高等数学(下)总复习(4课时)
高数下册复习知识点总结

高数下册复习知识点总结高数下册复习学问点总结高数下册复习学问点总结:8空间解析几乎与向量代数1.给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。
2.向量的数量积、向量积的定义式与坐标式,把握两个向量垂直和平行的条件。
3.了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。
空间曲线在坐标平面上的投影方程。
4.平面方程和直线方程及其求法。
5.平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6.点到直线以及点到平面的距离。
9多元函数微分法及其应用1.有关偏导数和全微分的求解方法,偏导要求求到二阶。
2.复合函数的链式法则,隐函数求导公式和方法。
3.空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。
4.利用充分条件推断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。
10重积分1.二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。
2.选择合适的坐标系计算三重积分。
3.利用二重积分计算曲面的面积;利用三重积分计算立体体积;4.利用质心和转动惯量公式求解问题。
11曲面积分与曲线积分1.两类曲线积分的计算与联系;2.两类曲面积分的计算与联系;3.格林公式和高斯公式的应用。
12曲面积分与曲线积分1.常数项积分的敛散性判别:(1)正项级数;(2)交叉级数;(3)一般级数2.幂级数的收敛域(1)标准型(2)非标准型幂级数的和函数,幂级数绽开3.傅里叶级数的和函数以及绽开式扩展阅读:高数下册总复习学问点归纳(1)高等数学(一)教案期末总复习第八、九章向量代数与空间解析几何总结向量代数定义与运算的几何表达定义向量模有大小、有方向.记作a 或AB向量a的模记作a在直角坐标系下的表示aaxiayjazk(ax,ay,az)axprjxa,ayprjya,azprjzaaax2ay2az2和差cabca -b单位向量cabaxbx,ayby,azbzaa0,则eaa设a与x,y,z轴的夹角分别为,,,则方向余弦分别为cos,cos,cosea(ax,ay,az)axayaz222方向余弦aaacosx,cosy,coszaaaea(cos,cos,cos)cos2+cos2cos21点乘(数量积)ababcos,为向量a与b的夹角abaxbxaybyazbziabaxbxjaybykazbzcabsin叉乘(向量积)为向量a与b 的夹角cab向量c与a,b都垂直定理与公式垂直平行abab0abaxbxaybyazbz0a//bcosa//bab0axayazbxbybz2222交角余弦ab两向量夹角余弦cosab向量a在非零向量b上的投影axbxaybyazbzaxayazbxbybz22投影prjbaacos(ab)abbprjbaaxbxaybyazbzbxbybz222平面法向量n{A,B,C}点M0(x0,y0,z0)方程名称一般式点法式方程形式及特征直线方向向量T{m,n,p}点M0(x0,y0,z0)方程名称一般式点向式方程形式及特征A1xB1yC1zD10A2xB2yC2zD20AxByCzD0A(xx0)B(yy0)C(zz0)0 xx0yy0zz0mnp高等数学(一)教案期末总复习xx1三点式yy1y2y1y3y1zz1z2z10z3z1两点式线线垂直线线平行线面平行参数式x2x1x3x1截距式面面垂直面面平行线面垂直xyz1abcA1A2B1B2C1C20A1B1C1A2B2C2ABCmnpxx0mtyy0ntzzpt0xx0yy0zz0x 1x0y1y0z1z0m1m2n1n2p1p20m1n1p1m2n2p2AmBnCp0点面距离M0(x0,y0,z0)AxByCzD0面面距离AxByCzD10AxByCzD20dAx0By0Cz0DABC222dD1D2ABC222面面夹角n1{A1,B1,C1}n2{A2,B2,C2}cos|A1A2B1B2C1C2|A1B1C1A2B2C2222222线线夹角s1{m1,n1,p1}s2{m2,n2,p2}线面夹角s{m,n,p}n{A,B,C}AmBnCpA2B2C2m2n2p2cosm1m2n1n2p1p2222m12n12p12m2 n2p2sinx(t),y(t),z(t),切“线”方程:切向量xx0yy0zz0(t0)(t0)(t0)空间(t)曲线:T((t0),(t0),(t0))法平“面”方程:(t0)(xx0)(t0)(yy0)(t0)(zz0)0切“线”方程:y(x)切向量z(x)T(1,(x),(x))xx0yy0zz01(x0)(x0)法平“面”方程:(xx0)(x0)(yy0)(x0)(zz0)0法向量切平“面”方程:Fx(x0,y0,z0)(xx0)Fx(x0,y0,z0)(yy0)F(x,y,z)0空间曲面:n(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))n(fx(x0,y0),fy(x0,y0) ,1)Fx(x0,y0,z0)(zz0)0法“线“方程:xx0yy0zz0Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)切平“面”方程:fx(x0,y0)(xx0)fy(x0,y0)(yy0)(zz0)0法“线“方程:zf(x,y)或n(fx(x0,y0),fy(x0,y0),1)xx0yy0zz0fx(x0,y0)fy(x0,y0)1高等数学(一)教案期末总复习第十章总结重积分计算方法(1)利用直角坐标系X型Y型积分类型二重积分典型例题f(x,y)dxdydxDab2(x)1(x)f(x,y)dyf(x,y)dxP141例1、例3f(x,y)dxdyDdcdy2(y)1(y)Ifx,ydD(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段);(2)被积函数用极坐标变量表示较简洁(含(x2y2),平面薄片的质量质量=面密度面积为实数)P147例5f(cos,sin)ddDd2()1()f(cos,sin)d0202(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)0I2f(x,y)dxdyD1计算步骤及留意事项f(x,y)对于x是奇函数,即f(x,y)f(x,y)f(x,y)对于x是偶函数,即f(x,y)f(x,y)D1是D的右半部分P141例2应用该性质更便利1.画出积分区域2.选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分别3.确定积分次序原则:积分区域分块少,累次积分好算为妙4.确定积分限方法:图示法先积一条线,后扫积分域5.计算要简便留意:充分利用对称性,奇偶性高等数学(一)教案期末总复习三重积分(1)利用直角坐标投影投影法截面法bay2(x)f(x,y,z)dVdxy1(x)dyz2(x,y)z1(x,y)f(x,y,z)dzP159例1P160例2xrcos(2)利用柱面坐标yrsinzz相当于在投影法的基础上直角坐标转换成极坐标适用范围:1积分区域表面用柱面坐标表示时方程简洁;如旋转体○If(x,y,z)dvP161例3空间立体物的质量质量=密度面积22222被积函数用柱面坐标表示时变量易分别.如f(xy)f(xz)○f(x,y,z)dVdzdabr2()r1()f(cos,sin,z)dxcosrsincos(3)利用球面坐标ysinrsinsinzrcosdvr2sindrdd适用范围:1积分域表面用球面坐标表示时方程简洁;如,球体,锥体.○P16510-(1)2222被积函数用球面坐标表示时变量易分别.如,f(xyz)○Idd11222(,)1(,)f(sincos,sinsin,cos)2sind(4)利用积分区域的对称性与被积函数的奇偶性高等数学(一)教案期末总复习第十一章总结曲线积分与曲面积分积分类型参数法(转化为定积分)第一类曲线积分(1)L:y(x)IIf(x,y)ds计算方法典型例题(t)Iaf(x,y(x))1y"(x)dx曲形构件的质量(2)L:y(t)质量=线密度xr()cos弧长(3)rr()()L:f((t),(t))b"2(t)"2(t)dt2Lx(t)P189-例1P190-3yr()sinIf(r()cos,r()sin)r2()r"2()d平面其次类曲线积分(1)参数法(转化为定积分)x(t)L:(t单调地从到)y(t)P196-例1、例2、例3、例4LPdxQdy{P[(t),(t)](t)Q[(t),(t)](t)}dt(2)利用格林公式(转化为二重积分)条件:①L封闭,分段光滑,有向(左手法则围成平面区域D)②P,Q具有一阶连续偏导数结论:LPdxQdy(DQP)dxdyxy满意条件直接应用IPdxQdy应用:有瑕点,挖洞L不是封闭曲线,添加帮助线变力沿曲线所做的功P205-例4P214-5(1)(4)(3)利用路径无关定理(特别路径法)等价条件:①QP②xy③PdxQdy0LLPdxQdy与路径无关,与起点、终点有关P211-例5、例6、例7④PdxQdy具有原函数u(x,y)(特别路径法,偏积分法,凑微分法)(4)两类曲线积分的联系IPdxQdy(PcosQcos)dsLL空间其次类曲线积分(1)参数法(转化为定积分)PdxQdyRdz{P[(t),(t),(t)](t)Q[(t),(t),(t)](t)R[(t),(t),(t)](t)}d tIPdxQdyRdz(2)利用斯托克斯公式(转化其次类曲面积分)L条件:①L封闭,分段光滑,有向②P,Q,R具有一阶连续偏导数PdxQdyRdzL变力沿曲线所做结论:的功QpRQPR()dydz()dzdx()dxdyyzzxxyP240-例1 高等数学(一)教案期末总复习应用:满意条件直接应用不是封闭曲线,添加帮助线第一类曲面积分投影法:zz(x,y)投影到xoy面If(x,y,z)dv曲面薄片的质量Dxy质量=面密度类似的还有投影到yoz面和zox面的公式面积(1)投影法Pdydzp(x(y,z),y,z)dydz1○Dyz:zz(x,y),为的法向量与x轴的夹角前侧取“+”,cos0;后侧取“”,cos0Qdzdxp(x,y(x,z),z)dzdx2其次类曲面积分○Dyz:yy(x,z),为的法向量与y轴的夹角右侧取“+”,cos0;左侧取“”,cos02If(x,y,z)dvf(x,y,z(x,y))1zx2zydxdyP217-例1、例2P226-例2IPdydzQdzdxR3QdxdyQ(x,y,z(x,y))dxdy○Dyz流体流向曲面一侧的流量:xx(y,z),为的法向量与x轴的夹角上侧取“+”,cos0;下侧取“”,cos0(2)高斯公式右手法则取定的侧条件:①封闭,分片光滑,是所围空间闭区域的外侧②P,Q,R具有一阶连续偏导数结论:PdydzQdzdzRdxdy(PQR)xyzP231-例1、例2应用:满意条件直接应用不是封闭曲面,添加帮助面(3)两类曲面积分之间的联系PdydzQdzdxRdxdy(PcosQcosRcos)dSP228-例3转换投影法:dydz(全部类型的积分:z)dxdyxdzdx(z)dxdyy1定义:四步法分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高等数学(下)期末复习指导(土木工程专业...

本学期《高等数学》的考试范围是:第五章定积分的应用,第六章至第十一章.内容为:空间解析几何与向量代数,多元函数的微积分,曲线积分,微积分的应用-级数理论及常微分方程的解法.我们用了90课时,讲了尽可能多的知识,保证了后继课程学习中对数学知识的需要,及将来考研同学对高数的知识点范围.对教学工作仍坚持一丝不苟、认真负责的态度,讲好每节课,对大题量的作业做到每周全收、认真批阅一次,耐心解答同学提出的问题.对同学的学习坚持从严要求,强调做好听课、记笔记、独立完成作业三个教学环节.逐步培养同学掌握学习数学课的方法:多动脑勤动手,数学书不是光靠看,还要动手演算才能理解深刻,记忆牢固.考试题型为:一.选择题(每小题3分,共15分) 二.填空题(每小题3分,共15分) 三.计算题(8小题,共40分) 四.应用题(2小题,共16分) 五.证明题(2小题,共14分)下面分章复习所学知识第五章 定积分的应用定积分在几何上的应用:求平面图形的面积(1) 直角坐标情形:由平面曲线(),()[()()]y f x y g x f x g x ==≥,()x a x b a b ==<所围图形的面积为[()()].baA f x g x dx =-⎰(2)极坐标情形:由曲线()r r θ=及射线,()θαθβαβ==<所围成的曲边扇形的面积为21().2A r d βαθθ=⎰例 (填空题)由曲线x y 1=及直线0,2,===y x x y 围成的平面图形的面积 .第六章 向量代数与空间解析几何(一)向量代数1.空间两点111(,,)A x y z 与222(,,)B x y z 的距离公式222121212()()()d x x y y z z =-+-+- 2.非零向量 {}123,,a a a a =的方向余弦公式 312222222222123123123cos ,cos ,cos a a a a a aa a aa a aαβγ===++++++3.向量的运算设 {}{}123123,,,,,a a a a b b b b ==,则112233123123,ijka b a b a b a b a b a aab b b ⋅=++⨯= 两非零向量垂直、平行的充要条件11223331212300//0a b a b a b a b a b a a a a b a b a b b b b λ⊥⇔⋅=⇔++=⇔=⇔⨯=⇔==4.向量{}123,,a a a a =在非零向量{}123,,b b b b =上的投影 112233222123Pr cos ,b b a b a b a ba b a j a a a b bb b b ++⋅∏==<>==++(二)平面与直线 1.平面方程(1)一般式:0;Ax By Cz D +++=(2)点法式:000()()()0;A x x B y y C z z -+-+-=(3)截距式:1;x y za b c++=(4)三点式:1112121213131310.x x y y z z x x y y z z x x y y z z ------=--- 2.直线方程(1)对称式(点向式、标准式):000;x x y y z z m n p---== (2)一般式:111122220;0A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(3)参数式:000,;x x mt y y nt t z z pt=+⎧⎪=+-∞<<+∞⎨⎪=+⎩(4)两点式:111212121.x x y y z z x x y y z z ---==--- 3.平面()∏与直线()l 平行、垂直的充要条件及夹角(1)1212121211112222()()0()//()A A B B C C A B C A B C ∏⊥∏⇔++=∏∏⇔==;(2)12121212111122220//l l m m n n p p m n pl l m n p ⊥⇔++=⇔==;(3)1111111111111111()()//0m n p l A B C l m A n B p C ∏⊥⇔==∏⇔++=;(4)1()∏与2()∏的夹角: 121212222222111222c o s A A B B C C A B C A BC ϕ++=++⋅++(5)1l 与2l 的夹角: 121212222222111222c o s m m n n p p m n p m np ϕ++=++⋅++(6)1()∏与1l 的夹角:111111222222111111s i n m A n B p C m n p A BC ϕ++=++⋅++4.距离设点0000(,,)M x y z ,平面():0Ax By Cz D ∏+++=直线111:x x y y z z l m n p---==(1)点到平面的距离公式:000222;Ax By Cz Dd A B C+++=++(2) 点到直线的距离公式:01M M ld l⨯=,其中 {}01101010,,M M x x y y z z =---,{}1,,,l m n p M =是直线上任一点. (三)曲面与空间曲线记住一些常见的曲面的方程 (1)旋转曲面园锥面:22z x y =+,旋转抛物面:22z x y =+,旋转椭球面:22222 1.x y z a c++= (2)柱面圆柱面:222,x y R +=椭圆柱面:22221x y a b+=,抛物柱面:220x py -=,双曲柱面:2222 1.x y a b-=(3)二次曲面球面:2222()()();x a y b z c R -+-+-=椭球面:2222221,(,,0)x y z a b c a b c++=>;椭球抛物面:22,(,22x y z p q p g +=同号); 双曲抛物面:22,(,2x y z p q p q-+=同号); 单叶双曲面:2222221,(,,0)x y z a b c a b c +-=>;双叶双曲面:2222221,(,,0)x y z a b c a b c+-=->.本章的考点:仅是一些简单的填空题或选择题.例1.设三角形ABC ,已知2,2,BA i j BC i j k D =+=++为BC 的中点,则BC 上 的中线长AD =10/2例2. 1.两向量a 与b 互相垂直的充要条件是0a b ⋅=.2.向量13(2),(1)a i j b i j k λλλ=-++=-+-平行,则λ= 1 .3.求同时垂直于向量{}{}2,3,1,1,2,0a b =-=-的单位向量是 0c ±.解 {}2312,1,1120i j kc a b =⨯=-=--,单位化 {}02222,1,1211,,66621(1)c c c --⎧⎫===⎨⎬⎩⎭++-. 例3.(选择题)过点(2,3,5)且平行于平面53210x y z -++的平面是( C ).53211A x y z ++-=.53211B x y z -++= .53211C xy z -+-=.53211D x y z +++= 例4.(选择题)在空间直角坐标系下,方程350x y +=的图形是( D ).A 过原点的一条直线; .B 斜率为35-的一条直线;.C 垂直于z 轴的一平面; .D 过z 轴的一平面.例5.(选择题)方程231x y +=在空间表示的图形是( B ) .A 平行于XOY 坐标面的平面; .B 平行于z 轴的平面; .C 过oz 轴的平面; .D 直线. 例6.(选择题)方程22x y =在空间表示的是( B ) .A 抛物线; .B 抛物柱面; .C 母线平行于x 轴的柱面; .D 旋转抛物面. 例7. (选择题) 下列平面方程中( C )过y 轴:.A 1x y z ++=; .B 0x y z ++=; .C 0x z +=; .D 1.x z +=例8. 曲线 2221z x y z ⎧=+⎨=⎩在XOY 平面上的投影方程为:22210x y z ⎧+=⎨=⎩第七章 多元函数微分法及其应用(一)基本概念1.二元函数:定义域和对应规律为(,)z f x y =的两要素,其定义域为平面上的点集.例9 (填空题)二元函数ln 1xyz y=+的定义域是0,0(,)0,10x y D x y x y ⎧⎫>>⎪⎪=⎨⎬<-<<⎪⎪⎩⎭或 二元函数221ln(1)x y z x y --=--的定义域为{}22(,)1,1D x y x y x y =+≤+<2.极限:函数(,)z f x y =的极限为A ,是指点(,)x y 以任何方式沿某路径趋于点00(,)x y 时,(,)f x y A →,记为00lim (,)x x y y f x y A →→=例10. 证明:极限2222200lim ()x y x y x y x y →→--不存在.证明 如果动点(,)P x y 沿y x =趋于点(0,0)时,则2242224000lim lim 1;()x x y x y x x y x y x →→→==-- 如果动点(,)P x y 沿2y x =趋于点(0,0)时,则2242224200024lim lim 0()4x x y y xx y x x y x y x x →→→===--+ 因沿不同路径,极限值不一,故原极限不存在.3.连续:函数(,)z f x y =在点00(,)x y 连续,必须同时满足三个条件,缺一不可:(1)在00(,)U x y 内有定义;(2)0lim (,)x x y y f x y →→存在;(3)0000lim (,)(,)x x y y f x y f x y →→=.否则间断.例11.(选择题)设221xy z x y=--,下面结论正确的是( D ).A 在XOY 平面上连续; .B 在XOY 平面上不连续;.C 在XOY 平面上只有(1,0),(0,1)为间断点;.D 在XOY 平面上,只有在区域221x y +<内,函数连续.例12. (选择题) 函数22222,(,)(0,0)(,)0,(,)(0,0)x y x y f x y x y x y ⎧+≠⎪=+⎨⎪=⎩在点(0,0)处( C ).A 连续; .B 有极限但不连续; .C 极限不存在; .D 无定义.(二)偏导数1.定义与计算偏导数,z zx y∂∂∂∂是整体记号,不具有商的意义,求z x ∂∂时,把(,)z f x y =中的y固定 (看作常数),利用一元函数的求导公式和法则求出.记住:偏导函数z x ∂∂与一点的偏导数000(,)x x x y y z f x y x==∂'=∂记号不同,及它们之间的关系例13.(填空题)设22(,)f x y x y x y =+-+,则(3,4)x f '=252.高阶偏导数(以二阶为主):22(,)();xx z z f x y x x x ∂∂∂''==∂∂∂ 22(,)();yy z zf x y y y y∂∂∂''==∂∂∂ 2(,)();xy z z f x y x y y x ∂∂∂''==∂∂∂∂ 2(,)().yx z zf x y y x x y ∂∂∂''==∂∂∂∂(注意:二阶混合偏导数在定义域D 内连续时,相等)(三)全微分1.定义与计算:若函数(,)z f x y =在点00(,)x y 的全改变量(全增量)可表为()z A x B y ρ∆=∆+∆+,其中,A B 不依赖于,x y ∆∆,仅与00(,)x y 有关, 22()()x y ρ=∆+∆,则全增量的线性主要部分为为函数的全微分,记作 .z z dz A x B y dx dy x y∂∂=∆+∆=+∂∂ 例14.(选择题)函数(,)z z x y =由方程ln()0z xy +=所确定,则dz =( A ).;dx dy A x y -- .;dx dy B x y+ .;dx dy C z x + ..dx dy D xy xy+ 例15. 函数22ln()u x y z =++在点(1,0,1)处的全微分为: . 例16. 求22x y z e +=的全微分及二阶偏导数.解22222,2x y x y zz xe ye x y++∂∂==∂∂ 222222;x y x y d z x e d xy ed y++∴=+ 2222222222(12),4x y x y z z z ex x y e x x y y x++∂∂∂=+==∂∂∂∂∂22222,2(12).x y z e y y +∂=+∂2.二元函数在一点连续、可导(两个偏导数存在)与可微的关系.偏导数连续⇒可微⎧⎨⎩⇒⇒可导极限存在,反之不一定成立.例17.(选择题)二元函数22z x y =+在点(0,0)处( C ).A 不连续,两个偏导数不存在; .B 不连续,两个偏导数存在; .C 连续,两个偏导数不存在;.D 连续,两个偏导数存在.例18.(填空题)(,),(,)x y f x y f x y 连续是(,)z f x y =可微的充分条件.例19. 证明题:证明函数222222,0(,)0,0xyx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)点处两个偏导数存在,但不连续.(用定义求偏导数,取两条路径如极限不一则不连续)3.方向导数与梯度(不做考试要求)(1)方向导数—函数在特定方向(指定方向)上的变化率:cos cos cos f f f fxy z l αβγ∂∂∂∂=++∂∂∂∂,其中,,αβγ为射线l 与,,x y z 轴正向夹角(2)梯度—不同点的方向导数不同,它在哪个方向上最大呢?函数(,,)u f x y z =在点(,,)x y z 处的梯度为:(,,).f f f gradf x y z i j k x y z∂∂∂=++∂∂∂ 例20.(填空题)函数22u xy z xyz =+-在点(1,1,2)处沿方向{}1,2,1l =的方向导数是 .(四)多元复合函数的导数1.锁链法则—先画出链式图,写出公式,然后计算.(,),(,),(,)z f u v u x y v x y ϕψ===,则有锁链公式:z z u z v x u x v x∂∂∂∂∂=+∂∂∂∂∂z z u z v y u y v y∂∂∂∂∂=+∂∂∂∂∂ 2.几种推广情形(1)若(,,)z f u v w =,而(,),(,),(,)u x y v x y w x y ϕψω===,则有锁链公式:z z u z v z w x u x v x w x∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂z z u z v z w y u y v y w y∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂ (2)若(,,),z f u x y =而(,)u u x y =,则有锁链公式: z f f u x x u x∂∂∂∂=+∂∂∂∂z f f u y y u y∂∂∂∂=+∂∂∂∂注意:这里z x ∂∂与f x ∂∂不同,zx∂∂是把复合后的函数,将y 看作常数,对x 求偏导;而fx∂∂是把复合前的函数,将,u y 看作常数对x 求偏导. (3)设(,,,)u f x y z t =,而(),(),()x x t y y t z z t ===,则复合函数只有一个自变量, t 求导dzdt ,称为全导数.d z u d x u d y u d z u d td t x d t y d x t d t t d t∂∂∂∂=+++∂∂∂∂何时用锁链法则:①函数关系不具体; ②中间变量多于一个.例21.(选择题)设22(,)()()f x y x y x y x y x y +-=-=+-,则()()f x y f x yxy∂⋅∂⋅+=∂∂( C )..22A x y - .22B x y+.;C x y + ..D x y --例22.22sin()1,yz x e xy =++求 2,.z zx x y∂∂∂∂∂例23.设arctan()z u x y =-,求,,.u u u x y z∂∂∂∂∂∂ 解 由锁链法则121();1()z z u z x y x x y -∂=⋅-∂+- 121();1()z zu z x y y x y -∂-=⋅-∂+-21()l n .1()z z u x y x y z x y ∂=-⋅-∂+- 例24.设二元函数(,)xz xy f xy y=+,其中f 是二阶可微函数,求,,.x y yy z z z ''''解 设1,2xxy u v y====,则 121;x z y yf f y'=++122;y xz x xf f y '=+- 11122212223222()()yy x x x x z x f x f f f x f y y y y ⎡⎤⎡⎤''=+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦ 222111222224322.x x xx f f f f y y y=-++例25.设(5,)u f x y xyz =+,求22.ux∂∂解 12x u f yzf '=+; 2211122122.xx u f yzf yzf y z f ''=+++ (五)隐函数微分法:(只讨论一个方程的情形)1. 方程两边对自变量求导(复合函数的锁链法则), 解出所求的偏导数(是,x y 的函数).2.公式法:x z F z x F '∂=-'∂, .y z F zy F '∂=-'∂ 3.微分法:利用一阶全微分形式的"不变性",对方程两边求全微分,即可求出所需的偏导数或导数.例26.(填空题)由方程2221x xyz z ++=确定(,)z z x y =,则z x ∂=∂124xy z-+. 例27.设ln ,x z z y =求,.z z x y∂∂∂∂ 解 由隐函数微分法 设 (,,)ln ln ln x z xF x y z z y z y z=-=-+ 因为 22111,,x y z x x zF F F z y z z z+'''===--=-所以 21x z F z z z x z x F x z z -'∂=-==+'∂+- 221.()y z F z z y x z y F y x z z -'∂=-==+'∂+-例28. 设(,)z z x y =是由方程2224x x y e z z ++=所确定的隐函数,求.dz例29.设2sin(23)23x y z x y z +-=+-,证明:1x z x y∂∂+=∂∂ 证明设(,,)2sin(23)23F x y z x y z x y z =+---+,则 2c o s (23)x F x y z '=+--,2c o s (23)2y F x y z '=+-⋅-2x F '= 2c o s (23)(3)3z x F x y z F ''=+--+=-133x x z x F F z x F F ''∂=-=-=''∂-, 2233y x z x F F zy F F ''∂=-=-=''∂-故12 1.33y x z z F F z zx y F F ''∂∂+=--=+=''∂∂ (六)微分法在几何上的应用(不做考试要求)1.空间曲线的切线与法平面设空间曲线Γ的参数方程 (),(),()x t y t z t ϕψω===,则Γ在点000(,,)x y z 处的切线方程为:000000()()()x x y y z zt t t ϕψω---==''' 法平面方程为: 000()()()()()()0t x x t y y t z zϕψω'''-+-+-= 2.空间曲线的切平面与法线隐函数的曲面方程:(,,)0F x y z =, 显函数的曲面方程:(,)z f x y =,(七)多元函数的极值及其求法1.极值的必要条件:见教材.264P 定理1(极值发生在可疑点,即驻点或偏导数不存在的点上.2.极值的充分条件:设00(,)x y 为为函数(,)z f x y =的驻点,000022222,,x x x x x xy y y y y yzz zA B C xx yy ======∂∂∂===∂∂∂∂,则下结论(1)20,0B AC A -<>有极小值,0A <有极大值; (2)20B AC ->,无极值;(3)20B AC -=,不定,另作讨论.例30.(选择题)下列说法中,正确的是( ).A 可微函数(,)f x y 在00(,)x y 达到极值,则必有0000(,)(,)0;x y f x y f x y ''==.B 二元函数(,)f x y 在00(,)x y 达到极值,则必有0000(,)(,)0;x y f x y f x y ''== .C 可微函数(,)f x y 在00(,)x y 有0000(,)(,)0;x y f x y f x y ''== .D 二元函数(,)f x y 在00(,)x y 的偏导数不存在,则必不存在极值. 例31求函数224(23)z x y =-+的极值.解 804(23)0x y z x z y ⎧'==⎪⎨'=-+=⎪⎩,得驻点3(0,)2-又22333(0,)(0,)(0,)222()xyxxyyB AC z z z ----=-⋅08(8)640-⋅-=>,故函数在3(0,)2-处无极值.3.用Lagrange 乘子法求条件极值的应用题解题步骤:(1)将实际问题化为二元或三元函数的条件极值问题; (2)作辅助函数(,,,)F x y z λ=原函数+λ乘条件函数; (3)将辅助函数对,,,x y z λ分别求偏导数,得方程组; (4)解方程组,得唯一驻点(5)答:根据实际问题的意义,知此唯一驻点即极值点,也是最值点,并求出最值.例32 应用题:造一个容积为V 的长方体盒子,如何设计,才能使所用材料最少?解 设盒长为x ,宽为y 则高为V xy ,故表面积为:2()V V S xy x y=++, 于是,将问题化为求二元函数的最大值问题,222(02()0SV y x x S V x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,解得唯一驻点33(,)V V ,根据实际问题的意义,此唯一驻点即为极大值点,也是最大值点, 答:当盒子的长宽高都是3V ,即正方体时,所用材料最少.例33. 应用题:利用Lagrange 乘子法求椭圆抛物面222z x y =+到平面232x y z +-=的最短距离.第八章 重 积 分(一)重积分的概念1.定义:二重积分表示一种类型的和式极限; 三重积分表示另一种类型的和式极限.2.几何与物理意义二重积分表示曲顶柱体的体积,平面薄板的质量; 三重积分表示空间物体的质量(无几何意义). 3.性质与定积分类似性质3:如果在定义域D 上,函数(,)1f x y =,σ为D 的面积,则 1DDd d σσσ=⋅=⎰⎰⎰⎰(二)二重积分的计算1.直角坐标系下二重积分的计算步骤:面积元素 d dxdy σ= ①先通过解方程组曲线交点的坐标,然后画出积分域的草图; ②如是x -形积分域,将其化为先对y 后对x 的积分次序积出来 y -形积分域,将其化为先对x 后对y 的积分次序积出来. 注 利用“穿口法”的定限口诀是: 后积先定限,限内画条线; 先交下限写,后交上限见.2.极坐标系下二重积分的计算①何时采用极坐标:(ⅰ)积分域是园形或环形;(ⅱ)被积函数包含22x y +.②记住极坐标变换:cos x r θ= 面积元素:d rdrd σθ=, s i n y r θ=然后将积分化为先对r ,后对θ的次序积出来; ③积分限如下定:(ⅰ)若极点O 在域D 内,则2()(,)(cos ,sin );r Df x y d d f r r rdr πθσθθθ=⎰⎰⎰⎰(ⅱ)若极点O 在域D 的边界上,则()(,)(cos ,sin );r Df x y d d f r r rdr βθασθθθ=⎰⎰⎰⎰(ⅲ)若极点O 在域D 的外部,则21()()(,)(cos ,sin ).r r Df x y d d f r r rdr βθαθσθθθ=⎰⎰⎰⎰例34.(选择题)设(,)f x y 是连续函数,交换二重积分112203ydy x y dx -⎰⎰的的积分次序后的结果为( C ) 11220.3;xA dx x y dy -⎰⎰11220.3;y B dx x y dy -⎰⎰21122.3;x C dx x y dy -⎰⎰ 211220.3.x D dx x y dy +⎰⎰例35.交换积分次序:22121(1)01(,)(,)x x odx f x y dy dx f x y dy --+=⎰⎰⎰⎰.例36.(选择题)设域22:1D x y +≤,且0,0x y ≥≥,则2Dxy dxdy =⎰⎰( B )112.;A dx xy dy ⎰⎰ 211200.;x B dx xy dy -⎰⎰2112.;y C dx xy dy -⎰⎰221120..y x D dx xy dy --⎰⎰例37.计算二重积分Ⅰ=22y Dx e dxdy -⎰⎰,其中D 是由直线,1y x y ==及y轴所围的平面区域.解 画出积分区域草图,这是y -型积分域,故选取先对x 后对y 的积分次序,得Ⅰ=221220yy y Dx edxdy edy x dx --=⎰⎰⎰⎰=221113000111()366y t y t t y e dy te dt td e =---==-⎰⎰⎰令110112(1).66t t tee dt e--⎡⎤=-+=-⎢⎥⎣⎦⎰分部法例38.求二重积分 cos()Dx x y d σ+⎰⎰,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形区域.例39.计算Dydxdy ⎰⎰,其中D 由2,2y x y x x ==-围成.解 将22y x x =-改写为:11x y =+±-,则 {}(,)11,01D x y y x y y =--≤≤≤≤,所以原式=11110(11)yyydy dx y y y dy --⋅=-+-⎰⎰⎰=101514y ydy -+⋅-⎰ =2sin 2220442(1sin )sin .15815y tt tdt ππ==-+-=-⎰令例40.计算222DR x y d σ--⎰⎰,其中D 是由圆周22x y Rx +=所围成的闭区域 解 根据积分域和被积函数的特点,选用极坐标计算c o s22222202R DR x y d d R r rdrπθσθ--=-⋅⎰⎰⎰⎰=33332024(sin )().333R R R d πθθπ--=-⎰例41.求二重积分22()xy De dxdy -+⎰⎰,其中222:0,0,.D x y x y a ≥≥+≤解 选用极坐标计算22222()221()(1).224aax yrraDedxdy d erdr e d r e πππθ-+----=⋅=⋅-=-⎰⎰⎰⎰⎰例42.应用题:求在XOY 平面上由2y x =与24y x x =-所围成区域的面积.例43.D 是由曲线24()y x y =+以及4x y +=所围成的图形,试求D 的面积.(以上两题,利用二重积分的几何意义,取被积函数(,)1f x y ≡,计算二重积分即得所谓区域的面积)例44.(填空题)设空间一光滑曲面S :(,),z f x y D =是S 在坐标面XOY 上的投影,则D 的面积=1Dd σ⋅⎰⎰例45.利用极坐标计算二重积分22ln(1)Dx y dxdy ++⎰⎰,其中 22:1,0,0.D x y x y +≤≥≥ 解 由于极点在D 的边界上,故原式=1222ln(1)ln(1)Dr r drd d r r dr πθθ⋅+=+⎰⎰⎰⎰=12201ln(1)(1)22r d r π⋅++⎰=分部法122100(1)l n (1)2(2l n 21).44r r rdr ππ⎡⎤++-=-⎢⎥⎣⎦⎰ 解 2244444464(4).43yy Dy S dxdy dy dx dy ---===-=⎰⎰⎰⎰⎰(三)三重积分的计算(只做简单的计算)1.直角坐标系下的计算 体积元素:dv dxdydz =1212(,)(,):()()z x y z z x y y x y y x a x b ≤≤⎧⎪Ω≤≤⎨⎪≤≤⎩,(这是上下张着的曲面,x -型的投影域)则2211()(,)()(,)(,,)(,,);by x z x y ay x z x y f x y z dv dx dy f x y z dz Ω=⎰⎰⎰⎰⎰⎰2.柱坐标系(=极坐标z +轴)下的计算体积元素:dv rdrd dz θ=1212(,)(,):()()z r z z r r r r θθθθαθβ≤≤⎧⎪Ω≤≤⎨⎪≤≤⎩,(这是上下张着的曲面,极点在投影域外部)则2211()(,)()(,)(,,)(cos ,sin );r z r r z r f x y z dv d rdr f r r dz βθθαθθθθθΩ=⎰⎰⎰⎰⎰⎰3.球坐标系下的计算体积元素:2sin dv r drd d ϕϕθ=s i n c o s i n s i n c o s x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩, 1212(,)(,):()()r r r ϕθϕθϕθϕϕθαθβ≤≤⎧⎪Ω≤≤⎨⎪≤≤⎩,则2211()(,)2()(,)(,,)(sin cos ,sin sin ,cos )sin r r f x y z dv d d f r r r r dr βϕθϕθαϕθϕθθϕϕθϕθθϕΩ=⋅⎰⎰⎰⎰⎰⎰例46.在柱坐标中,a θ=(常数)表示的曲面是:z 过轴的半平面. 例47.(填空题)设一立体由上半球面224z x y =--及锥面223()z x y =+所围成,则其在XOY 平面上的投影为:21y x y +≤.例48.(选择题)Ⅰ=22()x y dv Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+,平面(0)z a a =>所围成的闭区域,则它在柱坐标系下的三次积分是( D )2.;a arA d rdr r dz πθ⎰⎰⎰ 2220.;a arB d rdr r dz πθ⎰⎰⎰20.;a a C d rdr r dz πθ⎰⎰⎰ 220..a arD d rdr r dz πθ⎰⎰⎰例49(选择题)设区域{}222(,,)(1)1x y z x y z Ω=++-≤,且()f t 是连续函数,则222()f x y z dv Ω++=⎰⎰⎰( A ) 22c o s220.()sin A d d f r r dr ππϕθϕϕ⎰⎰⎰;22c o s220.(2cos 1)sin B d d f r r r dr ππϕθϕϕϕ++⎰⎰⎰; 22c o s 200.(2c o s)s i n C d d f r r d rππϕθϕϕϕ⎰⎰⎰; 22c o s 220.(2c o s )s i n .D d d f r r d r ππϕθϕϕϕ⎰⎰⎰例50. 求曲面22y x z +=与22y x z +=所围成立体的体积体积. 解 在柱坐标系下,将被积函数(,,)1f x y z ≡,则所围立体的体积为:2211.6rr V dv rdrd dz d rdr dz ππθθΩΩ=⋅===⎰⎰⎰⎰⎰⎰⎰⎰⎰第九章 曲线积分与曲面积分(曲面积分不做考试要求) (一)曲线积分1.第Ⅰ型曲线积分(对弧长的积分)2.第Ⅱ型曲线积分(对坐标的积分)3.两类积分之间的联系.4.计算方法(1)设曲线L 由它的的参数方程:(),()x t t y t ϕαβψ=⎧≤≤⎨=⎩给出(特例) ,()x xa xb y y x =⎧≤≤⎨=⎩),则[]22(,)(),()()(),();Lf x y ds f t t t t dt εαϕψϕψαβ''=+<⎰⎰(2)若弧AB 由()()x t y t ϕψ=⎧⎨=⎩给出,起点A 对应t α=,终点B 对应,t β=则[][]{}(),()()(),()()ABPdx Qdy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰. 5.Green (格林)公式:()DLQ Pdxdy Pdx Qdy x y∂∂-=+∂∂⎰⎰⎰ 应用:,P y Q x =-=,得D 得面积 12A xdy ydx =-⎰.6.平面曲线积分与路径无关的条件 (1)0;Pdx Qdy +=⎰(2)设G 是单连通域,,P Q 在G 内有一阶连续偏导数,则曲线积分LPdx Qdy +⎰在G 内与路径无关的充分必要条件是:P Q y x∂∂=∂∂在G 内恒成立. 例51.(选择题)设AB 为由点A (0,)π到点(,0)B π的直线段,则si n s i n ABydx xdy +=⎰( C ).2;A .1;B - .0;C .1.D例52.计算曲线积分22()()Lx y dx x y dyx y -+++⎰,其中L 是沿着园: 22(1)(1)1x y -+-=从点(2,1)到点(0,1)的上半圆弧. 解 2222(,),(,)x y x yP x y Q x y x y x y-+==++ 因为 222222,(0,0)()P y xy x Qx y y x y x∂--∂==≠≠∂+∂ 所以,在不含原点的任何闭曲线L 上0L=⎰,即在不含原点的任一闭区域内积分与路径无关.故选择路径为线段:,1,02,AB x x y x ==≤≤,在AB 上有:1,0y d y ==,故 原式=02222()()11ABx y dx x y dyx dx x y x -++-=++⎰⎰ =22222011ln(1)arctan 12x dx x x x -+⎡⎤=-++⎢⎥+⎣⎦⎰ln 5arctan 2.2=-例53.计算曲线积分22()Lx y ds +⎰,其中L 是园的渐开线:(c o s s i n ),02.(s i n c o s )x at t t t y at t t π=+⎧≤≤⎨=-⎩ 解 [][]222222(cos sin )(sin )(1)x y a t t t a t t a t +=++-=+(s i n s i n c o s 0x at t tt a tt'=-++= (cos cos sin )sin y a t t t t at t '=-+= 22ds x y dt atdt ''=+=原式=2222330(1)()a t atdt a t t dt ππ+=+⎰⎰=24322320()2(12).24t t a a πππ+=+例54.(填空题)L 为园:224x y +=,计算弧长的曲线积分22Lx y ds +=⎰8π例55. 计算 222(sin ).Lx yx dx xy dy -+⎰L 为正向圆周:22 1.x y +=(应用Green 公式化为二重积分计算)第十章 无 穷 级 数(一)数项级数敛散性的判别 一.级数的概念12121,nn nnn uu u u Su uu∞==++++=+++∑ 若lim n n S S →∞=,则称级数收敛到和S级数收敛的必要条件:1n n u ∞=∑收敛,则lim 0.n n u →∞=二.逆否命题:若lim 0,n n u →∞≠则级数1n n u ∞=∑发散.三.收敛判别法1.正项级数的两个判别法:比较判别法,比值判别法;2.任意项级数的两个定理; (1)绝对收敛定理1nn u∞=∑与1n n u ∞=∑有如下关系:1nn u∞=∑收敛 ⇒1nn u∞=∑也收敛;1nn u∞=∑发散 ⇒1nn u∞=∑收敛或发散;1nn u∞=∑收敛 ⇒1nn u∞=∑收敛或发散;1nn u∞=∑发散 ⇒1nn u∞=∑必定发散.(2)比值判别法23.交错级数的Leibniz (莱布尼兹)判别法;4.从定义、性质判别.四.两个重要的参照级数:1.等比(几何)级数1211n n n aqa aq aq aq ∞--==+++++∑当1q <时,级数收敛;当1q ≥时,级数发散. 2.p 级数11111123pp p pn nn ∞==+++++∑当1p >时,级数收敛;当1p ≤时,级数发散;特例:1p =时,11n n∞=∑称为调和级数,发散.五.判别级数收敛的一般步骤: 1.先看通项n u 是否趋于零?若lim 0n n u →∞≠,则级数1n n u ∞=∑发散;若lim 0n n u →=,则需进一步判断.2.选用合适的判别法;3.实在不行,再用定义试试,即看极限lim n n S →∞是否存在?例56.(选择题)若级数1n n u ∞=∑收敛,则级数( D )收敛1.;n n A u ∞=∑ 21.;n n B u ∞=∑1.();n n C u c ∞=+∑ 1..n n D c u ∞=⋅∑例57.若级数1nn u∞=∑收敛,则级数1(100)nn u∞=+∑收敛还是发散? .例58.判定级数12sin3n nn π∞=∑的收敛性解 这是正项级数法一.用比较判别法 因 22sin()33n nn n u ππ=≤⋅,而12()3n n π∞=∑是公比213q =<的等比级数,收敛,由比较判别法,知原级数收敛.法二.用比值判别法 因111112si n3l i m l i m 2si n 3223l i m 1.323n n n n n n n n n n n n nu u ππππ+++→∞→∞++→∞=⋅==<⋅无穷小替换,由比值判别法,知原级数收敛. 例59判断级数111(1)ln(1)n n n ∞-=-+∑的收敛性.解 因 111ln(1)ln(2)n n u u n n +=>=++(1,2,)n =1l i m 0l n (1)n n →∞=+ ,故由leibniz 判别法,知原交错级数收敛.例60(填空题 )极限2!lim n n n n n→∞的值为0解 以2!n n n n u n=为通项的正项级数,根据比值判别法知其收敛,又据收敛级数的必要条件,知其通项的极限为零.例61证明:若0,lim 0n n n u nu a →∞>=≠,则级数1n n u ∞=∑发散.证明 因为 lim lim01nn n n u n u a n→∞→∞⋅==≠,由0n u >,根据正项级数比值判别法的极限形式,由于11n n ∞=∑为调和级数,发散,所以级数1n n u ∞=∑也发散.(二)求幂级数的收敛半径及收敛区间 1. 用比值判别法2 1()lim()n n n u x u x +→∞=(一般与x 有关),再讨论,求出收敛半径.2. 1l i m n n n aa ρ→∞+=, 则收敛半径为:1R ρ=3.对端点单独讨论后,确定收敛区间. 例62.求幂级数221212n nn n x ∞-=-∑的收敛域. 解 这是缺少奇数次项的幂级数,由比值判别法2,1()lim ()n n nu x u x +→∞=2221221)12(22)12(lim x x n x n n n n n n =-⋅+-+∞→ ⇒ 当2211,2,22x x x <<<时,原级数收敛,收敛半径2R =讨论端点的情况:当2±=x 时,原级数为∑∞=-1212n n 发散,故收敛域)2,2(-例63.将函数21()52x f x x x -=-+展为1x -的幂级数.例64.求幂级数2ln (1)nnn n x n∞=-∑的收敛域;当1x =时,是绝对收敛, 还是条件收敛?并给出证明.(三)利用幂级数和函数的分析性质,求和函数.设幂级数0n n n a x ∞=∑的收敛半径为(0)R >,则在(,)R R -内,和函数具有下列性质:(1)和函数是连续的;(2)()S x 逐项可导,且10()()nn n n n n S x a x na x ∞∞-==''==∑∑;(3)()S x 逐项可积,且10()1xx xnnn n n n n n n a S t dt a t dt a t dt x n ∞∞∞+======+∑∑∑⎰⎰⎰. 注意:求导和积分后的和函数收敛半径不变,但在收敛区间端点可能不同.例65.求幂级数41141n n x n +∞=+∑的和函数.解 设和函数411()41n n x S x n +∞==+∑,易得收敛区间为(1,1)-,利用逐项微分和积分,414442411()()()()41n n n n n x S x x x x x n +∞∞==''===+++++∑∑这是41q x =<的等比级数,由因(0)0S =,故 44440001(1)()()11xxx x x S x S x dx dx dx x x--'===--⎰⎰⎰ =4220011111(1)(1)12121x x dx dx x x x-=-+⋅+⋅-+-⎰⎰ =111arctan ln .241xx x x+-+- (11)x -<< 例66. 求幂级数21121n n x n +∞=+∑的收敛区间,并求其和函数.(四)傅立叶级数(不做考试要求)第十一章 微 分 方 程(一)一阶微分方程的求解1.可分离变量的方程:()()dyf xg y dx=的解法 分离变量后,两边同时积分得通解;2.齐次方程:()dy yF dx x =的解法: 令 y u x =,则()duxu F u dx+=,分离变量并积分,得通解; 3.一阶线性非齐次方程:()()dyp x y q x dx+=的解法解法-常数变易法通解公式为:()()()p x dx p x dx y e q x e dx c -⎡⎤⎰⎰=⋅+⎢⎥⎣⎦⎰ 注:解方程一般直接用常数变易法,当然,也可代通解公式,但公式复杂,且计算和化简时较繁,易出错.(二)二阶线性微分方程的通解结构1.齐次方程:()()0y p x y q x '''++=的通解:是两个线性无关特解12(),()y x y x 的线性组合,即1122()()y c y x c y x =+;2.非齐次方程:()()()y p x y q x y f x '''++=的通解 非齐通(y )=齐通(y )+非齐特(y *)(三)二阶常系数线性齐次方程:0y py q '''++=通解的特征根解法; 二阶常系数线性非齐次方程的两种特殊右端特解的解法. 例67.(单选题)下列微分方程中,通解为212(cos sin )x y e c x c x =+的方程是( B ).450A y y y '''--= .450B y y y '''-+= .250C y y y '''-+= 2.45.x D y y y e '''++=解 B .的特征方程为:2450λλ-+= 4162042222i i λ±-±===±, 2,1αβ== 故通解为: 212(cos sin )x y e c x c x =+.例68.求微分方程0340,,5x x y y y yy ==''''--==-的特解.例69.(填空题)微分方程ln 0xy y y '-=的通解为cx y e =. 这是可分离变量的方程 ln dyx y y dx= 分离变量ln dy dxy y x = 两边积分(l n )ln d y dx y x =⎰⎰得 1l n l n l nl ny x c =+ 111ln ,ln ,.c x cx y c x y c x y e e ±==±== 例70. 求微分方程x y y y 2345-=+'+''的通解。
高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -=,xz F y -=,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为)!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f .(5分) 八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为)(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有x x x x e C e C xe e y --++='2212, x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.4。
11第3、4课时极限运算法则复习

为后续学习洛必达法则以及无穷解决问题的能力,要学5+2”专转本考试内容中在本课教学过程中着重针尤其是对两个重要极限和无穷大与无穷小问题进行分析,使得学生能够深刻体会和理解极限的本二、用两个重要公式 例1.求xxx -→ππsin lim例2.求()x x xx x cos 1sin 1tan 1lim-+-+→解一:原式()()()()x x x x x x x sin 1tan 1cos 11sin 1tan lim+++-+-+=→()()21tan lim 21cos 1cos 1tan lim 2100==--=→→x x x x x x x x 解二:原式()()()()x x x x x x x x x x cos 1sin tan lim 21cos 11sin 11tan 1lim 00--=--+--+=→→21tan lim 210==→x x x 例3.求n n xx x 2cos 4cos 2cos lim ∞→例4.求下列极限 (1)1021lim +∞→⎪⎭⎫ ⎝⎛-x x x (2)xx x x 1011lim ⎪⎭⎫⎝⎛+-→(3)xx x x ⎪⎭⎫⎝⎛+-∞→11lim (4)11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x例5.求下列极限 (1)()xx x cot tan 1lim +∞→ (2)141lim -→x x x(3)()xx x 2cot 0cos lim → (4)()()x x x 3csc 02cos lim →三、用迫敛定理求极限 例1.求⎪⎭⎫⎝⎛-⋅⋅∞→n n n 212654321lim解:令n n x n 212654321-⋅⋅=,1225432+⋅=n ny n 则n n y x <<0, 于是12102+=<<n y x x n n n 由迫敛定理可知0lim 2=∞→n n x ,于是原极限为0。
高数下册(同济六版)复习资料

高等数学下册习题常见类型题型1 求向量的坐标、模、方向角、方向余弦、数量积、向量积 题型2 由已知条件求平面与直线方程 题型3 计算一阶偏导数及高阶偏导数 题型4 求多元复合函数的偏导数 题型5 求方程所确定的隐函数的偏导数题型6 求方向导数、梯度、曲线的切线、曲面的切平面 题型7 求极值、利用拉格郎日乘数法求最值 题型8 利用直角坐标计算二重积分 题型9 利用极坐标计算二重积分 题型10 计算带绝对值的二重积分 题型11 利用二重积分证明恒等式 题型12 利用对称性质计算二重积分 题型13 只有一种积分次序可计算的积分 例1、求24212xdx dx +⎰⎰解:(将二次积分交换顺序)12212242122211sin sin sin sin (1)sin cos1sin1xD D y y D D y y dx dx dxdy dxdyy y yy dxdy dy dx y ydy y y πππππ+=+===-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰题型14 利用投影法计算三重积分 题型15 利用柱坐标计算三重积分 题型16 利用球坐标计算三重积分 题型17 利用切片法计算三重积分 题型18 利用三重积分计算立体的体积 题型19 计算对弧长的曲线积分 题型20 计算对面积的曲面积分 题型21 计算对坐标的曲线积分题型22 利用格林公式计算对坐标的曲线积分 题型23 曲线积分与路径无关及全微分求积 题型24 计算对坐标的曲面积分题型25 利用高斯公式计算对坐标的曲面积分 题型26 可分离变量的微分方程、齐次方程 题型27一阶线性微分方程 题型29 可降阶方程题型30二阶常系数非齐次线性方程第八章向量与解析几何=-c a b第十章 重积分2()(cos ,sin )(cos ,sin )Df d d d f d βϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤ 0θπ≤≤ 2πθπ≤≤ (3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)0(,)f x y x ⎧对于是奇函数,第十一章曲线积分与曲面积分所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高数书题目重点目录整理

高数书题目重点目录整理2015考研数学高等数学教材导学【注】1导学用书:同济大学《高等数学》(上、下册)(第6版)2 请各位学员认真研读课本内容及完成选择习题,打下一个牢固的基础。
无论是教材上的定理、例题,还是课后的习题,曾作为历年的考研真题出现过。
第1章函数、极限、连续1、映射与函数(一)复习内容P1-16(表示1至16页,下同),双曲函数开始之后的不复习。
(二)选做习题P21-22 第4-12题,第14-16题。
2、数列的极限(一)复习内容P23-30(二)选做习题P30-31 第1、5、6题。
3、函数的极限(一)复习内容P31-37(二)选做习题P37-39 第1-4题,第12题。
4、无穷小与无穷大(一)复习内容P39-41(二)选做习题P42 第4、5、6、7题。
5、极限运算法则(一)复习内容P43-49(二)选做习题P49 第1-5题。
6、极限存在准则两个重要极限(一)复习内容P50-55(除Cauchy极限存在准则)(二)选做习题P56-57 第1、2、4题。
7、无穷小的比较(一)复习内容P57-59(二)选做习题P59-60 第1-4题。
8、函数的连续性与间断点(一)复习内容P60-64(二)选做习题P64-65 第1-5题,第7-8题。
9、连续函数的运算与初等函数的连续性(一)复习内容P66-69(二)选做习题P69-70 习题1-9全做P74 总习题一第1-13题。
第2章函数、极限、连续1、导数概念(一)复习内容P77-86(二)选做习题P86-88 习题2-1全做。
2、函数的求导法则(一)复习内容P88-96(例17不学)(二)选做习题P97-99 第1、5题,第5-11题,第13、14题。
3、高阶导数(一)复习内容P99-102(二)选做习题P103 习题2-3除第5题全做。
4、隐函数及由参数方程所确定的函数的导数相关变化率(一)复习内容P104-111(二)选做习题P111-113 习题2-4除第9题全做。
高中数学总复习全套讲义

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为_____.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是______个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+. (1)若P Q P ⋃=,求实数a 的取值范围; (2)若P Q ⋂=∅,求实数a 的取值范围; (3)若{03}P Q x x ⋂=≤<,求实数a 的值.第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论: 若集合P Q ⊆,则P 是Q 的充分条件; 若集合P Q ⊇,则P 是Q 的必要条件; 若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力. 【基础练习】1.若p q ⇒,则p 是q ,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空. (1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件. (2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件. 3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件; (4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_ 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围.2012高中数学复习讲义第二章函数A【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
【精品】07高等数学(下)期末复习题.doc

高等数学A C二丿期耒夏习題一.填空题1、 __________________________________________________________________________________ 设A = 2a + 3b,B = 3a-b, \a\ = 2,问= 4,(©%)=专,则A与直的夹角为____________________________ 。
2、过点(-1,4,3)H与直线兀-3 = * = 三平行的直线方程为________________________________ o3、方程兀2_4丁2+宓2=/儿当。
=0, b = 2;。
= 一4, & = -2;。
=0, b = 0时依次表示的曲面是__________________ ,________________ , __________________ O4、 ____________________________________________________ 设 /(%, y) = x + (y - l)arcsin ,则/Y(x,l)= , f y(0,1)=___________________________________________ 。
5、 _________________________________________________________________ 设u = x2 -xy + y2,花(1,1),I = (cos a, sin a),则%心= ____________________________________________ ,在 __________ 方向上,方向导数最大;在_____________ 方向上,方向导数有最小值;在______________ 方向上,方向导数为();grad M(/^)= _______________________ o6、 ____________________________________________________ 设x2 sin y-Jy\nz = 3,则乎= _ ,李=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线方程
x 1 8
y 1 10
z2 7
法平面方程
8 ( x 1 ) 10 ( y 1 ) 7 ( z 2 ) 0
12
11 .设三个实数
x
x 、 y ( y 0 ) 和 z 满足
x
y e z 3 , 求 ye 证明 ye
x
z 的最大值,并
z 1.
f ( 0 , y ) f ( 0 ,0 ) y
x 0
lim
0 x
0 y
x 0
0
f y ( 0 , 0 ) lim
y 0
lim
y 0
0
所以在点( 0 , 0 ) 偏导数都存在
f [ f x ( 0 ,0 ) x f y ( 0 ,0 ) y ] | xy |
2 2
的定义域并画图
.
解 : 定义域为
y x x 0 2 2 x y 1
2 . lim
x y x y 1 1
x0 y 0
lim
( x y )(
x y 1 1)
x0 y 0
x y 11
lim (
x0 y 0
x y 1 1) 2
3
3 . lim
sin( x y )
4 4
x0 y 0
x y
2
2
lim
x y
4 2
4 2
x0 y 0
x y y
2 4 2
lim
x
2
4 2
x0 y 0
x y
lim
2 2
x0 y 0
x y
00 0
4 .证明 lim
x y
2 2
x0 y 0
V 4 xy ( 2 z ) ( x 0, y 0, z 0)
x y )
2 2
作 F ( x , y , z , ) 4 xy ( 2 z ) ( z
令 F x 4 y(2 z)
x
x y y
2 2
0
(1)
F y 4 y(2 z)
f ( 0 ,1) 1,即为最大值
f ( x, y) 1
从而 ye
x
z 1.
14
12 . 在圆锥面 z x y 与平面 z 2 所围成的锥体内作 底面与xOy 面平行的长方体,求最大长方体的体积。
2 2
解 设长方体的一个顶点 M ( x , y , z ) 在锥面,则长方体 的体积:
z dv
2
其中 为 x y z 4 与 z 1公共部分 .
解法 1 :
z dv
2
1
2
z dz
2
2
d
Dz
解法 2 :
1
2
z ( 4 z ) dz
2
27 5
z dv
2
2
2
z dv
2
2 2
2 2
z dv
21
2
x y z 4
2,
4 3
)
依题意必有最大值,从而长方体的最大体积为
V 4( 2 3 2 ) (2
2
4 3
)
64 27
16
多元函数的积分学
一、基本题型
1 .在直角坐标系下计算二
重积分 ,
2 .在极坐标系下计算二重
积分 ,
3 .三重积分的四种计算方
4 .二重积分及三重积分的 体积、曲面面积、重心
法.
应用
、转动惯量
《高等数学》(下)总
多元函数的微分学
一、基本题型
1 .求多元函数的定义域并 2 .求多元函数的极限及证
复习
用图表示; 明不存在的方法。
3 .偏导数及求法。
4 .全微分及求法 .
在、全微分存在的关系
5 .多元函数连续、偏导存
。
6 .复合函数求导法则
7 .隐函数求导法则
( 抽象函数求高阶导
( 3 种情况 ).
( f ( x , y , z ) 1 x 与 y , z 无关 )
故采用“先二后一”的方法较方便, 即 4 4 4
I
(1 x ) dxdydz
dx
2
2
(1
2 2
x ) dydz
y z x
4 2
(1 x ) x dx
4 2
4
( x x ) dx 2340
而A f
2
x
2 ( 0 ,1 )
2, B
2
f
2
xy
1, C
( 0 ,1 )
f
2
y
2 ( 0 ,1 )
2
AC B
( 2 ) ( 2 ) ( 1) 3 0 , 且 A 0 ,
2
f ( x , y ) 在点 ( 0 ,1) 处取得极值
x
解: y e
z 3,
x
z 3 ye ,
x
x x
令 f ( x , y ) ye
f x
x
z ye ( 3 e y )
x
ye ( 3 2 e
y)
f y
e (3 e
x
x
2 y)
13
f x 3 2e y 0 x 唯一驻点 x 0 , y 1 令 f x 3e 2y 0 y
)( 2 x sin t
x cos t x y
2
)
9
8 .已知
x z
ln
z y
确定 z z ( x , y ), 求
z
2
x
2
.
解 : 令 F ( x , y , z ) x ln z x ln z ln y
z
1 z x
y
z
z x
Fx Fz
D
dxdy x y
2 2
4a ( x y )
2 2 2
y a
a x
2
2
r 2 a sin
y x
0 2 a sin
4
d
4
rdr r 4a r
2 2
2
0
32
20
3 .用多种方法计算
2 2
2
dy 2x 4 x 6 y dx 2 z dz 6 x 2 y dx dz dx dy dx 0
解 : 方程组对 x 求导
dy
在点 M 0 (1 , 1 , 2 ) 处
5
,
dz
7 8
dx 4 dx 5 7 1 T {1, , } { 8 ,10 , 7 } 4 8 8
x
x
2y
dy
4
dx
2
2
sin
x
x
2y
dy
解 : 原式
sin
D
x
2y
y
2
dxdy
2
dy
1
sin
y
x
2y
dx
4 ( 2 )
3
19
2.
a
dx
0
a
a x
2
2
1 x y
2 2
x
dy
2 2 2
(a 0)
4a ( x y )
解 : 原式
解 : f x (1, 2 ) [ f ( x , 2 ) ]
x
x 1
2
[ x 2 0 ]
2 x
x x 1
x 1
( 2 x 2 x 2 ln 2 )
4 ln 4
f y (1, 2 ) [ f (1, y ) ]
y2
( y )
y2
1
5
6.证明:函数 f ( x , y ) 在、但不可微.
证明 : lim f ( x , y ) lim
x0 y 0 x0 y 0
| xy | 在点 ( 0 , 0 )
| xy | 0 f ( 0 , 0 )
连续、偏导数存
所以在点 ( 0 , 0 ) 连续
f x ( 0 , 0 ) lim f ( x ,0 ) f ( 0 ,0 ) x
x y z 4 , z 1
2
2
z dv z dv
2
x y z 4
x y z 4 , z 1
2 0
d
0
sin cos
2
2 0
r dr
4
2 0
d
3
rdr
0
4r 1
2
z dz
2
27 5
解法 3 :
0
2
( 2)
x y
2
F z 4 xy 0
z x y
2 2
( 3)