纳米复合材料的结构和性能

合集下载

改性石墨烯粘土天然橡胶纳米复合材料的结构与性能

改性石墨烯粘土天然橡胶纳米复合材料的结构与性能

改性石墨烯/粘土/天然橡胶纳米复合材料的结构与性能张涛,王文良,鲁璐璐,杨阳,张闻轩(太原工业学院材料工程系,山西太原030008)摘要:大量研究表明,纳米填料的表面效应、大的比表面积以及纳米粒子本身对基体的强界面效应对橡胶纳米复合材料性能的提升具有极大的帮助。

本研究以天然橡胶(NR)为基体材料,采用乳液法制备石墨烯/粘土/NR纳米复合材料’讨论了石墨烯、粘土的用量对复合材料的物理机械性能的影响’结果表明,当粘土用量为3.0pho时,随着石墨烯添加量的增加,石墨烯/粘土/NR纳米复合材料的力学性能和耐磨性先升高,然后略有下降’当石墨烯添加量为1-0pho时,复合材料的拉伸强度提高了33.3%,而阿克隆磨耗体积下降了225%。

关键词:石墨烯;天然胶乳;复合材料;力学性能;阿克隆磨耗中图分类号:TB33文献标识码:A文章编号:1008-021X(X0X1)05-0025-04Structrrr and Properties of ModiCed Graphene/Clay/NR NanocompositesZhang Tao,Wang Wenliang,Lu Lulu,Yang Yang,Zhang Wenxuan(Department of Material Engineering,Taiyuan Institute of Technology,Taiyuan030008,China)Abstract:A larye number of studies have shown that the surface effect of nano-fillers,larye specific surface area and strong interface effect of nano-particles themselves on the matrix have a great help te ioprove the performance of rubber nano-composites.In this paper,natural rubber(NR)was used as the matrix material and graphene/clay/NR nanocompos—es were prepared by emulsion method.The e/ects of the amount of graphene and clay on the physical and mechanical properties of the composites were discussed.The results showed that the mechanical properties and wear resistance of graphene/clay/NR nanocomposieesweoe ioseeyincoeased and ehen seigheeydecoeased wieh eheincoeaseoQgoapheneconeenewhen eheceayconeeneis 3.0phr.And the tensile strength of the composites was increased by335%,the wear volume of Akron was decreased by22.7% when the amount of graphene is1.0phr.Key words:graphene;natural latex;composites;mechanical properties;akron abrasion有关石墨烯的研究虽然进行了60多年,但是直到21世纪初期英国物理学家Giov和Novos/o才第一次通过机械剥离的方法得到了石墨烯(GE)[1-5]。

蒙脱土纳米复合材料

蒙脱土纳米复合材料

聚合物/蒙脱土纳米复合材料蒙脱土纳米复合材料:蒙脱土纳米复合材料是目前研究最多,工业化应用前景好的一种聚合物基纳米复合材料。

纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于95%。

具有层状结构的蒙脱土是制备成纳米复合材料的理想天然矿物。

蒙脱土是一种层状硅酸盐,结构片层由硅氧四面体亚层和铝氧八面体构成,厚0.66nm左右,片层之间通过NA+、Ca2+等金属阳离子形成的微弱静电作用结合在一起,一个片层与一个阳离子层构成MMT的结构单元,厚度为1.25纳米(阳离子为钠离子)左右。

结构:蒙脱土的化学式为:Mn+x/n[Al4.0-xMgx](Si8.0)O20(OH)4·yH2O,属于2:1型层状硅酸盐,即每个单位晶胞由2个硅氧四面体晶片间夹带一个铝氧八面体晶片构成三明治状结构[3],二者之间靠共用氧原子连接,每层厚度约为1 nm。

性能:聚合物/蒙脱土纳米复合材料是目前新兴的一种聚合物基无机纳米复合材料。

与常规复合材料相比,具有以下特点:只需很少的填料April 质量分数),即可使复合材料具有相当高的强度、弹性模量、韧性及阻隔性能;具有优良的热稳定性及尺寸稳定性;其力学性能有优于纤维增强聚合物系,因为层状硅酸盐可以在二维方向上起增强作用;由于硅酸盐呈片层平面取向,因此膜材有很高的阻隔性;层状硅酸盐蒙脱土天然存在有丰富的资源且价格低廉。

故聚合物/蒙脱土纳米复合材料成为近年来新材料和功能材料领域中研究的热点之一。

纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25 nm,蒙脱石含量大于95%。

具有良好的分散性能,可以广泛应用高分子材料行业作为纳米聚合物高分子材料的添加剂,提高抗冲击、抗疲劳、尺寸稳定性及气体阻隔性能等,从而起到增强聚合物综合物理性能的作用,同时改善物料加工性能。

强威粉/氢化丁腈橡胶纳米复合材料的结构与性能

强威粉/氢化丁腈橡胶纳米复合材料的结构与性能
稳 定性 能 。扫 描 电子 显 微 镜 分 析 显 示 , 强 威 粉 在 HNB R 中分 散 良好 且 发 生 取 向 。 关键 词: 氢 化 丁腈 橡 胶 ; 强威粉 ; 结构 ; 性 能 中 图分 类 号 : TQ3 3 3 . 7 ; TQ3 3 0 . 3 8 3 文 献标 志码 : A 文章 编 号 : 1 0 0 0 — 8 9 0 X( 2 0 1 3 ) O l 一 0 0 1 卜O 5
氢 化 丁腈 橡 胶 ( HNB R) 是丁腈橡 胶 ( NB R)
加氢 后 的改性 产 品 , 既有 NB R 的耐 油 、 耐 溶 剂 特
纳米复 合材 料 , 研究 强 威 粉用 量对 纳 米 复 合 材料
结 构 和性 能的影 响 。
性, 又有 高饱 和结构 赋 予 的耐高 温 、 耐 老化 及 良好 的物 理 性 能 , 在汽车 、 油 田等 领 域 具 有 广 泛 的 应 用[ 1 ] 。纳米 复合 材料 是指 分散 相尺 寸至 少在 某 一
W .He r r ma n n等 研 究 了有 机层状 硅 酸盐 / HN—
HNB R 1 0 0 , 炭黑 N5 5 0 3 0 , 硬脂 酸 1 , 氧
B R纳米 复 合 材 料 的形 态 和 动 态 力 学 性 能 , 但 有
化锌
2 , 防老剂 4 , 4 ' - 二 异 丙 苯基 二 苯 胺
老剂 2 一 巯 基 甲基苯 并咪 唑锌盐
TAI C 2 , 强威粉 1 . 3 设备 与仪 器 变量。
0 . 4 , 增 塑剂 NB 一
4 1 2 , 过氧 化物 P e r k a d o x 1 4 — 4 0 B D 7 , 助 交联 剂
产品 。

OMMT/NBR纳米复合材料结构与性能的研究

OMMT/NBR纳米复合材料结构与性能的研究
1 4 试 样制 备 .
料, 并对 其性 能进 行 了研究 [ ] 1 。熔 体插 层 法 不 需 借助 任何 溶剂 , 不受 溶剂 品种 的 限制 , 避免 了 且 使 用大 量有 机溶 剂 而 带来 的 污染 问题 , 因此 成 为 制备粘 土/ 聚合 物纳米 复 合材料 的理 想方 法 。 本 工 作 采 用 熔 体 插 层 法 制 备 有 机 蒙 脱 土 ( OMMT) NB / R纳米 复合 材 料 , 对 其微 观结 构 并
摘 要 : 用熔 体 插 层 法 制 备 有 机 蒙 脱 土 ( 采 OMMT) N R 纳 米 复 合 材 料 , /B 并对 其 微 观 结 构 及 性 能 进 行 研究 。 结果 表 明 , 用 熔 体 法 制 备 的 OMMT/ R 复 合 材 料 , B 大 分 子 链 插 入 OMMT 片 层 中 , 采 NB NR OMMT 在 N R 基 体 中 呈 纳 米 B 级 分散 } 未 加 OMMT 的 N R 硫 化 胶 相 比 , 与 B OMMT/ R 纳 米 复 合 材 料 的 物 理 性 能 明 显 改 善 , 同 剪 切 变 形 下 的 NB 相 OMMT/ R纳 米 复 合 材 料 的 储 能 剪切 模 量 较 大 ; 着 OMMT 用 量 的增 大 , NB 随 OMMT/ R纳 米 复 合 材 料 的 物 理 性 能 NB
提高 。
关 键 词 : 机 蒙 脱 土 ; R; 米 复 合 材 料 ; 体 插 层 法 有 NB 纳 熔
中 圈分 类 号 : TQ30 3 3 T 3 . 3 . 8 ; Q3 3 7 文献标识码 : A 文 章 编 号 :0 08 0 2 0 )70 9—4 10 —9 X(0 6 0 —330
及性 能进 行研究 。

制备和表征聚合物纳米复合材料的微结构及性能研究

制备和表征聚合物纳米复合材料的微结构及性能研究

制备和表征聚合物纳米复合材料的微结构及性能研究聚合物纳米复合材料被广泛应用于许多领域,如生物医学、电子和光学等。

然而,制备和表征这些复材料的微结构以及对其性能的研究仍然是一项具有挑战性的任务。

本文将探讨这方面的最新研究成果。

一、制备方法制备聚合物纳米复合材料的常见方法包括溶液共混、自组装、热成型、浸涂、原位聚合和纳米压延等。

其中最常用的方法是溶液共混和自组装。

溶液共混通过将聚合物和纳米颗粒溶解在同一溶剂中,然后混合均匀,蒸发溶剂后得到复合材料。

自组装法则是通过离子吸附、静电相互作用、范德华力、氢键等相互作用力来组装纳米颗粒和聚合物。

二、表征方法了解聚合物纳米复合材料的微结构以及纳米颗粒和聚合物之间相互作用的特性对于解释其性能是非常重要的。

常用的表征方法包括透射电镜、扫描电子显微镜、X射线衍射、红外光谱、热重分析和动态机械分析。

其中,透射电镜和扫描电子显微镜可以在纳米尺度下观察材料的微观结构和形貌,X射线衍射可以提供晶体结构和晶格参数等信息,红外光谱可以确定材料的化学成分和官能团,热重分析可以分析材料的热稳定性和分解动力学,动态机械分析可以测定材料的力学性能。

三、性能研究聚合物纳米复合材料的性能研究包括力学性能、电学性能、热学性能等方面。

力学性能很大程度上受到纳米颗粒的尺寸、形状和聚合物基体的性质的影响。

近年来,许多研究表明,纳米颗粒的添加可以显著提高复合材料的刚度和强度。

电学性能的研究重点是探索聚合物纳米复合材料作为电极、传感器和储能材料等领域的应用潜力。

同时,热学性能的研究也逐渐受到了越来越多的关注,尤其是在制备高性能导热材料方面。

四、应用前景聚合物纳米复合材料具有广泛的应用前景,在诸如催化、药物传递、水处理、环境保护、能源储存和转化等方面都有潜在的应用。

近年来,许多研究工作已经展示出了这些复合材料在这些领域的应用潜力。

例如,聚合物基复合材料的可持续性和低毒性使其成为有前途的代替传统材料的候选材料。

纳米复合材料结构和性能

纳米复合材料结构和性能

1 高强度合金(high strength alloy)
• 日本仙台东北大学材料研究所用非晶晶化法制 备了高强、高延展性的纳米复合合金材料,其 中包括纳米Al-过渡族金属-镧化物合金, 纳米AlCe-过渡族金属合金复合材料,这类合金具有 比常规同类材料好得多的延展性和高的强度 (1340~1560MPa).这类材料结构上的特点是 在非晶基体上分布纳米粒子.
• 英国和日本各自也都制定了纳米复合材料的研 究计划.纳米复合材料研究的热潮已经形成.
纳米复合材料结构和性能
复合涂层材料
(composite coating materials)
• 纳米涂层材料由于具有高强、高韧、高 硬度特性,在材料表面防护和改性上有 着广阔的应用前景.
• 近年来纳米涂层材料发展的趋势是由单 一纳米涂层材料向纳米复合涂层材料发 展.
• 大块金属玻璃(bulk metal glass-BMG)
纳米复合材料结构和性能
五、应用探索
1. Zr基块体非晶合金已做成新一代高尔夫球拍材料倍 受青睐。
纳米复合材料结构和性能
动态韧性及自锐性 非晶合金在高速载荷作用下,具有非常高的动态断
裂韧性,同时在侵彻时具有自锐性,是一种适于制做 穿甲弹芯的特种材料。
3 超塑性 (superplasticity)
• 自20世纪80年代中期以来,超塑性陶瓷 材料相继在实验室问世.
• Wakai和Nieh等人在加Y2O3稳定化剂的 四方二氧化锆中(粒径小于300nm)观察到 了超塑性,他们在此材料基础上又加入 20%Al2O3,制成的陶瓷材料平均粒径约 500nm,超塑性达200%至500%.
纳米复合材料结构和性能
量子磁盘与高密度磁存储
• 一般磁盘存储密度达到106~107bit/in2 • 光盘的存储密度提高到109bit/in2 • 有人一度把1011bit/in2称之为不可愈越

纳米复合材料的结构和性能


可用于磁热治疗、磁热发电等领域。
04
CATALOGUE
纳米复合材料的应用
电子信息领域
1 2 3
电子封装材料
纳米复合材料具有优异的热导率和绝缘性能,可 用于电子器件的封装,提高产品的可靠性和稳定 性。
电子元件制造
纳米复合材料可应用于电子元件的制造,如电磁 波吸收材料、电磁屏蔽材料等,提高电子产品的 性能。
环境领域
空气净化
纳米复合材料可用于空气净化器的滤芯材料,吸附和分解空气中 的有害物质,提高室内空气质量。
水处理
纳米复合材料可用于水处理中的吸附剂和催化剂,去除水中的有 害物质和重金属离子。
环保材料
纳米复合材料可用于环保材料的制造,如可降解塑料、绿色包装 材料等,降低环境污染。
生物医疗领域
生物成像
高强度和硬度
纳米复合材料由于其纳米尺度的 增强相,具有高强度和硬度的特 性,能够承受更大的压力和抵抗
更高的温度。
良好的韧性
通过优化增强相的尺寸、形状和分 布,纳米复合材料可以在保持高强 度的同时具备良好的韧性,提高材 料的抗冲击性能。
抗疲劳性能
由于增强相的纳米尺度效应,纳米 复合材料的抗疲劳性能得到显著提 高,能够承受更多的循环载荷。
光学性能
良好的光学透性
01
通过选择透明基体和合适的填料,纳米复合材料可以表现出良
好的光学透性,用于制造光学器件、窗口材料等。
特殊的光学性能
02
一些纳米复合材料具有特殊的光学性能,如光致变色、荧光等
,可用于制造显示器、照明器件等。
光热转换性能
03
一些纳米复合材料可以将光能转换为热能,用于光热治疗、光
热发电等领域。

聚氨酯/有机蒙脱土纳米复合材料的结构与性能Ⅰ.水基端羟基阳离子聚氨酯改性蒙脱土

配 方 见 表 1 。
的 目的 。本 工 作 合 成 了一 系 列 不 同 相 对 分 子 质量 的水基 端羟 基 阳离 子 聚氨 酯 ( T P , WH C U) 用 其作 为插层剂 对 MMT进 行 改性 , 用 傅里 叶 变换 并 红外光谱 ( TR) 广角 x射线 衍射 ( R ) 透射 FI 、 WX D 、
离子 交 换 能 最 低 ; 过 WH C U改 性 的 MM 经 TP T粒 子 的 电性 得 到反 转 。
关键词 : 水基 端 羟 基 阳 离子 聚 氨 酯 ; 脱 土 ; 合 物 改性 蒙 聚
中 图分 类号 : Q 3 3 8 T 2 . 文 献 标 识 码 : B 文 章 编 号 :0 0—1 5 ( 0 7 0 0 8 0 10 2 5 2 0 ) 5— 3 7— 4
公司产 品 ; 甲苯 二 异 氰 酸 酯 ( D ) 2 6一T I TI,, D/ 2 4一T I 摩 尔 比 ) 0 2 , 析纯 , , D( 8/ 0 分 天津 大茂 化 学 试剂 厂产 品 ; , 一 甲基 乙醇 胺 ( ME , 二 D A) 分析 纯, 西安 石油 化工 厂产 品 ; 乙酸 ( A ) 分析纯 , H c , 天
津 市博迪 化工 有 限公 司产 品 ; 二月 桂酸 二丁基 锡 ,
分析 纯 , 海 特 种试 剂 开 发 中心 产 品 ; 上 氯化 钡 , 分 析纯 , 台三 和化学 试 剂有 限公 司产 品 。 烟
12 试 样 制 备 .
WH C U 在 装 有搅 拌 器 、 控 器 的 三 口烧 TP 温 瓶 中加入 D A, ME 加热 至 4 4 O~ 5℃ , 加 T I1h 滴 D, 内滴加 完 毕 , 加入 1— 再 2滴 二 月桂 酸二 丁基锡 催 化剂 , 继续 搅拌 保温 15 h 停 止 反 应前 加 入 计 量 . , 的 H c中和 , 备 出端 羟 基 阳离 子 聚氨 酯 , 后 A 制 然 用 去离 子水 乳 化 即得 到 一 系列 不 同 N O O 摩 C / H( 尔 比) 即不 同相 对分 子 质量 的 WH C U, 制备 , TP 其

三维纳米材料

三维纳米材料三维纳米材料是指在空间维度上为三维的纳米结构,具有纳米尺度的特征。

与传统的纳米材料相比,三维纳米材料在三维空间中具有更加复杂和多样的结构,能够展现出更加丰富的物理、化学和功能性质。

以下是几种常见的三维纳米材料:1. 纳米多孔材料(Nanoporous Materials):纳米多孔材料是一类具有纳米尺度孔隙结构的材料,包括纳米孔阵列、多孔材料等。

这些材料具有高比表面积和丰富的孔隙结构,被广泛应用于催化、分离、吸附等领域。

2. 纳米复合材料(Nanocomposites):纳米复合材料是由纳米材料与基体材料组成的复合结构,具有纳米尺度的增强效应和功能特性。

这些材料具有优异的力学性能、导电性能、热稳定性等,被广泛应用于材料强化、传感器、催化剂等领域。

3. 三维纳米结构阵列(Three-dimensional Nanostructure Arrays):三维纳米结构阵列是由纳米结构沿着三维空间排列形成的材料,如纳米线阵列、纳米棒阵列等。

这些结构具有高度有序的排列、大比表面积和优异的光学、电学性能,被广泛应用于光电器件、传感器、催化剂等领域。

4. 纳米颗粒增强材料(Nanoparticle-Reinforced Materials):纳米颗粒增强材料是由纳米颗粒与基体材料组成的复合结构,用于增强材料的力学性能、导电性能、热稳定性等。

这些材料具有优异的强度、硬度和韧性,被广泛应用于材料加固、航空航天、汽车制造等领域。

5. 三维打印纳米结构(3D Printed Nanostructures):三维打印技术可以制备具有复杂结构的三维纳米材料,包括纳米网格、纳米梯度结构等。

这些材料具有高度定制化和可控性,被广泛应用于仿生材料、微纳米器件等领域。

这些三维纳米材料具有丰富的结构和性质,对于材料科学、纳米技术和工程学具有重要意义。

通过精确控制其结构、组成和功能,可以实现对其性能和应用的优化和拓展。

纳米复合材料的表示方法

纳米复合材料的表示方法
纳米复合材料的表示方法通常涉及其组成、结构、制备方法和性能等方面。

以下是一些常见的表示方法:
1.组成表示:描述纳米复合材料的组成成分,包括基体材料和纳米填料。

例如,可以表示为基体材料名称/纳米填料名称复合材料,如聚合物/纳米氧化锌复合材料。

2.结构表示:描述纳米复合材料的结构特征,包括纳米填料的形态、分布和尺寸等。

常见的表示方法包括透射电子显微镜(TEM)和扫描电子显微镜(SEM)图像,用于展示纳米填料在基体中的分布情况和形态特征。

3.制备方法表示:描述纳米复合材料的制备方法和工艺参数。

这包括溶液混合、机械混合、溶胶凝胶法、共沉淀法等制备方法,以及温度、压力、反应时间等制备条件。

4.性能表示:描述纳米复合材料的性能特点,包括力学性能、热学性能、光学性能等。

常见的性能参数包括拉伸强度、硬度、热导率、透光率等。

5.材料标识码表示:有时,纳米复合材料也可以通过特定的材料标识码进行表示,以便于识别和追踪。

这些标识码可能是国际通用的标准代码或者是研究机构或生产厂家内部的编码系统。

综合考虑以上因素,可以对纳米复合材料进行全面的表示,从而更好地理解其组成、结构、制备方法和性能特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档