七年级数学数轴测试题
人教版七年级上册数学期末复习专项——《数轴类综合问题》(二)

人教版七年级上册数学期末复习专项——《数轴类综合问题》(二)1.如图,已知数轴上点A表示的数为6,点B是数轴上在A点左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动.(1)数轴上点B表示的数是;(2)运动1秒时,点P表示的数是;(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?相遇时对应的有理数是多少?②当点P运动多少秒时,点P与点Q的距离为8个单位长度.2.如图,直线l有上三点M,O,N,MO=3,ON=1;点P为直线l上任意一点,如图画数轴.(1)当以点O为数轴的原点时,点P表示的数为x,且点P到点M、点N的距离相等,那么x的值是;(2)当以点M为数轴的原点时,点P表示的数为y,当y=时,使点P到点M、点N的距离之和是5;(3)若以点O为数轴的原点,点P以每秒2个单位长度的速度从点O向左运动时,点E从点M以每秒1个单位长度速度向左运动,点F从点N每秒3个单位长度的向左运动,且三点同时出发,求运动几秒时点P、点E、点F表示的数之和为﹣20.3.如图,在数轴上点A表示的数为20,点B表示的数为﹣40,动点P从点A出发以每秒5个单位长度的速度沿负方向运动,动点Q从原点出发以每秒4个单位长度的速度沿负方向运动,动点N从点B出发以每秒8个单位的速度先沿正方向运动,到达原点后立即按原速反方向运动,三点同时出发,出发时间为t (秒).(1)点P、Q在数轴上所表示的数分别为:、;(2)当N、Q两点重合时,求此时点P在数轴上所表示的数;(3)当NQ=PQ时,求t的值4.如图,已知A、B两点在数轴上,点A表示的数为﹣10,2OB=3OA,点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B表示的数是多少?(2)设运动的时间为t(t>0)秒,当t为何值时,P,Q两点相遇?(3)在P,Q运动时间都超过8秒的情况下,当点P运动到什么位置时,恰好使OP=2OQ?5.已知数轴上M、O、N三点对应的数分别为﹣2、0、6,点P为数轴上任意一点,其对应的数为x.(1)求MN的长;(2)若点P是MN的中点,则x的值是.(3)数轴上是否存在一点P,使点P到点M、N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:例如,若数轴上A点、B点表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点M表示的数为.【问题情境】在数轴上,点A表示的数为﹣20,点B表示的数为10,动点P从点A出发沿数轴正方向运动,同时,动点Q也从点B出发沿数轴负方向运动,已知运动到4秒钟时,P、Q两点相遇,且动点P、Q运动的速度之比是3:2(速度单位:单位长度/秒).【综合运用】(1)点P的运动速度为单位长度/秒,点Q的运动速度为单位长度/秒;(2)当PQ=AB时,求运动时间;(3)若点P、Q在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点P、Q的运动,线段PQ的中点M也随着运动.问点M能否与原点重合?若能,求出从P、Q相遇起经过的运动时间,并直接写出点M的运动方向和运动速度;若不能,请说明理由.7.如图,数轴上A、B两点分别位于原点两侧(点A在原点左侧,点B在原点右侧),AO =2BO,点A在数轴上对应数是﹣800.动点P、Q同时从原点出发分别向左、向右运动,速度分别为8个单位长度/秒、4个单位长度/秒,同时,动点R也从点A出发向右运动,速度为2个单位长度/秒.设运动时间为t秒.(1)填空:①点B在数轴上对应的数是;②点P在数轴上对应的数是;点Q在数轴上对应的数是;点R在数轴上对应的数是;(用含t的代数式表示)(2)t为何值时,动点R与动点P之间距离为200个单位长度?(3)若点M、N分别为线段PQ、RP的中点,当t≤100秒时,2MN﹣MB的值是否发生变化?若变化,请说明理由:若不变,求其值.8.我们把数轴上表示数﹣1的点称为离心点,记作点Φ,对于两个不同的点M和N,若点M、N到离心点Φ的距离相等,则称点M、N互为离心变换点.例如:图1中,因为表示数﹣3的点M和表示数1的点N,它们与离心点Φ的距离都是2个单位长度,所以点M、N互为离心变换点.(1)已知点A表示数a,点B表示数b,且点A、B互为离心变换点,①若a=﹣4,则b=;若b=π,则a=.②用含a的式子表示b,则b=.③若把点A表示的数乘以3,再把所得数表示的点沿着数轴向左移动3个单位长度恰好到点B,则点A表示的数是(2)若数轴上的点P表示数m,Q表示数m+6.对P点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的离心变换点,点P2沿数轴向右移动k个单位长度得到P3,P4为P3的离心变换点…,依此顺序不断地重复,得到P5,P6,…,P n①已知P2019表示的数是﹣5,求m的值;②对Q点做如下操作:Q1为Q的离心变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的离心变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n,若无论k为何值,P n与Q n两点间的距离都是26,则n=9.如图,数轴上A、B两点所对应的数分别是a和b,且(a+5)2+|b﹣7|=0.(1)则a=,b=;A、B两点之间的距离=.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?请直接写出此时点P所对应的数,并分别写出是第几次运动.10.如图,A、B是数轴上两点,点A表示的数是a,点B表示的数是b,满足:|a+b|+(b﹣10)2=0,点C是线段AB上一点,满足BC=2AC.(1)直接写出a=,b=,c=;(2)如图1,若动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回;动点Q从点C出发,以1cm/s的速度向右运动,设它们同时出发,运动时间为t(s),当点P与点Q第二次重合时,P、Q两点停止运动:①当t为何值时,P、Q第一次相遇?②当t为何值时,P、Q两点之间的距离为2?(3)如图2,若数轴上点D对应的数是8,若线段BD固定不动,线段AC以每秒2个单位的速度向右运动,E、F分别是AC、BD的中点,在线段AC向右运动的过程中,是否存在某个时间段,始终有EF+AD为定值,若存在,请求出这个定值;若不存在,请说明理由.参考答案1.解:(1)∵点A表示的数为6,AB=10,且点B在点A的左侧,∴点B表示的数为6﹣10=﹣4.故答案为:﹣4.(2)6﹣3×1=3.故答案为:3.(3)设运动的时间为t秒,则此时点P表示的数为6﹣3t,点Q表示的数为2t﹣4.①依题意,得:6﹣3t=2t﹣4,解得:t=2,∴2t﹣4=0.答:当点P运动2秒时,点P与点Q相遇,相遇时对应的有理数是0.②点P,Q相遇前,6﹣3t﹣(2t﹣4)=8,解得:t=;当P,Q相遇后,2t﹣4﹣(6﹣3t)=8,解得:t=.答:当点P运动秒或秒时,点P与点Q的距离为8个单位长度.2.解:(1)当点O为原点时,点M表示的数为﹣3,点N表示的数为1,依题意,得:1﹣x=x﹣(﹣3),解得:x=﹣1.故答案为:﹣1.(2)当点M为原点时,点O表示的数为3,点N表示的数为4,∴PM=|x|,PN=|x﹣4|.∵PM+PN=5,∴|x|+|x﹣4|=5,即﹣x+4﹣x=5或x+x﹣4=5,解得:x=﹣或x=.故答案为:或.(3)当点O为原点时,点M表示的数为﹣3,点N表示的数为1,∴运动时间为t秒时,点P表示的数为﹣2t,点E表示的数为﹣3﹣t,点F表示的数为1﹣3t,依题意,得:﹣2t+(﹣3﹣t)+(1﹣3t)=﹣20,解得:t=3.答:运动3秒时点P、点E、点F表示的数之和为﹣20.3.解:(1)当运动时间为t秒时,点P表示的数为20﹣5t,点Q表示的数为﹣4t.故答案为:20﹣5t,﹣4t.(2)当0<t≤5时,点N表示的数为8t﹣40;当t>5时,点N表示的数为﹣8(t﹣5)=40﹣8t.∵当N、Q两点重合,∴8t﹣40=﹣4t或40﹣8t=﹣4t,解得:t=或t=10.当t=时,20﹣5t=;当t=10时,20﹣5t=﹣30.∴当N、Q两点重合时,点P在数轴上所表示的数为或﹣30.(3)依题意,得:|﹣40+8t﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|或|﹣8t+40﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|,解得:t1=,t2=(不合题意,舍去)或t1=,t2=12.答:t的值为或或或12.4.解:(1)∵点A表示的数为﹣10,∴OA=10.∵2OB=3OA,∴OB=15.又∵点B在点O的右侧,∴数轴上点B表示的数是15.(2)当运动时间为t秒时,点P表示的数为3t﹣10,点Q表示的数为﹣2t+15.依题意,得:3t﹣10=﹣2t+15,解得:t=5.答:当t为5秒时,P,Q两点相遇.(3)当运动时间为t秒时(t>8),点P表示的数为3t﹣10,点Q表示的数为﹣2t+15,∴OP=3t﹣10,OQ=2t﹣15.∵OP=2OQ,∴3t﹣10=2(2t﹣15),解得:t=20,∴3t﹣10=50.答:当点P运动到50时,恰好使OP=2OQ.5.解:(1)∵M、N对应的数分别为﹣2、6,∴MN=6﹣(﹣2)=8;(2)∵P是MN的中点,∴PN=MN=4,∴x=2,故答案为2;(3)存在点P到M、N的距离之和是10.∵MN=8,∴P点的位置可以分为两种情况:①当点P在点M的左边时,PN+PM=10,此时:(﹣2﹣x)+(6﹣x)=10,解得:x=﹣3;②当点P在点N的右边时,PN+PM=10,此时:(x﹣6)+[x﹣(﹣2)]=10,解得:x=7,所以数轴上存在点P,x=﹣3或x=7,使PN+PM=10.6.解:(1)设动点P、Q运动的速度分别为3x、2x单位长度/秒.则4×3x+4×2x=30,(或﹣20+4×3x=10﹣4×2x),解得x=1.5,3x=4.5(单位长度/秒),2x=3(单位长度/秒)故答案为4.5,3;(2)设运动时间为t秒.由题意知:点P表示的数为﹣20+4.5t,点Q表示的数为10﹣3t,则|(﹣20+4.5t)﹣(10﹣3t)|=×|(﹣20)﹣10|整理得|7.5t﹣30|=10,解得:t=或,答:运动时间为或秒;(3)点P、Q在相遇点表示的数为﹣20+4×4.5=﹣2,设从点P、Q相遇起经过的时间为t秒时,线段PQ的中点M与原点重合.①点P、Q均沿数轴正方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);②点P沿数轴正方向运动,点Q沿数轴负方向运动,则:,解得:t=,此时点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒);③点P沿数轴负方向运动,点Q沿数轴正方向运动,则:,解得:t=﹣(舍去),此时点M不与原点重合;④点P沿数轴负方向运动,点Q沿数轴负方向运动,则:,解得:t=﹣,此时点M不与原点重合;综上所述:点M与原点重合,它沿数轴正方向运动,运动速度为(单位长度/秒)或沿数轴正方向运动,运动速度为(单位长度/秒).7.解:(1)①∵AO=2BO,点A在数轴上对应数是﹣800,∴BO=400,∵点B在原点右侧,∴点B在数轴上对应的数是400;故答案为:400;②由题意得:OP=8t,OQ=4t,AR=2t,∴点P在数轴上对应的数是﹣8t;点Q在数轴上对应的数是4t;点R在数轴上对应的数是2t﹣800;故答案为:﹣8t;4t;2t﹣800;(2)①如图1所示:由题意得:2t+8t=800﹣200,解得:t=60;②如图2所示:2t+8t=800+200,解得:t=100;综上所述,t为60秒或100秒时,动点R与动点P之间距离为200个单位长度;(3)t秒后点M表示的数为=﹣2t,点N表示的数为=﹣400﹣3t,∴MN=|﹣2t﹣(﹣400﹣3t)|=|t+400|=t+400,MB=400﹣(﹣2t)=400+2t,∴2MN﹣MB=2(t+400)﹣(400+2t)=400,∴2MN﹣MB为定值400.8.解:(1)①∵点A表示数a,点B表示数b,点A与点B互为离心变换点,∵a+b=﹣2.当a=﹣4时,b=2;当b=π时,a=﹣2﹣π.故答案为:2;﹣2﹣π.②∵a+b=﹣2,∴b=﹣2﹣a.故答案为:﹣2﹣a.③设点A表示的数为x,根据题意得:3x﹣3+x=﹣2,解得:x=.故答案为:.(2)①由题意可知:P1表示的数为m+k,P2表示的数为﹣2﹣(m+k),P3表示的数为﹣2﹣m,P4表示的数为m,P5表示的数为m+k,…,可知P点的运动每4次一个循环,∵2019=504×4+3∴P2019表示的数是﹣2﹣m,由题意﹣2﹣m=﹣5解得m=3②设点P表示的数为m,则点Q表示的数为m+6,由题意可知:P1表示的数为m+k,P2表示的数为﹣2﹣(m+k),P3表示的数为﹣2﹣m,P4表示的数为m,P5表示的数为m+k,…,Q1表示的数为﹣2﹣m﹣6,Q2表示的数为2+m+6,Q3表示的数为﹣4﹣m﹣6,Q4表示的数为4+m+6,Q5表示的数为﹣6﹣m﹣6,Q6表示的数为6+m+6,…,∴P4n=m,Q4n=m+6+4n.令|m﹣(m+6+4n)|=26,即|6+4n|=26,解得:4n=20或4n=﹣32(舍弃).故答案为20.9.解:(1)∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12.故答案是:﹣5;7;12;(2)设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019,=﹣5+1009﹣2019,=﹣1015.答:点P所对应的数为﹣1015;(3)设点P对应的有理数的值为x,①当点P在点A的左侧时:P A=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:P A=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:P A=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.10.解:(1)∵|a+b|+(b﹣10)2=0,∴a+b=0,b﹣10=0∴b=10,a=﹣10∴BA=b﹣a=10﹣(﹣10)=20∵BC=2AC,BC+AC=AB∴3AC=20∴AC=∴c=﹣10+故答案为:﹣10;10;(2)依题意得:点Q表示的数q=+t0≤t≤时,点P向右运动,表示的数p=﹣10+3tt>时,点P往回向左运动,表示的数p=10﹣(3t﹣20)=﹣3t+30①解得:t=∴t的值为时,P、Q第一次相遇.②当P、Q第二相遇时,﹣3t+30=+t解得:t=∴t的取值范围是0≤t≤∵PQ=|p﹣q|=2当0≤t≤时,|﹣10+3t﹣(+t)|=2解得:t1=,t2=当t>时,|﹣3t+30﹣(+t)|=2解得:t1=,t2=(舍去)∴t的值为或或时,P、Q两点之间的距离为2.(3)存在满足条件的情况.依题意得:a=﹣10+2t,c=+2t,∴AC中点E表示的数e=+2t∵D表示8,B表示10∴BD中点F表示的数是9①如图1,当E在点F左侧时,+2t<9,即t<EF=9﹣(+2t)=﹣2t,AD=8﹣(﹣10+2t)=18﹣2t∴EF+AD=﹣2t+18﹣2t=﹣4t不是定值.②如图2,当点E在F右侧,点A在D左侧时,﹣10+2t<8,即<t<9 EF=﹣+2t﹣9=2t﹣,AD=18﹣2t∴EF+AD=2t﹣+18﹣2t=是定值.③如图3,点A在D右侧时,﹣10+2t>8,即t>9EF=2t﹣,AD=﹣10+2t﹣8=2t﹣18∴EF+AD=4t﹣不是定值.综上所述,<t<9时,EF+AD的值为定值.。
人教版七年级数学知识点试题精选-关于数轴的习题

七年级上册关于数轴的习题一.选择题(共20小题)1.在数轴上与表示数﹣3的点的距离等于2的点表示的数是()A.1 B.﹣5 C.﹣1或﹣5 D.﹣1或52.数轴上在表示﹣2.5与的两点之间,表示整数的点个数是()A.3 B.4 C.5 D.63.数轴上有两点A、B,它们分别对应着7和b,|7﹣b|小于等于10,求m=5﹣2b的取值范围______A.﹣1<m<39 B.﹣39<m<1 C.﹣29<m<11 D.﹣11<m<294.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,其中AB=BC,如果点A到原点的距离最大,点B到原点的距离最小,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点C的右边5.有理数a,b在数轴上位置如下,则下列各式中正确的是()A.a+b>0 B.a+b<0 C.ab>0 D.|b|<|a|6.数轴上表示﹣5和﹣2两点间的距离的单位长度是()A.﹣7个B.﹣3个C.3个 D.4个7.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣2.6 C.﹣1.4 D.2.68.在数轴上把表示2的点移动5个单位长度后,所得的对应点是()A.7 B.﹣3 C.7或﹣3 D.不能确定9.一个水利勘察队沿河向上游走了千米,又继续向上游走了千米,然后向下游走了千米,接着又向下游走了千米,这时勘察队在出发点的()A.上游千米处B.下游1千米处C.上游千米处D.下游千米处10.数轴上表示﹣5的点到原点的距离为()A.5 B.﹣5 C.D.﹣11.已知a、b在数轴上的位置如图所示,那么下面结论正确的是()A.a﹣b<0 B.a+b>0 C.ab<0 D.12.下面所画直线是数轴的是()A.B.C.D.13.在数轴上与﹣2的距离等于4的点表示的数是()A.2 B.﹣6 C.2或﹣6 D.无数个14.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.415.数轴上表示﹣5的点在()A.﹣5与﹣6之间B.﹣6与﹣7之间C.5与6之间D.6与7之间16.在数轴上,如果将点A向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是0,则点A所表示的数为()A.﹣2 B.﹣1 C.2 D.117.如图,在数轴上有三个点A、B、C,分别表示数﹣5,﹣3.5,5,现在点C 不动,点A以每秒2个单位长度向点C运动,同时点B以每秒1.5个单位长度向点C运动,则先到达点C的点为()A.点A B.点B C.同时到达D.无法确定18.在数轴上与原点的距离小于4的整数点有()A.5个 B.6个 C.7个 D.8个19.数轴上表示到﹣3的点的距离为4的点表示数是()A.1 B.﹣7 C.1或﹣7 D.不确定20.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的是()A.5 B.﹣1C.5或﹣1 D.以上答案都不对二.填空题(共20小题)21.数轴上表示﹣15和表示﹣7的两点之间距离是.22.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程和结果为:.23.数轴上与﹣3距离4个单位的点表示的数是.24.数轴上点A和点B的距离为6,点A表示数﹣2,则B点所表示的数为.25.利用数轴填空:(1)在数轴上表示﹣5的点与表示2的点的距离是;(2)数轴上点A表示的数为﹣5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是;(3)在数轴上,到原点距离不大于2的所有整数有.26.点M从数轴的原点开始,先向左移动3个单位长度,再向右移动2个单位长度,此时点M所表示的数是.27.有理数a、b在数轴上的位置如图所示:化简|a﹣b|﹣(﹣a)﹣|b|=.28.数轴距离原点3个单位的点有个,他们分别表示数是.29.如图,数轴上点A所表示的数是.30.有理数a、b在数轴上位置如图所示,则|a+b|﹣|b﹣a|=.31.数轴上一个点到﹣3所表示的点的距离为4,那么这个点在数轴上所表示的数是.32.在数轴上,﹣4与之﹣6间的距离是.33.在数轴上A点离原点的距离是2,B点离原点的距离是1,则线段AB的长是.34.数轴上与原点的距离是9的点表示的数是.35.大于且小于的整数是.36.在用1个单位长度表示1的数轴正方向上,距原点1.6个单位长度的点所表示的数是.37.在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是.38.在数轴上,点M表示的数是﹣3,将它先向右移动7个单位,再向左移动10个单位到达点N,则点N表示的数是.39.小李不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数有个.40.数轴上A点表示的数为﹣3,则到A点距离为3个单位长度的点表示的数是.三.解答题(共10小题)41.在数轴上,点A表示+2,从点A沿数轴向左移动4个单位长度到点B,B表示的有理数是多少?如果从点B再向右移动1个单位长度到点C,点C表示的有理数是多少?42.把下列各数在数轴上表示出来:﹣3,+2,0,,+5.43.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?44.邮递员骑车从邮局出发,先向南骑行2km,到达A村,继续向南骑行3km 到达B村,然后向北骑行9km到达C村,最后回到邮局.(1)以邮局为原点,以向北为正方向,用0.5cm示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)邮递员一共骑了多少千米?45.小强的妈妈和小强上街买文具和书籍,两个人走了,已知文具店、书店、服装店和玩具店都依次坐在某东西走向的商业街上,文具店在书店西20m处,服装店位于书店东30m处,玩具带你位于服装店东100m处,妈妈打电话说:“小强,你在哪里?”小强在电话中说“我在玩具店,你呢?”妈妈回答说:“我在文具店给能买文具呢!”根据他们的对话,请你利用数轴表示小强和妈妈的位置,并计算此时他们之间的距离.46.在数轴上有三个点A、B、C,如图所示,填空或解答下列问题.(1)将点B向左移动3个单位,此时该点表示的数是.(2)将点C向左移动6个单位得到数x,再向右移动3个单位得到数y,比较x、y的大小;(3)怎样移动A、B两点,才能使移动后的A、B两点表示的数的和与点C表示的数相等?(注:只需要写一种移动方式即可)47.如图,已知在纸面上有一数轴,现将数轴沿数轴上某点对折.(1)若对折后数3表示的点与数﹣3表示的点重合,则数﹣8表示的点与数表示的点重合(2)若对折后数﹣2表示的点与数4表示的点重合,回答以下问题:①数13表示的点与数表示的点重合②若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数各是多少?48.已知多项式x3﹣3xy2﹣4的常数项是a,次数是b.(1)则a=,b=,并将这两数在数轴上所对应的点A,B表示出来;(2)数轴上在点B右边一点C到A,B两点的距离和为11,求点C在数轴上所对应的数.49.东西向的大街上,其中医院位于小明家东100米处,学校位于小明家西150米处,书店位于小明家西400米处.请你以小明家为原点,向东为正,将学校、医院、书店的位置在数轴上表示出来.若小明从家中出发,先到医院看医生,然后以每分钟50米的速度前往书店方向走了8分钟,请问小明这时在书店哪一边且距书店多远?50.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C 在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.七年级上册关于数轴的习题参考答案与试题解析一.选择题(共20小题)1.在数轴上与表示数﹣3的点的距离等于2的点表示的数是()A.1 B.﹣5 C.﹣1或﹣5 D.﹣1或5【分析】分类讨论:当这个点在表示数﹣3的点的左边;当这个点在表示数﹣3的点的右边,然后根据数轴上的点表示数的方法即可得到答案.【解答】解:当这个点在表示数﹣3的点的左边,则这个点表示的数为﹣3﹣2=﹣5;当这个点在表示数﹣3的点的右边,则这个点表示的数为﹣3+2=﹣1.故选C.【点评】本题考查了数轴:数轴的三要素(原点、正方向和单位长度);原点左边的点表示的数为负数,右边的点表示的数为正数;左边的点表示的数比右边点表示的数要小2.数轴上在表示﹣2.5与的两点之间,表示整数的点个数是()A.3 B.4 C.5 D.6【分析】首先在数轴上表示出﹣2.5和,根据数轴即可判断.【解答】解:利用数轴表示为:则数轴上在表示﹣2.5与的两点之间的整数有:﹣2、﹣1,0,1,2,3.共有6个.故选D.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.数轴上有两点A、B,它们分别对应着7和b,|7﹣b|小于等于10,求m=5﹣2b的取值范围______A.﹣1<m<39 B.﹣39<m<1 C.﹣29<m<11 D.﹣11<m<29【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.由|7﹣b|≤10,解出b的取值范围,再求出m的取值范围即可.【解答】解:由|7﹣b|≤10得:,即﹣3≤b≤17,所以﹣34≤﹣2b≤6,所以﹣34+5≤5﹣2b≤6+5,﹣29≤5﹣2b≤11.故选C.【点评】此题主要考查了本题考查了有理数大小的比较.解答此题时,采用了分类讨论的数学思想.4.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,其中AB=BC,如果点A到原点的距离最大,点B到原点的距离最小,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C 到原点的距离的大小,从而得到原点的位置,即可得解.【解答】解:∵点A到原点的距离最大,点B最小,且AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点评】本题考查了实数与数轴,理解各点到原点的距离是解题的关键.5.有理数a,b在数轴上位置如下,则下列各式中正确的是()A.a+b>0 B.a+b<0 C.ab>0 D.|b|<|a|【分析】根据数轴可得出a>0,b<0,|a|<|b|,结合选项可得出答案.【解答】解:由题意得,a>0,b<0,|a|<|b|,A、a+b<0,故本选项错误;B、a+b<0,故本选项正确;C、ab<0,故本选项错误;D、|a|<|b|,故本选项错误;故选B.【点评】此题考查了数轴的知识,由数轴观察出a>0,b<0,|a|<|b|,是解答本题的关键,难度一般.6.数轴上表示﹣5和﹣2两点间的距离的单位长度是()A.﹣7个B.﹣3个C.3个 D.4个【分析】根据数轴上两点间的距离公式求解即可.【解答】解:|﹣5+2|=3.故选C.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.7.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣2.6 C.﹣1.4 D.2.6【分析】先根据数轴上A点的位置确定M的取值范围,再根据每个选项中的数值进行判断即可.【解答】解:由数轴上M点所表示的位置可知,﹣2<M<﹣1,只有选项C满足条件.故选:C.【点评】本题考查的是数轴的特点,能根据数轴的特点确定出A的取值范围是解答此题的关键.8.在数轴上把表示2的点移动5个单位长度后,所得的对应点是()A.7 B.﹣3 C.7或﹣3 D.不能确定【分析】设移动后得到的点表示的数为x,根据两点间的距离即可得出关于x的含绝对值符合的一元一次方程,解之即可得出结论.【解答】解:设移动后得到的点表示的数为x,根据题意,得:|x﹣2|=5,解得:x=﹣3或x=7.故选C.【点评】本题考查了数轴、两点间的距离以及解一元一次方程,根据两点间的距离找出关于x的含绝对值符合的一元一次方程是解题的关键.9.一个水利勘察队沿河向上游走了千米,又继续向上游走了千米,然后向下游走了千米,接着又向下游走了千米,这时勘察队在出发点的()A.上游千米处B.下游1千米处C.上游千米处D.下游千米处【分析】规定向上为正,根据题意列式求解即可.【解答】解:规定向上为正,向下为负,根据题意列式:++(﹣)+(﹣)=千米,故选:C.【点评】本题主要考查了数轴,解题的关键是规定方向,正确的列式.10.数轴上表示﹣5的点到原点的距离为()A.5 B.﹣5 C.D.﹣【分析】根据数轴上各点到原点距离的定义进行解答即可.【解答】解:∵在数轴上,表示数a的点到原点的距离可表示为|a|,∴数轴上表示﹣5的点到原点的距离为|﹣5|=5.故选:A.【点评】本题考查的是数轴,熟知数轴上各点到原点的距离等于数轴上各点表示的数的绝对值是解答此题的关键.11.已知a、b在数轴上的位置如图所示,那么下面结论正确的是()A.a﹣b<0 B.a+b>0 C.ab<0 D.【分析】先根据数轴可以得到a>0,b<0,再利用实数的运算法则即可判断.【解答】解:根据点在数轴的位置,知:a>0,b<0,|a|<|b|,A、∵a>0,b<0,|a|<|b|,∴a﹣b>0,故本选项错误;B、∵a>0,b<0,|a|<|b|,∴a+b<0,故本选项错误;C、∵a>0,b<0,∴ab<0,故本选项正确;D、∵a>0,b<0,∴<0,故本选项错误.故选C.【点评】本题主要考查了利用数轴来进行实数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.下面所画直线是数轴的是()A.B.C.D.【分析】数轴的三要素:原点,正方向,单位长度,三者同时满足才是数轴.【解答】解:(A)原点左边的数,从左往右是不断增大,故A错误,(B)没有正方向,故B错误,(C)没有原点,故C错误,(D)三要素都满足,故选(D).【点评】本题考查数轴的三要素,需要同学认清数轴的本质.13.在数轴上与﹣2的距离等于4的点表示的数是()A.2 B.﹣6 C.2或﹣6 D.无数个【分析】根据题意画出数轴,找出所求点表示的数即可.【解答】解:根据题意得:﹣2+4=2或﹣2﹣4=﹣6,则在数轴上与﹣2的距离等于4的点表示的数是2或﹣6.故选C.【点评】此题考查了数轴,画出相应的数轴是解本题的关键.14.如图,数轴上点M所表示的数可能是()A.1.5 B.﹣1.6 C.﹣2.6 D.﹣3.4【分析】由数轴可知:M所表示的数在﹣3与﹣2之间.【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,故选(C)【点评】本题考查利用数轴表示数的大小,属于基础题型.15.数轴上表示﹣5的点在()A.﹣5与﹣6之间B.﹣6与﹣7之间C.5与6之间D.6与7之间【分析】由数轴可知:﹣6<﹣5<﹣5,由此得出表示﹣5的点在﹣5与﹣6之间.【解答】解:∵﹣6<﹣5<﹣5,∴﹣5的点在﹣5与﹣6之间.故选:A.【点评】此题考查数轴,理解数轴上点的表示方法与有理数的大小比较是解决问题的关键.16.在数轴上,如果将点A向右移动3个单位长度,再向左移动5个单位长度,终点表示的数是0,则点A所表示的数为()A.﹣2 B.﹣1 C.2 D.1【分析】数轴上的点平移时和数的大小变化规律:左减右加.【解答】解:设点A表示的数是x.则有x+3﹣5=0,x=2.故选C.【点评】掌握平移的关键在于点对应的数的大小变化和平移的规律.17.如图,在数轴上有三个点A、B、C,分别表示数﹣5,﹣3.5,5,现在点C 不动,点A以每秒2个单位长度向点C运动,同时点B以每秒1.5个单位长度向点C运动,则先到达点C的点为()A.点A B.点B C.同时到达D.无法确定【分析】先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间.【解答】解:点A与点C之间的距离为:5﹣(﹣5)=10,点B与点C之间的距离为:5﹣(﹣3.5)=8.5,点A以每秒2个单位长度向点C运动,所用时间为10÷2=5(秒);同时点B以每秒1.5个单位长度向点C运动,所用时间为8.5÷1.5=(秒);故先到达点C的点为A点,故选:A.【点评】本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离.18.在数轴上与原点的距离小于4的整数点有()A.5个 B.6个 C.7个 D.8个【分析】根据数轴上对应点的几何意义,在数轴上标出与原点距离小于4的整数,然后据图回答问题.【解答】解:根据题意,画出数轴:由图知:数轴上与原点距离小于4的整数有﹣3、﹣2、﹣1、0、1、2、3,共七个.故选:C.【点评】本题主要考查了数轴及数轴上对应点的几何意义,用几何方法借助数轴来求解,非常直观,体现了数形结合的数学思想.19.数轴上表示到﹣3的点的距离为4的点表示数是()A.1 B.﹣7 C.1或﹣7 D.不确定【分析】此题注意考虑两种情况:该点在﹣3的左侧,该点在﹣3的右侧.【解答】解:根据数轴的意义可知,在数轴上与﹣3的距离等于4的点表示的数是﹣3+4=1或﹣3﹣4=﹣7.故选:C.【点评】本题主要考查了数轴,要注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.20.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的是()A.5 B.﹣1C.5或﹣1 D.以上答案都不对【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故选C.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.二.填空题(共20小题)21.数轴上表示﹣15和表示﹣7的两点之间距离是8.【分析】根据题意得出算式(﹣7)﹣(﹣15),求出即可.【解答】解:数轴上表示﹣15和表示﹣7的两点之间距离是(﹣7)﹣(﹣15)=8,故答案为:8.【点评】本题考查了数轴的应用,关键是能根据题意得出算式.22.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程和结果为:﹣2.【分析】根据“左减右加”的法则计算即可.【解答】解:∵向左移动5个单位长度表示的数是﹣5,∴再向右移动3个单位长度表示的数是﹣5+3=﹣2.故答案为:﹣2.【点评】本题考查的是数轴,熟知“左减右加”的法则是解答此题的关键.23.数轴上与﹣3距离4个单位的点表示的数是1或﹣7.【分析】设数轴上与﹣3距离4个单位的点表示的数是x,再由数轴上两点间距离的定义得出关于x的方程,求出x的值即可.【解答】解:设这个点表示的数为x,则有|x﹣(﹣3)|=4,即x+3=±4,解得x=1或x=﹣7.故答案为:1或﹣7.【点评】本题考查的是数轴上两点间的距离,即数轴上两点间的距离等于两点所表示数的差的绝对值.24.数轴上点A和点B的距离为6,点A表示数﹣2,则B点所表示的数为﹣8或4.【分析】根据数轴上的点的表示方法,找到点的位置即可.【解答】解:如图所示:点A表示数﹣2,则B点所表示的数为﹣8或4,故答案为:﹣8,4【点评】此题主要考查了数轴,关键是掌握距离A点6个单位,可能在A的右侧,也可能在A的左侧.25.利用数轴填空:(1)在数轴上表示﹣5的点与表示2的点的距离是7;(2)数轴上点A表示的数为﹣5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是﹣13;(3)在数轴上,到原点距离不大于2的所有整数有±2,±1,0.【分析】(1)根据数轴上点的意义可知数轴上表示﹣5的点与表示2的点的距离是|﹣5﹣2|=7.(2)根据数轴是以向右为正方向,故数的大小变化和平移变化之间的规律:左减右加,即可求解.(3)先得出数轴上到原点距离不大于2的所有数的取值范围,再求得正整数即可.【解答】解:(1)∵﹣5<0,2>0,∴两点之间的距离为:2﹣(﹣5)=7.故答案为:7;(2)由题意得:数轴上点A表示的数为﹣5,向右移动2个单位长度可表示为+2,再向左移动10个单位长度可表示为﹣10,故这个点表示的数是:(﹣5)+2﹣10=﹣13;故答案为:﹣13;(3)∵数轴上到原点距离不大于2的所有数﹣2≤x≤2,∴满足条件的正整数有:±2,±1,0;故答案为:±2,±1,0.【点评】此题主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.注意数的大小变化和平移变化之间的规律:左减右加.26.点M从数轴的原点开始,先向左移动3个单位长度,再向右移动2个单位长度,此时点M所表示的数是﹣1.【分析】根据向右为正,向左为负进行计算即可.【解答】解:∵点M从数轴的原点开始,先向左移动3个单位长度,再向右移动2个单位长度,∴M点表示的数为:﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查的是数轴,熟知数轴的特点是解答此题的关键.27.有理数a、b在数轴上的位置如图所示:化简|a﹣b|﹣(﹣a)﹣|b|=0.【分析】根据差的绝对值是大数减小数,可化简绝对值.【解答】解:|a﹣b|﹣(﹣a)﹣|b|=b﹣a+a﹣b=0,故答案为:0.【点评】本题考查了数轴,利用了绝对值的意义.28.数轴距离原点3个单位的点有2个,他们分别表示数是±3.【分析】根据题意先画出数轴,便可直观解答.【解答】解:如图:数轴距离原点3个单位的点有2个,他们分别表示数是±3.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想29.如图,数轴上点A所表示的数是﹣2.【分析】根据数轴直接回答即可.【解答】解:数轴上点A所表示的数是﹣2.【点评】此题考查了数轴上的点和实数之间的对应关系.30.有理数a、b在数轴上位置如图所示,则|a+b|﹣|b﹣a|= 2b.【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a,b的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可作出判断.【解答】解:根据数轴可以知道,b<0<a,且|a|>|b|,根据有理数的加法法则可知|a+b|﹣|b﹣a|=a+b﹣(a﹣b)=2b.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.31.数轴上一个点到﹣3所表示的点的距离为4,那么这个点在数轴上所表示的数是1或﹣7.【分析】根据数轴上到一点距离相等点有两个,可得答案.【解答】解:|1﹣(﹣3)|=4,|﹣3﹣(﹣7)|=4,故答案为:1或﹣7.【点评】本题考查了数轴,两点间的距离要用绝对值表示.32.在数轴上,﹣4与之﹣6间的距离是2.【分析】根据数轴上两点间的距离等于这两点表示的两个数的差的绝对值,即较大的数减去较小的数,从而得出答案.【解答】解:根据数轴上两点间的距离等于这两点表示的两个数的差的绝对值,即较大的数减去较小的数,则﹣4与﹣6之间的距离是﹣4﹣(﹣6)=2;故答案为:2.【点评】本题考查了数轴,掌握数轴上两点之间的距离为两个数的差的绝对值是本题的关键.33.在数轴上A点离原点的距离是2,B点离原点的距离是1,则线段AB的长是1或3.【分析】首先根据绝对值的意义分别求得点A,点B所对应的数,再进一步分情况求解.数轴上两点间的距离,即较大的数减去较小的数即可.【解答】解:在数轴上A点离原点的距离是2,则A点为±2;B点离原点的距离是1,则B为±1.则线段AB的长是2﹣1=1,或2﹣(﹣1)=3,或1﹣(﹣2)=3,或﹣1﹣(﹣2)=1.即线段AB的长是1或3.【点评】考查了绝对值的意义和数轴上两点间的距离的计算方法.注意此题应考虑四种情况,最后的结果只有两种情况.34.数轴上与原点的距离是9的点表示的数是±9.【分析】直接利用数轴进而得出符合题意的答案.【解答】解:数轴上与原点的距离是9的点表示的数是:±9.故答案为:±9.【点评】此题主要考查了数轴,正确理解数轴的意义是解题关键.35.大于且小于的整数是﹣3,﹣2,﹣1,0,1,2.【分析】根据题意得出3<a<2,找出之间的整数即可.【解答】解:设此数为a,则根据题意得:﹣3<a<2,∵a是整数,∴a的值是﹣3,﹣2,﹣1,0,1,2,故答案为:﹣3,﹣2,﹣1,0,1,2.【点评】本题考查了数轴和不等式的整数解,主要考查学生的理解能力.36.在用1个单位长度表示1的数轴正方向上,距原点1.6个单位长度的点所表示的数是±1.6.【分析】直接利用距原点1.6个单位长度的点的有两个分别得出答案.【解答】解:由题意可得:距原点1.6个单位长度的点所表示的数是:±1.6.故答案为::±1.6.【点评】此题主要考查了数轴,正确利用分类讨论得出是解题关键.37.在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是﹣0.5或5.5.【分析】根据数轴的特点可知与A点相距3个单位长度的点有两个,一个在点A 的左边,一个在右边,从而可以解答本题.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5﹣3=﹣0.5或2.5+3=5.5.故答案为:﹣0.5或5.5.【点评】本题考查数轴,解题的关键是明确数轴的特点.38.在数轴上,点M表示的数是﹣3,将它先向右移动7个单位,再向左移动10个单位到达点N,则点N表示的数是﹣6.【分析】根据数轴上点的移动规律:左加右减进行计算即可.【解答】解:﹣3+7﹣10=﹣6,故答案为﹣6.【点评】本题考查了数轴,掌握数轴上点的移动规律是解题的关键.39.小李不慎将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数有6个.【分析】根据数轴上右边的数总是大于左边的数,据此即可确定被墨迹盖住部分的整数.【解答】解:墨迹盖住部分的整数有:﹣5,﹣4,﹣3,0,1,2共,6个.故答案是:6.【点评】此题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.40.数轴上A点表示的数为﹣3,则到A点距离为3个单位长度的点表示的数是﹣6或0.。
七年级数学试题(数轴-相反数-绝对值)

七年级数学试题(数轴,相反数,绝对值) 班级___________姓名____________一、填空题1.-2的相反数是 ,0。
5的相反数是 ,0的相反数是 。
2.如果a 的相反数是-3,那么a = 。
如果-a = -4,则a = 3。
―(―2)= . 与―[―(―8)]互为相反数 4。
如果 a ,b 互为相反数,那么a + b = , 5. a+5的相反数是3,那么, a = .6.如果 a 的相反数是最大的负整数,b 的相反数是最小的正整数,则 a + b = 。
7.一个数的相反数大于它本身,那么,这个数是 。
一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 。
8. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。
9. a - b 的相反数是 .10。
一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是 。
11. ______7.3=-; ______0=;______3.3=--; ______75.0=+-.______31=+;______45=--;______32=-+. 12.当a a -=时,0______a ;当0>a 时,______=a13.在数轴上,绝对值为4,且在原点左边的点表示的有理数为_________ 14。
7=x ,则______=x ; 7=-x ,则______=x .15. 如果3>a ,则 ______3=-a ,______3=-a .16. 已知两个数 556 和 283-,这两个数的相反数的和是_________ 17。
已知m 是6的相反数,n 比m 的相反数小2,则 m n + 等于_________ 18.互为相反数两数和为 ,互为倒数两数积为 19.把数5-,5.2,25-,0,213用“<”号从小到大连起来:20.绝对值大于1而小于4的整数有 个,分别是________________________二、选择题1。
人教版数学七年级上册122《数轴》训练习题(有答案)

《数轴》基础训练知识点1(数轴的概念及画法)1.关于数轴,下列说法最准确的是()A.—条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.[2021河北石家庄四十一中模拟]以下是四位同学画的数轴,其中正确的是()A. B.C. D.3.下列所画数轴对不对?如果不对,请指出错在哪里.知识点2(数轴上的点与有理数的关系)4.下列说法正确的是()A.所有的有理数都可以用数轴上的点表示B.数轴上表示﹣2的点有2个C.数轴上的点表示的数不是正数就是负数D.数轴上表示﹣a的点一定在原点的左边5.将数轴上表示数〇的点向左移动3个单位长度后,再向右移动1个单位长度,到达点M,则点M表示的数是()A.3B.4C.2D.﹣26.在数轴上,表示+5的点在原点的______侧,距离原点______个单位长度;表示﹣7的点在原点的______侧,距离原点______个单位长度;两点之间的距离为______个单位长度.7.在数轴上,把表示﹣3的点沿着数轴向负方向移动3个单位长度到达点P,则点P与原点的距离是______.8.如图,数轴上的点M到原点的距离是m,则点M表示的数是______.9.在数轴上表示下列各数:﹣5,0,﹣334,112,﹣2.10.[2021湖南常德澧县一中]快递员骑自行车从快递公司出发,先向西骑行2km 到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到公司.(1)以快递公司为原点,以向东方向为正方向,用0.5cm表示1km,画出数轴,并在该数轴上标出三个村庄的位置;(2)C村离A村有多远?(3)快递员一共骑行了多远?参考答案1.D2.D【解析】A项,没有原点,错误;B项,单位长度不统一,错误;C项,没有正方向,错误.故选D.3.【解析】①②③④所画数轴都不对,⑤所画数轴正确.①错在没有画原点;②错在单位长度不统一;③错在没有单位长度;④错在正方向画反了.4.A【解析】所有的有理数都可以用数轴上的点表示,故A正确;数轴上表示﹣2的点只有1个,故B错误;数轴上的点表示的数可以是正数、负数、0,故C错误;当a=0时,数轴上表示﹣a的点是原点;当a是负数时,数轴上表示的点在原点的右边,故D错误.故选A.5.D【解析】因为将数轴上表示数0的点向左移动3个单位长度后,对应的点表示的数是﹣3,再向右移动1个单位长度,对应的点表示的数是﹣2,即点M表示的数是﹣2.故选D.6.右 5 左7 127.6【解析】因为把表示﹣3的点沿着数轴向负方向移动3个单位长度到达点P,所以点P表示的数是﹣6,所以点P与原点的距离是6.8.﹣m【解析】观察题中数轴可知点M在原点的左边,又点M到原点的距离是m,因此点M表示的数是﹣m.9.【解析】在数轴上表示各数,如图所示.10.【解析】(1)如图所示.(2)由题意可知,C村与A村分别位于快递公司的两侧,且C村离快递公司4km,A村离快递公司2km,所以C村与A村的距离为4+2=6(km)(3)快递员一共骑行了2+3+9+4=18(km).《数轴》提升训练1.[2021吉林五中课时作业]数轴上原点及原点右边的点所表示的数是()A.负数B.非负数C.正数D.非正数2.[2021海南海口九中课时作业]如图,在数轴上表示点P到原点的距离为3个单位长度的点是()A点D B.点A C.点D和点A D.点B和点C3.[2021河北邯郸二十五中课时作业]如图,在数轴上点P表示的有理数可能是()A.﹣2.5B.2.5C.﹣1.5D.1.54.[2021河南景德镇五中课时作业]数轴上点A所表示的数是﹣1,将点A沿数轴移动2个单位长度到点B,则点B所表示的数是()A.﹣3B.1C.﹣1或3D.﹣3或15.[2021河南大学附中课时作业]数轴上与原点距离为4.5个单位长度的点所表示的数是______.6.[2021福建福州三牧中学课时作业]到原点的距离不大于3.2的点表示的整数有______个,它们是____________.7.[2021山西太原十二中课时作业]在数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长为2021cm的线段MN,则线段MN盖住的整点有_____个.8.[2021天津市南开中学课时作业]如图,点A表示﹣4,点D表示﹣5.(1)在数轴上标出原点指出点O;(2)指出点B所表示的数;(3)若C,B两点到原点的距离相等,且C,B两点在原点的两侧,则点C表示什么数?9.[2021湖北黄冈启黄中学月考]如图,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示___的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答下列问题:①表示5的点与表示___的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B两点表示的数.10.[2021山西朔州四中课时作业]已知数轴上三点M,O,N表示的数分别为﹣3,0,1,点P为数轴上一点,其表示的数为x.(1)如果点P到点M、点N点的距离相等,那么x的值为多少?(2)数轴上是否存在点P,使点P到点M、点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.参考答案1.B【解析】因为数轴上原点所表示的数是0,原点右边的点所表示的数是正数,所以数轴上原点及原点右边的点所表示的数是非负数.故选B.2.C【解析】观察题中数轴,可知点A表示的数是﹣3,点D表示的数是3,它们到原点的距离都是3个单位长度,故选C.3.C【解析】由题中数轴,知点P表示的有理数在﹣2与﹣1之间,只有选项C中数﹣1.5符合条件,故选C.4.D【解析】点A所表示的数是﹣1,向右移动2个单位长度得到的点所表示的数是1;向左移动2个单位长度得到的点所表示的数是﹣3.因此点B所表示的数是﹣3或1.故选D.5.4.5或﹣4.5【解析】因为在数轴上表示4.5和﹣4.5的两个点到原点的距离都是4.5个单位长度,所以与原点距离为4.5个单位长度的点所表示的数是4.5或﹣4.5.6.7 ﹣3,﹣2,﹣1,0,1,2,3【解析】因为在数轴上表示﹣3.2和3.2的点到原点的距离均是3.2,所以到原点的距离不大于3.2的点表示的整数有7个,它们是﹣3,﹣2,﹣1,0,1,2,3.7.2021或2021【解析】因为该数轴的单位长度为1cm,所以在数轴上任意画出一条长为1cm 的线段,盖住的整点有1或2个;任意画出一条长为2cm的线段,盖住的整点有2或3个;任意画出一条长为3cm的线段,盖住的整点有3或4个……所以任意画出一条长为2021cm的线段时,盖住的整点有2021或2021个.8.【解析】(1)如图所示.(2)点B所表示的数是3.(3)点C表示﹣3.9.【解析】(1)2因为表示1的点与表示﹣1的点重合,所以折痕经过的点为表示0的点,所以表示﹣2的点与表示2的点重合.(2)①﹣3因为表示﹣1的点与表示3的点重合,所以折痕经过的点为表示1的点,所以表示5的点与表示﹣3的点重合.②因为A,B两点之间的距离为9,且折叠后A,B两点重合,所以A,B两点到折痕经过的点的距离均为4.5,由①知折痕经过的点为表示1的点,又A在B 的左侧,所以点A表示的数为﹣3.5,点B表示的数为5.5.10.【解析】(1)根据三点M,O,N表示的数,得出点N,M之间的距离为4个单位长度,因为点P到点M、点N的距离相等,所以点P在点M右边,且离点M 2个单位长度,由点M表示的数为﹣3,可知点P表示的数为﹣1,所以x的值是﹣1.(2)存在点P,x的值为﹣3.5或1.5.由点P到点M、点N的距离之和为5,可知点P在点M的左边或点N的右边.①当点P在点M的左边时,点P到点M的距离为54122-==0.5,所x=﹣3.5;②当点P在点N的右边时,点P到点N的距离为54122-==0.5,所以x=1.5.综上x的值为﹣3.5或1.5.《数轴》典型例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a 表示一个正数,则数轴上表示数a 的点在原点的右边,它与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.③如果a 表示一个正数,数轴上距原点a 个单位长度的点有2个,它们分别是数a 和-a .。
(七年级)初一数学上册北师大,人教版等通用数轴专项练习试题及答案

(七年级)初一数学上册北师大,人教版等通用数轴专项练习试题及答案2一、单选题1.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >0 2.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b ﹣a <0;(2)|a|<|b|;(3)a+b >0;(4)b a>0.其中正确的是( )A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 3.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q 4.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。
设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数。
给出下列结论:①33x =;②51x =;③108104x x <;④20182019x x >。
其中,正确的结论的序号是( )A .①③B .②③C .①②③D .①②④ 5.实数a 、b 在数轴上的位置如图所示,下列各式成立的是()A .0ab < B .a-b >0 C .ab >0 D .a+b >0 6.如图,点A 、B 表示的数分别是a 、b ,点A 在0和1对应的两点(不包括这两点)之间移动,点B 在-3,-2对应的两点之间移动,下列四个代数式的值可能比2019大的是( )A .11a b -B .b a -C .2()a b -D .1b a-二、填空题7.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2019次后,该点所对应的数是_____.8.在数轴上表示有理数a ,b ,c 的三点如图所示,若ac<0,b+a<0,则①a b >;②b+c<0,③abc<0,其中正确的是________(只填序号).9.数轴上A 、B 、C 、D 四点对应的数都是整数,若点A 对应的数为a ,点B 对应的数为b ,且b -2a =7,则数轴上的原点应是点_____________.10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是( )A .(3)(2)5+++=+B .(3)(2)1++-=+C .(3)(2)5--+=-D .(3)(2)1-++=-②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是_____.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示_______的点重合.②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示_____B点表示______.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为____.(用含有a,b 的式子表示)三、解答题11.已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c的值:a=,b=;(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t 秒,请用含t的代数式表示M,N两点间的距离.12.如图,相距5km的A、B两地间有一条笔直的马路,C地位于AB两地之间且距A 地2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。
【中小学资料】七年级数学上册 2.2《数轴》测试题(含解析)(新版)北师大版

数轴测试题时间:45分钟总分: 100一、选择题(本大题共8小题,共32.0分)1.在数轴上到原点距离等于3的数是A. 3B.C. 3或D. 不知道2.有理数a,b在数轴的位置如图,则下面关系中正确的个数为.A. 1B. 2C. 3D. 43.若数轴上表示和3的两点分别是点A和点B,则点A和点B之间的距离是A. B. C. 2 D. 44.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且数a对应的点在M与N之间,数b对应的点在P与R之间,若,则原点是A. M或RB. N或PC. M或ND. P或R5.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是A. B.C. D.6.点M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是A. 3B. 5C.D. 3或7.在数轴上,与表示数的点的距离是3的点表示的数是A. 2B.C.D. 2或8.下列说法错误的有最大的负整数是;绝对值是本身的数是正数;有理数分为正有理数和负有理数;数轴上表示的点一定在原点的左边;在数轴上7与9之间的有理数是8.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共32.0分)9.已知A,B,C是数轴上的三个点,且C在B的右侧点A,B表示的数分别是1,3,如图所示若,则点C表示的数是______ .10.在数轴上,与表示的点相距6个单位长度的点表示的数是______ .11.在数轴上,点A表示1,点C与点A间的距离为3,则点C所表示的数是______ .12.在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为______ .13.已知数轴上的A点表示那么在数轴上与A点的距离5个长度单位的点所表示的数是______.14.如图的数轴上有两处不小心被墨水淹没了,所标注的数据是墨水部分边界与数轴相交点的数据;则被淹没的整数点有______ 个,负整数点有______ 个,被淹没的最小的负整数点所表示的数是______ .15.在数轴上与所对应的点相距4个单位长度的点表示的数是______.16.数轴上表示与之间的所有整数之和是______.三、计算题(本大题共4小题,共24.0分)17.点A、B在数轴上的位置如图所示:点A表示的数是______ ,点B表示的数是______ ;在原图中分别标出表示的点C、表示的点D;在上述条件下,B、C两点间的距离是______ ,A、C两点间的距离是______ .18.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下单位:千米:14,,,,,,,.请你帮忙确定B地相对于A地的位置;若冲锋舟每千米耗油升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?19.已知数轴上有A,B,C三个点,分别表示有理数,,10,动点P从A出发,以每秒4个单位长度的速度向终点C移动,设移动时间为t秒.用含t的代数式表示点P与A的距离:______;点P对应的数是______;动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,若P、Q同时出发,求:当点P运动多少秒时,点P和点Q间的距离为8个单位长度?20.把下列各数在数轴上表示出来,并用“”把它们连接起来,3,,,0.四、解答题(本大题共2小题,共12.0分)21.已知数轴上三点A,O,B表示的数分别为6,0,,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多少时间追上点R?若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.22.在数轴上有A、B两点,所表示的数分别为n,,A点以每秒5个单位长度的速度向右运动,同时B点以每秒3个单位长度的速度也向右运动,设运动时间为t秒.当时,则 ______ ;当t为何值时,A、B两点重合;在上述运动的过程中,若P为线段AB的中点,数轴上点C所表示的数为是否存在t的值,使得线段,若存在,求t的值;若不存在,请说明理由.答案和解析【答案】1. C2. C3. D4. A5. B6. A7. D8. D9. 710. 或411. 或412. 1或13. 或214. 70;53;15. 2或16.17. ;1;;718. 解:,答:B地在A地的东边20千米;这一天走的总路程为:千米,应耗油升,故还需补充的油量为:升,答:冲锋舟当天救灾过程中至少还需补充9升油.19. 4t;20. 解:,.21. 122.【解析】1. 解:设这个数是x,则,解得或.故选:C.先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.本题考查的是数轴,熟知数轴上各点到原点的距离的定义是解答此题的关键.2. 解:由图可知:,,,,,,,所以只有、、成立.故选:C.由图可判断a、b的正负性,a、b的绝对值的大小,即可解答.此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.3. 解:.故选:D.根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.本题考查了数轴,主要利用了两点间的距离的表示,需熟记.4. 解:,,;当原点在N或P点时,,又因为,所以,原点不可能在N或P点;当原点在M、R时且时,;综上所述,此原点应是在M或R点.故选A.先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.主要考查了数轴的定义和绝对值的意义解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.5. 解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.6. 解:由M为数轴上表示的点,将点M沿数轴向右平移5个单位到点N可列:,故选A.根据在数轴上平移时,左减右加的方法计算即可求解.此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.7. 解:在数轴上,与表示数的点的距离是3的点表示的数有两个:;.故选:D.此题可借助数轴用数形结合的方法求解在数轴上,与表示数的点的距离是3的点有两个,分别位于与表示数的点的左右两边.本题考查的是数轴,注意此类题应有两种情况,再根据“左减右加”的规律计算.8. 解:最大的负整数是,故正确;绝对值是它本身的数是非负数,故错误;有理数分为正有理数、0、负有理数,故错误;时,在原点的右边,故错误;在数轴上7与9之间的有理数有无数个,故错误;故选:D.根据负整数的意义,可判断;根据绝对值的意义,可判断;根据有理数的分类,可判断;根据负数的意义,可判断;根据有理数的意义,可判断.本题考查了有理数,理解概念是解题关键.9. 解:点A,B表示的数分别是1,3,,,,点C表示的数是7.故答案为7.先利用点A、B表示的数计算出AB,存在计算出BC,然后计算点C到原点的距离即可得到C点表示的数.本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数一般取右方向为正方向,数轴上的点对应任意实数,包括无理数10. 解:在数轴上,与表示的点相距6个单位长度的点表示的数是或4,故答案为:,4.根据数轴上到一点距离相等的点有两个,分别位于该点的左右,可得答案.本题考查了数轴,数轴上到一点距离相等的点有两个,以防漏掉.11. 解:若点在1的左面,则点为;若点在1的右面,则点为4.故答案为:或4.此类题注意两种情况:要求的点可以在已知点的左侧或右侧.本题考查了数轴,注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.12. 解:在数轴上把表示的点A沿数轴移动6个单位后得到点B,则B所表示的数为:,或,故答案为:1或.考虑两种情况:要求的点在已知点左移或右移6个单位长度.此题考查了数轴,要求掌握数轴上的两点间距离公式的运用在数轴上求到已知点的距离为一个定值的点有两个.13. 解:若该点在A点左边,则该点为:;若该点在A点右边,则该点为:.故答案为:2或.该点可以在数轴的左边或右边,即或.本题考查了数轴,此类题一定要考虑两种情况:左减右加.14. 解:由数轴可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;故被淹没的整数点有个,负整数点有个,被淹没的最小的负整数点所表示的数是.故答案为:70,53,.根据数轴的构成可知,和之间的整数点有:,,,,共32个;和之间的整数点有:,,,16,共38个;依此即可求解.本题考查了数轴,熟悉数轴的结构是解题的关键.15. 解:当该点在的右边时,由题意可知:该点所表示的数为2,当该点在的左边时,由题意可知:该点所表示的数为,故答案为:2或由于题目没有说明该点的具体位置,故要分情况讨论.本题考查数轴,涉及有理数的加减运算、分类讨论的思想.16. 解:如图所示:,数轴上表示与之间的所有整数为:,,,,0,1,2,故符合题意的所有整数之和是:.故答案为:.根据题意画出数轴,进而得出符合题意的整式,求出答案即可.此题主要考查了数轴,根据题意得出符合题意的所有整数是解题关键.17. 解:点A表示的数是,点B表示的数是1;根据题意得:;根据题意得:,.故答案为:;1;;7根据数轴上点的位置找出A与B表示的点即可;在数轴上找出表示与的两个点C与D即可;找出B、C之间的距离,以及A,C之间的距离即可.此题考查了数轴,弄清题意是解本题的关键.18. 根据有理数的加法,可得和,再根据向东为正,和的符号,可判定方向;根据行车就耗油,可得耗油量,再根据耗油量与已有的油量,可得答案.本题考查了正数和负数,有理数的加法运算是解题关键,有理数的大小比较得出最远距离.19. 解:;点P对应的数是;故答案为:4t;;分两种情况:当点P在Q的左边:,解得:;当点P在Q的右边:,解得:,综上所述:当点P运动2秒或秒时,点P和点Q间的距离为8个单位长度.根据题意容易得出结果;需要分类讨论:当点P在Q的左边和右边列出方程解答.本题考查了数轴,一元一次方程的应用解答题,对t分类讨论是解题关键.20. 根据有理数大小比较法则先把这些数按照从小到大的顺序排列起来,再在数轴上表示出来即可.本题考查了有理数大小比较的法则以及数轴的知识,解题时牢记法则是关键,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序在数轴上表示的两个有理数,右边的数总比左边的数大;也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.21. 解:,B表示的数分别为6,,,,点P表示的数是1,故答案为:1;设点P运动x秒时,在点C处追上点R,则:,,,,解得,,点P运动5秒时,追上点R;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时如图:.当点P运动到点B左侧时如图,;综上所述,线段MN的长度不发生变化,其长度为5.由已知条件得到,由,于是得到结论;设点P运动x秒时,在点C处追上点R,于是得到,,根据,列方程即可得到结论;线段MN的长度不发生变化,理由如下分两种情况:当点P在A、B之间运动时当点P运动到点B左侧时,求得线段MN的长度不发生变化.此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.22. 解:当运动时间为t秒时,点A表示的数为,点B表示的数为.当时,点A表示的数为,点B表示的数为,.故答案为:.根据题意得:,解得:.当t为3时,A、B两点重合.为线段AB的中点,点P表示的数为,,,解得:或.存在t的值,使得线段,此时t的值为或.找出运动时间为t秒时,点A、B表示的数.将代入点A、B表示的数中,再根据两点间的距离公式即可得出结论;根据点A、B重合即可得出关于t的一元一次方程,解之即可得出结论;根据点A、B表示的数结合点P为线段AB的中点即可找出点P表示的数,根据即可得出关于t的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:找出点A、B表示的数;根据两点重合列出关于t的一元一次方程;根据PC列出关于t的含绝对值符号的一元一次方程.。
华东师大版七年级数学上册第二章 2.2.1 数轴 同步测试题(含答案)

华东师大版七年级数学上册第二章 2.2.1 数轴同步测试题一、选择题1.关于数轴,下列说法最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是()A BC D3.如图,数轴上点A表示的数是()A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为()A.3 B.2 C.1 D.-1 5.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为( ) A.-4 B.-2 C.2 D.4 6.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有() A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示( )A .正数B .负数C .非正数D .非负数8.如图,数轴上表示a ,b ,c 三个有理数的点分别是A ,B ,C ,则下列结论中正确的是(A )A .a ,b ,c 三个数中有两个正数,一个负数B .a ,b ,c 三个数中有两个负数,一个正数C .a ,b ,c 三个数都是正数D .a ,b ,c 三个数都是负数9.如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A .0B .1C .2D .310.在数轴上点A 表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是( )A .-2B .-3C .-4D .-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是______.12.数轴上表示-122与223的两点之间表示整数的点有______个.13.数轴上原点及原点左边的点表示______. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F在数轴上表示出来.15.邮递员从邮局出发,先向西骑行3 km到达A村,继续向西骑行2 km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km为1个单位长度的数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共行驶了多少千米?16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是______;②从-2到2有5个整数,分别是______;③从-3到3有7个整数,分别是______;④从-200到200有______个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有______个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有______个.参考答案一、选择题1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.在下图中,表示数轴正确的是(A)A BC D3.如图,数轴上点A表示的数是(C)A.-1 B.0 C.1 D.2 4.如图,数轴上蝴蝶所在点表示的数可能为(D)A.3 B.2 C.1 D.-15.数轴上的点A在原点的左侧,且距原点2个单位长度,则点A表示的数为(B) A.-4 B.-2 C.2 D.46.在数轴上表示数-3,0,5,2,-1的点中,在原点右边的有(C)A.0个B.1个C.2个D.3个7.数轴上原点及原点左边的点表示(C)A.正数B.负数C.非正数D.非负数8.如图,数轴上表示a,b,c三个有理数的点分别是A,B,C,则下列结论中正确的是(A)A.a,b,c三个数中有两个正数,一个负数B.a,b,c三个数中有两个负数,一个正数C.a,b,c三个数都是正数D.a,b,c三个数都是负数9.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是(D)A.0 B.1 C.2 D.310.在数轴上点A表示-4,如果把原点向负方向移动1个单位长度,那么在新数轴上点A 表示的数是(B)A.-2 B.-3 C.-4 D.-5二、填空题11.在数轴上与原点距离2.5个单位长度的点所表示的有理数是±2.5.12.数轴上表示-122与223的两点之间表示整数的点有5个.13.数轴上原点及原点左边的点表示非正数. 三、解答题14.如图,指出数轴上的点A ,B ,C 所表示的数,并把-4,32,5这三个数分别用点D ,E ,F 在数轴上表示出来.解:点A ,B ,C 所表示的数分别是-2.5,0,4;-4,32,5这三个数分别用点D ,E ,F 在数轴上表示如图所示.15.邮递员从邮局出发,先向西骑行3 km 到达A 村,继续向西骑行2 km 到达B 村,然后向东骑行9 km 到达C 村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1 km 为1个单位长度的数轴上表示出A ,B ,C 三个村庄的位置;(2)C 村离A 村有多远?(3)邮递员一共行驶了多少千米?解:(1)如图所示.(2)C 村离A 村的距离为4+3=7(km ). (3)邮递员一共行驶了3+2+9+4=18(km ). 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;②从-2到2有5个整数,分别是-2,-1,0,1,2;③从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;④从-200到200有401个整数;(2)根据以上规律,直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为2 020厘米的线段AB,则线段AB 盖住的整数点有2020或2021个.。
七年级数学-数轴练习2

七年级数学-数轴练习一.选择题(共12小题)1.如图所示,数轴上A、B、C三点表示的数分别为a、b、c,下列说法正确的是()A.a>0 B.b>c C.b>a D.a>c2.若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5 B.﹣1 C.1 D.53.数轴上A,B两点所表示的数分别是3,﹣2,则表示AB之间距离的算式是()A.3﹣(﹣2) B.3+(﹣2)C.﹣2﹣3 D.﹣2﹣(﹣3)4.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.15.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣26.有理数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a﹣b>0 B.a+b>0 C.ab>0 D.>07.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b<0 B.a﹣b<0 C.ab>0 D.>08.有理数a,b在数轴的位置如图,则下面关系中正确的个数为()①a﹣b>0 ②ab<0 ③>④a2>b2.A.1 B.2 C.3 D.49.下列数轴画正确的是()A.B. C.D.10.在数轴上,点B表示﹣2,点C表示4,若点A到点B和点C的距离相等,则点A 表示的数是()A.0 B.1 C.﹣1 D.311.把数轴上表示数2的点向右移动3个单位长度后,表示的数为()A.1 B.﹣1 C.5 D.﹣512.已知点A、B、C分别是数轴上的三个点,点A表示的数是﹣1,点B表示的数是2,且B、C两点间的距离是A、B两点间距离的3倍,则点C表示的数是()A.11 B.9 C.﹣7 D.﹣7或11二.填空题(共8小题)13.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为.14.如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.15.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A 的对称点,则点C表示的数为.16.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为.17.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.18.在数轴上,表示﹣3的点A与表示﹣8的点B相距个单位长度.19.如图所示,数轴上点A所表示的数为a,则a的值是.20.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数共有个.三.解答题(共3小题)21.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km 到达B 村,然后向西骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?22.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.23.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?参考答案与试题解析一.选择题(共12小题)1.解:由数轴上A,B,C对应的位置可得:a<0,故选项A错误;b<c,故选项B错误;b>a,故选项C正确;a<c,故选项D错误;故选:C.2.解:因为3﹣(﹣2)=5故选:D.3.解:∵数轴上A、B两点所表示的数分别是3、﹣2,∴A、B之间距离为3﹣(﹣2).故选:A.4.解:∵|﹣2|=2,|﹣1|=1,∴|﹣2|>|﹣1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是﹣2.故选:A.5.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.6.解:如图所示:﹣1<a<0,1<b<2,则a﹣b<0,故选项A错误,a+b>0,故选项B正确;ab<0,故选项C错误;<0,故选项D错误;故选:B.7.解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a﹣b<0,ab<0,<0.故选:B.8.解:由图可知:b<0<a,|b|>|a|, ∴a﹣b>0,ab<0,>,∵|b|>|a|,∴a2<b2,所以只有①、②、③成立.故选:C.9.解:A没有单位长度,故A错误;B、没有正方向,故B错误;C、原点、单位长度、正方向都符合条件,故C正确;D、原点左边的单位表示错误,应是从左到右由小到大的顺序,故D错误;故选:C.10.解:如图,由数轴,得点A表示的数是1,故选:B.11.解:把数轴上表示数2的点向右移动3个单位长度后,即2+3=5,表示的数为5, 故选:C.12.解:如图所示:∵点A表示的数是﹣1,点B表示的数是2,∴A、B两点间距离为3,∵B、C两点间的距离是A、B两点间距离的3倍,∴BC=9,故点C表示的数是:﹣7或11.故选:D.二.填空题(共8小题)13.解:∵数轴上的两个数﹣3与a,且a>﹣3,∴两数之间的距离为|a﹣(﹣3)|=|a+3|=a+3.故答案为:a+3.14.解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为﹣4π,故答案为﹣4π,15.解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C, ∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.16.解:﹣1+5=4.答:此时点A所对应的数为4.故答案为:4.17.解:2﹣(﹣1)=3.故答案为:318.解:∵﹣3﹣(﹣8)=﹣3+8=5,∴在数轴上,表示﹣3的点A与表示﹣8的点B相距5个单位长度, 故答案为:5.19.解:由图可得,a=﹣,故答案为:﹣.20.解:∵﹣和2之间的整数有3个:﹣1、0、1,∴墨迹遮盖住的整数共有3个.故答案为:3.三.解答题(共3小题)21.解:(1)依题意得,数轴为:(2)依题意得:点C与点A的距离为:2+4=6km(3)依题意得,邮递员骑了:2+3+9+4=18km∴共耗油量为:18×0.03=0.54(升)答:这趟路共耗油0.54升.22.解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不和题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.23.(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
达标训练
基础·巩固·达标
1.画出数轴,并用数轴上的点表示下列各数:23,-5,0,5,-
4,-23.
思路解析:画数轴时应注意:数轴必须画上原点、正方向和单位
长度.
答案:
2.数轴上距离原点3个单位长度的数是____.
思路解析:先画出数轴,找到原点.从原点开始向左、向右各数3
个单位长度,这两个点到原点的距离相等,且符合题意.
答案:+3和-3
3.(1)数轴上与原点相距10个单位长度的点有______个,
它们表示的数是______.
(2)若数轴上的点M和N表示的两个数互为相反数,并且这两个
点间的距离是7.2,则这两个点表示的数分别是____和____.
思路解析:在数轴上求离开原点的距离等于某一数值时,要考虑
到原点左边、右边两个点.
答案:(1)2 -10和+10 (2)-3.6 +3.6
4.在数轴上,与表示+2的点距离是4个单位长度的点有几个?
它们分别表示什么数?
2
思路解析:在数轴上,与一个已知点距离相等的点一定有两个,
它们分别位于已知点的左、右两侧.
答案:有2个.它们分别表示-2和+6.
5.如图1-2-2-5,数轴上的点,M和N分别表示有理数m和n,那
么以下结论正确的是( )
图1-2-2-5
A.m>0,n>0 B.m>0,n<0
C.m<0,n>0 D.m<0,n<0
思路解析:在数轴上两个点表示的数,右边的总比左边的大;负
数小于0,正数大于0;正数大于一切负数.
答案:B
综合·应用·创新
6.在数轴上,与表示-1的点距离为3的点所表示的数是___
___.
思路解析:与表示-1的点距离为3的点所表示的数有两个,一
个是2,另一个是-4.答案:2和-4
7.在数轴上点A表示-4,如果把原点0向负方向移动1.5个单位,
那么在新数轴上点A表示的数是( )
A.-5 21 B.-4 C.-2 21 D.2 21
思路解析:反过来想,即点A向正方向移动1.5个单位.所以答案
3
为C.
答案:C
8.如图1-2-2-6四个图形中,不正确的是( )
图1-2-2-6
思路解析:数轴的“三要素”即原点、正方向、单位长度缺一不
可.其中单位长度在同一个数轴上必须一致.另外必须注意数轴上的
点与它所表示的数应对应.如C中,正确的标法是-1.5.
答案:C