC ⊥交AC 于点D ,连接PD , 则PDE ∠为二面角PAC B -的平面角的补角,即有63cos PDE, 易知AC ⊥面PDE ,则AC PD ⊥,而△PAC 为等边三角形, ∴D 为AC 中点, 设22ABa BCb ACa b c ,,,则32PE PDsin PDE =∠=c 332c ⨯=,故三棱锥P ABC-的体积为:1132V ab=⨯2231121212224c a b c abc c+⨯=≤⨯=,当且仅当2a b c==时,体积最大,此时B D E、、共线.设三棱锥P ABC-的外接球的球心为O,半径为R,由已知,248Rππ=,得R=过点O作OF PE⊥于F,则四边形ODEF为矩形,则OD EF==2ED OF PDcos PDE c==∠==,2cPE=,在Rt△PFO中222)(2c=+,解得2c=∴三棱锥P ABC-的体积的最大值为:332124243c==.故选:D.【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,属于难题.二、填空题13.已知()()511x ax-+的展开式中,2x的系数为0,则正实数a=_____.【答案】12【解析】【分析】()()511x ax-+()()5511x ax ax=+-+,然后利用()51ax+展开式通项公式研究2x.【详解】解:∵()()511x ax-+()()5511x ax ax=+-+,故原式展开式中,含2x的项为()244335511xC ax C ax⋅⋅-⋅⋅()22510a a x=-,令25100a a-=,得12a=,或0a=(舍去),故答案为:12.【点睛】本题主要考查二项展开式通项公式的应用,属于基础题.14.已知双曲线22221x y a b-=(0,0)a b >>的左右顶点分别为A ,B ,点P 是双曲线上一点,若PAB △为等腰三角形,120PAB ∠=,则双曲线的离心率为_____. 【答案】2 【解析】 【分析】首先根据题意画出图形,由已知条件求出(2,3)P a a -,代入双曲线方程得到221a b=,再求离心率即可.【详解】如图所示:过点P 做PD x ⊥轴,垂足为D .因为PAB △为等腰三角形,所以2PA AB a ==, 又因为120PAB ∠=,所以60PAD ∠=.sin 603PD PA a =⋅=,cos60AD PA a =⋅=,故(23)P a a -.因为点(23)P a a -在双曲线22221x y a b-=上,所以2222431a a a b -=,即221a b=.222222212c a b b e a a a+===+=2【点睛】本题主要考查双曲线离心率的求法,同时考查了数形结合的思想,属于中档题.15.已知数列{a n }满足11111n n a a n n n n +-⎛⎫=-+ ⎪+⎝⎭(n ∈N *),且a 2=6,则{a n }的通项公式为_____. 【答案】22n n - 【解析】 【分析】由题意令n =1可得a 1,当2n ≥时,转化条件可得11111n n a a n n n n +--+=-,进而可得121na n n -=-,即可得解. 【详解】因为数列{a n }满足11111n n a a n n n n +-⎛⎫=-+ ⎪+⎝⎭(n ∈N *),所以11111n n a a n n n n +-⎛⎫-=- ⎪+⎝⎭, ①当n =1时,110a -=即a 1=1,②当2n ≥时,由11111n n a a n n n n +-⎛⎫-=- ⎪+⎝⎭可得11111n n a a n n n n+--+=-, ∴数列11n a n n ⎧⎫-⎪⎪⎨⎬-⎪⎪⎩⎭从第二项开始是常数列,又212221a -=-,∴121n a n n -=-,∴()222n a n n n =-≥,又1121a ==-满足上式,∴22n a n n =-.故答案为:22n n -.【点睛】本题考查了利用数列的递推公式求数列的通项公式,考查了构造新数列的能力与运算求解能力,合理构造新数列是解题的关键,同时要注意n 的取值范围,属于中档题.16.改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A 先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z 1(单位:分钟)服从正态分布N (33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z 2(单位:分钟)服从正态分布N (44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.参考数据:若Z ~N (μ,σ2),则P (μ﹣σ<Z ≤μ+σ)=0.6826,P (μ﹣2σ<Z ≤μ+2σ)=0.9544,P (μ﹣3σ<Z ≤μ+3σ)=0.9974 【答案】②④ 【解析】 【分析】利用正态分布对每一个说法求解其概率,逐项分析,即可选出正确答案.【详解】解:①若8:00出门,江先生乘坐公交,从家到车站需要5分钟,下车后步行再到单位需要12分钟,乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故()()12145452P Z P Z -<<≥=10.99740.00132-==, ∴江先生仍有可能迟到,只不过概率较小,故①错误; ②若8:02出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟, 乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足P (Z≤41)()()1254125410.97722P Z P Z -=+=<<<<时,江先生乘坐公交不会迟到;若8:02出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟, 乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足P (Z≤48)()()1404840480.99722P Z P Z -=+=<<<<时,江先生乘坐地铁不会迟到,此时两种上班方式江先生不迟到的概率相当,故②正确; ③若8:06出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟, 乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()()()129373729370.84132P Z P Z P Z -≤=+=<<<<时,江先生乘坐公交不会迟到;若8:06出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟, 乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()1440.52P Z ≤==时,江先生乘坐地铁不会迟到, 此时两种上班方式,乘坐公交比地铁上班迟到的可能性小,故③错误; ④若8:12出门,江先生乘坐公交,∵从家到车站需要5分钟,下车后步行再到单位需要12分钟, 乘坐公交到离单位最近的公交站所需时间1Z 服从正态分布()233,4N ,故当满足()31P Z ≤时,江先生乘坐公交不会迟到, 而()()()1293731290.18572P Z P Z P Z -≤>≤==<<;若8:12出门,江先生乘坐地铁,∵从家到车站需要5分钟,下地铁后步行再到单位需要5分钟, 乘坐地铁到离单位最近的地铁站所需时间2Z 服从正态分布()244,2N ,故当满足()()13850380.001352P Z P Z -<<≤==时,江先生乘坐地铁不会迟到,由0.18570.00135>,∴若8:12出门,则乘坐地铁比公交上班迟到的可能性大,故④正确; 故答案为:②④.【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,正确理解题意是关键,考查计算能力,属于中档题.三、解答题17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若22sin A sin CsinB-=ABC 外接圆的半径为1.(Ⅰ)求角C ;(Ⅱ)求△ABC 面积的最大值.【答案】(Ⅰ)4π;(Ⅱ)12. 【解析】 【分析】(Ⅰ)由正弦定理和题设条件,化简可得222a cb -=-,即22222a b c ab +-=,由余弦定理求得cos 2C =,即可求得角C ;(Ⅱ)由余弦定理和基本不等式,求得2ab ≤=的最大值.【详解】(Ⅰ)在ABC ∆中,由正弦定理22a b c R sinA sinB sinC====, 可得sin 2a A =,sin 2b B =,sin 2cC =,又由22sin A sin C sinB -=224422a c b b --=,整理得222a cb -=-,即2222a b c ab +-=,由余弦定理可得222cos 2a b c C ab +-==, 又因为(0,)C π∈,所以4C π.(Ⅱ)由正弦定理2c sinC =,可得2sin 4c π==由余弦定理,可得22222(2a b ab ab ab =+-≥-=,可得2ab ≤=+a b =时等号成立,可得11sin 242ABC S ab C ∆==≤,当且仅当a b =时等号成立,即ABC ∆面积的最大值为212+. 【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力.18.如图,四边形ABCD 是边长为4的菱形,∠BAD =60°,对角线AC 与BD 相交于点O ,四边形ACFE 为梯形,EF //AC ,点E 在平面ABCD 上的射影为OA 的中点,AE 与平面ABCD 所成角为45°.(Ⅰ)求证:BD ⊥平面ACF ;(Ⅱ)求平面DEF 与平面ABCD 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)217. 【解析】 【分析】(Ⅰ)取AO 中点H ,连结EH ,则EH ⊥BD ,又AC ⊥BD ,由此可证;(Ⅱ)以H 为原点,HA 为x 轴,在平面ABCD 中过H 作AC 的垂线为y 轴,HE 为z 轴,建立空间直角坐标系,由(Ⅰ)知,∠EAH 为AE 与平面ABCD 所成的角,再根据平面的法向量的夹角即可求出答案. 【详解】(Ⅰ)证:取AO 中点H ,连结EH ,则EH ⊥平面ABCD ,∵BD 在平面ABCD 内,∴EH ⊥BD , 又菱形ABCD 中,AC ⊥BD ,且EH ∩AC =H ,EH ,AC 在平面EACF 内, ∴BD ⊥平面EACF , ∴BD ⊥平面ACF ;(Ⅱ)解:由(Ⅰ)知EH ⊥平面ABCD ,∴以H 为原点,HA 为x 轴,在平面ABCD 中过H 作AC 的垂线为y 轴,HE 为z 轴,建立空间直角坐标系, ∵EH ⊥平面ABCD ,∴∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =45°, ∵AB =4,∴AO =,AH =EH =∴H (0,0,0),A,0,0),D(,﹣2,0),O(0,0),E (0,0), 平面ABCD 的法向量n =(0,0,1),AO =(﹣0,0),DE =, ∵EF //AC ,∴EF AO λ==(﹣,0,0), 设平面DEF 的法向量m =(x ,y ,z ),则32020m DE xy m EF x ⎧⋅=++=⎪⎨⋅=-=⎪⎩,取y =m =(02), ∴cos 17n m n m nm ⋅===⋅⋅,∴平面DEF 与平面ABCD =【点睛】本题主要考查线面垂直的证明和二面角的求法,考查转化与化归思想,考查计算能力,属于中档题.19.已知F 1,F 2是椭圆C :22221x y a b +=(a >b >0)的左、右焦点,过椭圆的上顶点的直线x +y =1被椭圆截得的弦的中点坐标为3144P ⎛⎫ ⎪⎝⎭,. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 交椭圆于A ,B 两点,当△ABF 2面积最大时,求直线l的方程.【答案】(Ⅰ)23x +y 2=1;(Ⅱ)x ﹣y =0或x +y =0. 【解析】【分析】(Ⅰ)根据直线椭圆的过上顶点,得b =1,再利用点差法以及弦中点坐标解得a 2=3,即得椭圆方程; (Ⅱ)先设直线l 方程并与椭圆方程联立,结合韦达定理,并以|F 1F 2|为底边长求△ABF 2面积函数关系式,在根据基本不等式求△ABF 2面积最大值,进而确定直线l 的方程. 【详解】(Ⅰ)直线x +y =1与y 轴的交于(0,1)点,∴b =1, 设直线x +y =1与椭圆C 交于点M (x 1,y 1),N (x 2,y 2), 则x 1+x 232=,y 1+y 212=,∴221122x y a b +=1,222222x y a b+=1, 两式相减可得21a (x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0, ∴()2121221212()y y b x x x x a y y -+=--+,∴22b a- ⋅3212=-1, 解得a 2=3,∴椭圆C 的方程为23x +y 2=1.(Ⅱ)由(Ⅰ)可得F 1(,0),F 2,0),设A (x 3,y 3),B (x 4,y 4),可设直线l 的方程x =my ,将直线l 的方程x =my 代入23x +y 2=1,可得(m 2+3)y 2﹣my ﹣1=0,则y 3+y423m =+,y 3y 4213m -=+, |y 3﹣y 4|==∴212ABF S=|F 1F 2|⋅|y 3﹣y 4|=⋅|y 3﹣y 4|223m ==≤=+,=,即m =±1,△ABF 2面积最大,即直线l的方程为x﹣y2+=0或x+y2+=0.【点睛】本题考查椭圆标准方程、点差法、基本不等式求最值以及利用韦达定理研究直线与椭圆位置关系,考查综合分析与求解能力,属中档题.20.为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.根据行业质量标准规定,该核心部件尺寸x满足:|x﹣12|≤1为一级品,1<|x﹣12|≤2为二级品,|x﹣12|>2为三级品.(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[12,15]的产品,记ξ为这2件产品中尺寸x∈[14,15]的产品个数,求ξ的分布列和数学期望;(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是25,12,110.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.【答案】(Ⅰ)分布列见解析,13;(Ⅱ)不对剩余产品进行逐一检验,理由见解析;(Ⅲ)应选购乙设备,理由见解析.【解析】【分析】(I)利用频率分布直方图中的频率(概率)求出尺寸在[12,15]的产品件数,及在[14,15]的产品件数,得ξ的可能取值为0,1,2,分别计算出概率得概率分布列,由分布列计算出期望;(II)三级品的概率为(0.1+0.075)×1=0.175,计算对剩余产品逐一检验和对剩余产品不检验需支付的费用,比较后可得;(III)利用频率(概率)计算出两种方案的利润期望,比较可得.【详解】(I)抽取的40件产品中,产品尺寸x∈[12,15]的件数为:40×[(0.2+0.175+0.075)×1]=18,其中x∈[14,15]的产品件数为40×(0.075×1)=3,∴ξ的可能取值为0,1,2,∴P(ξ=0)2152183551CC==,P(ξ=1)11153218517C CC⋅==,P(ξ=2)23218151CC==,∴ξ的分布列为:∴Eξ=03551⨯+1517⨯+211513⨯=.(II)三级品的概率为(0.1+0.075)×1=0.175,若对剩余产品逐一检验,则厂家需支付费用50×100=5000;若对剩余产品不检验,则厂家需支付费用50×10+200×90×0.175=3650,∵5000>3650,故不对剩余产品进行逐一检验.(III)设甲设备生产一件产品的利润为y1,乙设备生产一件产品的利润为y2,则E(y1)=500×(0.3+0.2)+400×(0.150+0.175)+200×0.175=415,E(y2)=50025⨯+40012⨯+200110⨯=420.∵E(y1)<E(y2).∴应选购乙设备.【点睛】本题考查频率分布直方图,考查随机变量的概率分布列和期望,考查期望的应用,考查学生的数据处理能力和运算求解能力,属于中档题.21.已知函数()ln1f x x ax=++.(Ⅰ)若函数()f x有两个零点,求a的取值范围;(Ⅱ)()xf x xe≤恒成立,求a的取值范围.【答案】(Ⅰ)(1,0)-;(Ⅱ)(,1]-∞.【解析】【分析】(Ⅰ)先求导,对a 分类讨论,求出单调区间,结合零点存在性定理,即可求出结论;(Ⅱ)分离参数转化为满足1x lnx a e x x ≤--在(0,)+∞上恒成立时,a 的取值范围,设1()x lnx g x e x x =--,通过求导求出min ()g x ,即可求解.【详解】(Ⅰ)由已知得x >0,()'1f x a x=+. ①当a ≥0时,()0f x '>,此时f (x )是增函数,故不存在两个零点;②当a <0时,由()10f x a x'=+=,得10x a =->, 此时10x a ,⎛⎫∈- ⎪⎝⎭ 时,()0f x '>,此时()f x 是增函数; 当1x a ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '< ,此时()f x 是减函数, 所以1x a=-时,f (x )取得极大值,由f (x )有两个零点, 所以11()ln()0f a a -=->,解得10a -<<. 又10a f e e ⎛⎫= ⎪⎝⎭<,所以f (x )在(0,1a-)有唯一零点. 再取021()e x a a=-->, 则()01121212210e e e f x ln a a a a a -⎛⎫⎛⎫=+-+++--+= ⎪ ⎪⎝⎭⎝⎭<<. 所以f (x )在1()a -+∞,有唯一实数根, 所以a 的取值范围是(1,0)-.(Ⅱ)()x f x xe ≤恒成立,即ln 1x xe x ax ≥++在(0,)+∞上恒成立, 即1x lnx a e x x≤--在(0,)+∞上恒成立. 令1()x lnx g x e x x =--,则()2'22x x lnx x e lnx g x e x x+=+=.令2()x h x x e lnx =+,则()'212x x h x xe x e x=++>0. 所以()h x 在(0,)+∞上递增,而121(1)0,()10e e h e h e e=>=-<, 故存在01,1x e ⎛⎫∈ ⎪⎝⎭使得0()0h x =,即02000x x e lnx +=. ∴0010000001111ln x x x e lnx ln ln e x x x x ⋅=-==. 令(),(0,)x x xe x λ=∈+∞,()(1)0x x x e λ'=+>,所以()x λ在(0,)+∞上递增,∴001x ln x =. 而0(0,)x x ∈时,()0h x <,即()0g x '<,所以()g x 在0(0,)x 上递减;0(,)x x ∈+∞时,()0h x >,即()0g x '>,故()g x 在0(,)x +∞上递增.所以0x x =时,()g x 取得极小值,也是最小值,00100min 0000011()()1ln x x lnx x g x g x e e x x x x -==--=--=,∴a ≤1. 所以a 的取值范围是(,1]-∞.【点睛】本题考查函数导数的综合应用,涉及到函数的单调性、极值最值、零点,以及恒成立和最值的关系,确定极值点满足的条件是解题的关键,考查逻辑推理、数学计算能力,属于较难题.22.在平面直角坐标系xOy 中,曲线C 1的参数方程为1211t x t t y t ⎧=⎪⎪+⎨+⎪=⎪+⎩(t 为参数),曲线C 2的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点为极点.x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1的普通方程和曲线C 2的极坐标方程; (Ⅱ)射线1(0)2πθββ=<<与曲线C 2交于O ,P 两点,射线22πθβ=+与曲线C 1交于点Q ,若△OPQ的面积为1,求|OP |的值.【答案】(Ⅰ)10x y -+=,4cos ρθ=;(Ⅱ)【解析】【分析】(Ⅰ)由曲线C 1的参数方程消去参数t ,即得曲线C 1的普通方程. 由曲线C 2的参数方程消去参数α,得曲线C 2的普通方程,根据cos sin x y ρθρθ=⎧⎨=⎩,即得曲线C 2的极坐标方程; (Ⅱ)由(Ⅰ)知,曲线C 2的极坐标方程为4cos ρθ=,设点()4cos ,P ββ.曲线C 1的普通方程化为极坐标方程得cos sin 10ρθρθ-+=,则点1,cos sin 2Q πβββ⎛⎫+ ⎪+⎝⎭.由112POQ S OP OQ =⨯⨯=,求出β,即求OP 的值.【详解】(Ⅰ)曲线C 1的参数方程为1211t x t t y t ⎧=⎪⎪+⎨+⎪=⎪+⎩,(t 为参数),消去参数t ,得曲线C 1直角坐标方程为:10x y -+=.曲线C 2的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),消去参数α, 得直角坐标方程2240x y x +-=,根据cos sin x y ρθρθ=⎧⎨=⎩,得曲线C 2的极坐标方程为4cos ρθ=. (Ⅱ)由曲线C 2的极坐标方程为4cos ρθ=,设点()4cos ,P ββ.由于直线C 1的极坐标方程为cos sin 10ρθρθ-+=, 可得点1,cos sin 2Q πβββ⎛⎫+ ⎪+⎝⎭, 114cos 12cos sin POQ S βββ∴=⨯⨯=+, cos sin ,4πβββ∴=∴=. ∴|OP |=4cos β=【点睛】本题考查参数方程、普通方程和极坐标方程的互化,属于中档题.23.已知a ,b ,c 为正实数,且a+b+c =1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论; (Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边 ()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论. 【详解】证明:(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a =b =c ”时取等号; (Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ ()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥-=⨯-=,当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届全国天一大联考新高考模拟试卷(一)数学试题(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B R = C. {|1}AB x x =>D. AB =∅【答案】A 【解析】∵集合{|31}xB x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A2.已知函数1()3()3x xf x =-,则()f xA. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【答案】A 【解析】分析:讨论函数()133xxf x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xx f x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xx xx x xf x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xx y ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.3.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( ) A. 1i + B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.4.已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y m = 的图象有且只有一个交点,则正实数m 的取值范围是A. (0,1])⋃+∞B. (0,1][3,)⋃+∞C. )⋃+∞D. [3,)⋃+∞【答案】B 【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =+∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m 上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B. 【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A. sin y x = B. ln y x =C. xy e =D. 3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件; 当y =lnx 时,y ′1x=>0恒成立,不满足条件; 当y =e x 时,y ′=e x >0恒成立,不满足条件; 当y =x 3时,y ′=3x 2>0恒成立,不满足条件;故选A .考点:导数及其性质.6.若3cos()45πα-=,则sin 2α=( ) A. 725 B. 15C. 15-D. 725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D. 【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos(2x+π6)=sin(2x+2π3)的图象,即曲线C2,故选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言. 函数sin()()y A x x Rωϕ=+∈是奇函数π()k k Zϕ⇔=∈;函数sin()()y A x x Rωϕ=+∈是偶函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是奇函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是偶函数π()k k Zϕ⇔=∈.8.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩则z=2x+y的最小值是()A. -15B. -9C. 1D. 9【答案】A【解析】【分析】作出不等式组表示的可行域,平移直线z=2x+y,当直线经过B(-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B(-6,-3)处取得最小值z min=-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.9.已知F为抛物线2:4C y x=的焦点,过F作两条互相垂直的直线12,l l,直线1l与C交于A B、两点,直线2l与C交于D E、两点,则|||||AB DE+的最小值为()A. 16B. 14C. 12D. 10【答案】A 【解析】 【分析】根据12l l ⊥,要使|||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1时,取得最小值.【详解】解法一:如图所示因为12l l ⊥,直线1l 与C 交于A B 、两点,直线2l 与C 交于D E 、两点,要使||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1, 又直线2l 过点()1,0,所以直线2l 的方程为1y x =-,联立方程组241y x y x ⎧=⎨=-⎩,得2440y y --=,12124,4y y y y +==-,所以()212121222111148DE y y y y y y k k=+-=++-=,所以|||||AB DE +的最小值为16. 故选:A解法二:设AB 为(1)y k x =-,DE 为1(1)y x k=--.分别代入抛物线方程得:2222(24)0k x k k -++=⋯(1),22(24)10x k x -++=⋯(2).由于21234242()2()44482416AB DE x x x x k k+=+++++=+++>=+⨯=.此时2244k k=,1k =或1k =-,故选:A .【点睛】本题主要考查抛物线的几何性质直线与抛物线的位置关系,弦长公式等,还考查了运算求解的能力,属于中档题.10.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A. 1- B. 32e -- C. 35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a ex ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦', 因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e-=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法: (1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A. 3 B. 22C. 5D. 2【答案】A 【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos αβ=-=cos cos βα=-=, 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=- 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .14.已知函数f (x )=23,12,1x x x x x x ⎧-+≤⎪⎨+>⎪⎩,设a ∈R ,若关于x 的不等式f(x)2x a ≥+在R 上恒成立,则a 的取值范围是__ 【答案】﹣4716≤a ≤2 【解析】 【分析】先求画出函数()f x 的图像,然后对2y x a =+的图像进行分类讨论,使得2y x a =+的图像在函数()f x 的图像下方,由此求得a 的取值范围.【详解】画出函数()f x 的图像如下图所示,而,22222xa x a x y a x a a ⎧+≥-⎪⎪=+=⎨⎛⎫⎪-+<- ⎪⎪⎝⎭⎩,是两条射线组成,且零点为2x a =-.将2x y a =+向左平移,直到和函数()f x 图像相切的位置,联立方程22x y a y x x ⎧=+⎪⎪⎨⎪=+⎪⎩消去y 并化简得2240x ax -+=,令判别式24160a ∆=-=,解得2a =.将2xy a =+向右平移,直到和函数()f x 图像相切的位置,联立方程223x y a y x x ⎧⎛⎫=-+⎪ ⎪⎝⎭⎨⎪=-+⎩消去y 并化简得2302x x a -++=,令判别式()14304a ∆=-+=,解得4716a =-.根据图像可知47,216a ⎡⎤∈-⎢⎥⎣⎦【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如y ax b =+函数的图像,是,0b a ⎛⎫-⎪⎝⎭引出的两条射线. 15.设抛物线22{2x pt y pt==(0p >)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(,0)2C p ,AF 与BC 相交于点E ,若||2||CF AF =,且ACE ∆的面积为32则p 的值为__________. 6 【解析】试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则2A y =,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==, 所以262CEFCEAS S==92ACFAECCFESSS=+=所以132922p ⨯=6p =【考点】抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点的距离时,一般运用定义转化为到准线的距离进行处理. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF|=x 0+2p;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长|AB|=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.16.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤.17.已知函数()()22f x sin x cos x 23sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】 【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值. (Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间. 【详解】(Ⅰ)f (x )=sin 2x ﹣cos 2x 23-sin x cos x , =﹣cos2x 3-sin2x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,. 【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18. 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.【答案】(1)取出1球为红球或黑球的概率为3.4(2)取出1球为红球或黑球或白球的概率为11.12【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率19.(2017新课标全国Ⅲ理科)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)见解析;(2)7 .【解析】试题分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直;(2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角D–AE–C的余弦值7试题解析:(1)由题设可得,ABD CBD ≌△△,从而AD DC =. 又ACD 是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC 是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB 中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得312E ⎛⎫ ⎪ ⎪⎝⎭. 故()()311,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设(),,n x y z =是平面DAE 的法向量,则00n AD n AE ⎧⋅=⎨⋅=⎩,,即0,310.2x z x y z -+=⎧⎪⎨-+=⎪⎩可取3⎛⎫= ⎪ ⎪⎝⎭n .设m是平面AEC的法向量,则m ACm AE⎧⋅=⎨⋅=⎩,,同理可取()0,1,3=-m.则7cos,⋅==n mn mn m.所以二面角D-AE-C的余弦值为7.【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与,m n互补或相等,故有cos cos,m nm nm nθ⋅==.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20.如图,已知抛物线2x y=.点A1139-2424B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P(x,y)13-x22⎛⎫⎪⎝⎭<<,过点B作直线AP的垂线,垂足为Q(I)求直线AP斜率的取值范围;(II)求PA?PQ的最大值【答案】(I)(-1,1);(II)2716.【解析】试题分析:本题主要考查直线方程、直线与抛物线位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分.(Ⅰ)由斜率公式可得AP的斜率为12x-,再由1322x-<<,得直线AP的斜率的取值范围;(Ⅱ)联立直线AP与BQ的方程,得Q的横坐标,进而表达||PA与||PQ的长度,通过函数3()(1)(1)f k k k=--+求解||||PA PQ⋅的最大值.试题解析:(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA1)2x +1)k +, |PQ2)Q x x -=所以3(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2'()(42)(1)f k k k =--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.21.已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+- 【答案】(Ⅰ) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥, 下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x',可得202.a x x n n'=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 选修4-4:坐标系与参数方程22.11,23x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)被曲线cos ,3x y θθ=⎧⎪⎨=⎪⎩(θ为参数)所截得的弦长.【答案】2 【解析】 【分析】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得到直角坐标方程,然后将11,22x t y t⎧=-⎪⎪⎨⎪=⎪⎩代入曲线的直角坐标方程,再利用直线参数方程的几何意义求弦长.【详解】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得2213y x +=,将11,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入2213y x +=并整理得:220t t -=,解得120,2t t ==, 所截得的弦长为122t t -=【点睛】本题主要考查参数方程与直角坐标方程的转化,以及直线参数方程的几何意义,还考查了运算求解的能力,属于中档题.选修4-5:不等式选讲23.设0,0x y >>,已知1x y +=,求2223x y +的最小值. 【答案】65【解析】 【分析】根据柯西不等式的性质求解.【详解】由柯西不等式得()()222222231x yx y ⎡⎤+⋅+≥=+=⎢⎥⎢⎥⎣⎦所以226235x y +≥,当且仅当23x y =,即32,55x y ==时,取等号.所以2223x y +的最小值为65【点睛】本题主要考查柯西不等式的性质,还考查了转化化归的思想和运算求解的能力,属于基础题.。

相关文档
最新文档