工程材料结构与性能
材料的结构与性能的关系

材料的结构与性能的关系材料是现代工程领域中极为重要的研究方向之一。
不同材料的结构决定了其性能,而理解材料的结构与性能之间的关系,对于设计和开发新材料具有重要的指导意义。
本文将探讨材料的结构与性能之间的关系,并深入分析几种常见材料的结构和性能特点,旨在帮助读者更好地理解材料学的基础知识。
一、结晶材料的结构与性能结晶材料是指具有长程有序的排列结构的材料。
其分子或原子以一定的方式排列,形成晶体的结构。
结晶材料的性能受其结构的影响较大。
首先,晶体的晶格结构决定了材料的硬度和脆性。
例如,金刚石的碳原子以立方晶格排列,使其具有极高的硬度;而玻璃材料则是无定形的结构,因此较易破碎。
其次,晶体中的缺陷和杂质也会影响材料的性能。
点缺陷(如空位和杂质原子)会导致晶体的电导率和机械性能变化。
因此,在合金制备过程中,控制杂质元素的含量和分布至关重要。
二、非晶材料的结构与性能与结晶材料不同,非晶材料没有规则的长程有序结构,而是具有无定形的结构。
非晶材料的结构与性能之间也存在着密切的关系。
首先,非晶材料通常具有较高的强度和弹性模量。
这是因为非晶材料的无定形结构使得其分子或原子在受力时可以更均匀地分布,从而增加了其强度和硬度。
此外,非晶材料还具有较低的热导率和电导率。
非晶材料中缺乏长程有序的结构,导致热和电子在材料中传输困难。
三、复合材料的结构与性能复合材料是由两种或两种以上不同性质的材料通过某种方法结合而成的材料。
复合材料的结构多样化,因此其性能方面也有所不同。
结构设计的合理与否对复合材料的性能有着决定性的影响。
例如,纤维增强复合材料的强度主要由纤维的类型、分布和取向决定。
而基体材料的性能也会影响复合材料的整体性能。
因此,在复合材料的研制中,合理选择不同材料的比例、制备方法和结构布置是关键。
综上所述,材料的结构与性能之间存在着紧密的关系。
不同类型的材料具有不同的结构特点,这些结构特点决定了材料的力学性能、电学性能、热学性能等方面。
工程材料第二版习题解答

第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。
塑性变形:当外力去除后不能够恢复的变形称为塑性变形。
冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。
疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。
σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。
bσ为屈服强度,材料发生塑性变形时的应力值。
sδ为塑性变形的伸长率,是材料塑性变形的指标之一。
HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。
(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。
5 铸造、锻造、切削加工、焊接、热处理性能。
(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。
利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。
晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。
非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。
近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。
(二)填空题1 四,共价键、离子键、金属键、分子键。
2 共价键和分子键,共价键,分子键。
3 强。
4 强。
(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。
材料的结构与性能关系研究

材料的结构与性能关系研究材料的结构与性能关系一直是材料科学与工程领域一个重要的研究方向。
在材料的研发、制备以及应用过程中,了解材料的结构特征对其性能具有重要的指导意义。
本文将探讨材料的结构与性能之间的关系,并结合实际案例进行分析。
一、材料结构对力学性能的影响材料结构的组成和排列方式对其力学性能具有重要影响。
以金属材料为例,晶体的晶格结构、晶界、位错等因素会显著影响材料的力学性能。
晶体结构的紧密度与晶粒尺寸的大小会影响材料的硬度、强度、延展性等特性。
此外,晶界的存在会引起位错的滞留,从而对材料的力学性能造成影响。
二、材料结构对热学性能的影响材料的结构特征对其热学性能同样有着重要的影响。
晶体材料的晶格结构会影响其热导率和热膨胀系数。
例如,具有高对称晶体结构的材料通常具有较低的热膨胀系数,这在实际工程中具有重要的应用价值。
另外,材料的结构也会影响其热导率的大小和热传导的路径。
三、材料结构对电学性能的影响材料的结构特征对其电学性能具有显著的影响。
晶体材料的晶格结构会决定其电导率、电阻率以及介电常数等电学特性。
例如,多晶材料中晶粒间的晶界会影响电导率,而材料中的缺陷和杂质也会改变其电导性能。
四、材料结构对化学性能的影响材料的结构特征对其化学性能也有着重要作用。
材料中的晶格结构、表面形貌以及孔隙结构会影响材料的催化活性、抗腐蚀性等化学性能。
例如,金属材料的晶粒尺寸与晶界结构会影响其对氧化剂的稳定性,从而影响其耐蚀性。
总结起来,材料的结构与性能之间存在着密切的关系。
材料科学与工程研究的目标之一就是通过调控和设计材料的结构,以实现对材料性能的优化。
在实际工程中,对材料的结构与性能关系的深入了解,有助于选择合适的材料以及进行相应的工艺调整,从而使材料在特定应用环境下发挥出最佳的性能。
通过对材料结构与性能关系的研究,我们可以开发出更高性能的材料,满足各种工程应用的需求。
同时,了解不同材料的结构与性能之间的关系,也为材料鉴定、品质控制以及故障分析提供了重要的依据。
水泥混凝土材料的结构与性能

水泥混凝土材料的结构与性能水泥混凝土是现代建筑最基本的材料之一。
水泥混凝土材料的结构与性能是建筑工程中最为核心的问题之一。
在设计和制造水泥混凝土时,我们必须深入研究其结构和性能,以便为建筑物提供可靠、耐用的基础。
1. 水泥混凝土材料的结构水泥混凝土的基本成分是水泥、砂、石料和适量的水。
水泥混凝土的结构可以分为四个层次:微观结构、细观结构、宏观结构和构件结构。
微观结构:水泥混凝土的微观结构为半坡面结构。
水泥石颗粒、砂子和骨料的颗粒之间形成了许多极小的半坡面,既有理论研究,同时也有实际细微的暗纹相显现。
细观结构:水泥混凝土的细观结构为孔隙结构。
水泥混凝土中有许多空隙,这些空隙的体积随着砂子、骨料颗粒大小和布局,水泥石填充度的离散不同而有所变化。
宏观结构:水泥混凝土的宏观结构为墙板和地面结构。
水泥混凝土的墙板和地面结构需要考虑负载荷、抗震性、保温性、隔音性等问题,在材料的强度、变形与应力的关系方面大量运用力学理论和计算方法。
构件结构:水泥混凝土的构件结构为框架结构或是混合结构。
工程师在设计构件时需要将张强扭等各种相互作用考虑进去,设计出具有足够刚度、承重能力、耐久性、美观性和安全性的构件。
2. 水泥混凝土材料的性能水泥混凝土材料的性能决定了建筑物的使用寿命、可靠性和安全性。
水泥混凝土的性能主要包括以下几个方面。
抗压强度:水泥混凝土的抗压强度是材料抗压破坏时所能承受的最大压力。
该指标对于建筑物的承载力和耐久性都有着非常重要的意义。
抗拉强度:水泥混凝土的抗拉强度是指材料被垂直于其轴线方向撕裂的能力。
在建筑物的受力部位,如梁柱孔洞处,拱托等等,抗拉强度是建筑物的重要指标。
弹性模量:水泥混凝土的弹性模量是其在施加力之后变形的大小。
根据弹性模量,我们可以计算出外力作用下水泥混凝土变形的大小,以及材料抗震性。
抗冻性:随着气温的下降,水泥混凝土会发生冻融循环。
合格的水泥混凝土对于冻融循环有着很好的抵抗能力,保证了建筑物在寒冷季节能够安全可靠地使用。
材料科学与工程四要素

材料科学与工程四要素材料科学与工程是一门研究材料的性能、结构和制备工艺的学科,它是现代工程技术的重要基础。
在材料科学与工程中,有四个重要的要素,它们分别是材料的结构、性能、加工工艺和应用。
这四个要素相互联系、相互影响,构成了材料科学与工程的核心内容。
首先,材料的结构是材料科学与工程的基础。
材料的结构包括原子、晶体、晶粒、晶界、晶粒内部的位错等。
不同的材料结构决定了材料的性能,如金属材料的晶粒大小和形状决定了其力学性能,陶瓷材料的晶粒尺寸和分布决定了其导热性能等。
因此,理解和控制材料的结构对于材料的性能和加工具有重要意义。
其次,材料的性能是材料科学与工程的核心内容之一。
材料的性能包括力学性能、物理性能、化学性能、热学性能等。
不同的材料具有不同的性能,如金属材料具有良好的导电性和导热性,陶瓷材料具有良好的耐高温性和耐腐蚀性等。
因此,理解和控制材料的性能对于材料的应用具有重要意义。
再次,材料的加工工艺是材料科学与工程的重要组成部分。
材料的加工工艺包括原料的提取、材料的制备、材料的成型、材料的热处理等。
不同的加工工艺会对材料的结构和性能产生重要影响,如金属材料的热处理会改变其晶粒的尺寸和分布,陶瓷材料的成型工艺会影响其力学性能等。
因此,理解和控制材料的加工工艺对于材料的性能和应用具有重要意义。
最后,材料的应用是材料科学与工程的最终目的。
材料的应用包括材料在工程、制造、生活等方面的应用。
不同的材料具有不同的应用领域,如金属材料广泛应用于汽车、航空、建筑等领域,陶瓷材料广泛应用于电子、化工、医药等领域。
因此,理解和控制材料的应用对于推动工程技术的发展具有重要意义。
综上所述,材料科学与工程的四要素,即材料的结构、性能、加工工艺和应用,相互联系、相互影响,共同构成了材料科学与工程的核心内容。
只有深入理解和掌握这四个要素,才能推动材料科学与工程的发展,促进工程技术的进步。
材料结构与性能之间的关联对材料设计具有重要指导意义

材料结构与性能之间的关联对材料设计具有重要指导意义在材料科学和工程领域,材料的结构与性能之间的关联是一个重要的研究方向。
了解和掌握材料结构与性能之间的关系,对于材料设计和性能优化至关重要。
本文将探讨材料结构与性能之间的关联,并分析其在材料设计中的指导意义。
材料结构与性能之间的关联主要体现在以下几个方面:1. 结晶结构与力学性能:材料的结晶结构对其力学性能有着重要的影响。
晶体的晶格结构和晶体缺陷(如晶界、位错等)对材料的强度、硬度和塑性等力学性能具有显著的影响。
通过控制材料的晶粒尺寸、晶界的类型和密度,可以调节材料的力学性能,实现材料的强度和韧性的平衡。
2. 化学成分与化学性能:材料的化学成分对其化学性能有着关键的影响。
不同元素的添加或取代可以改变材料的化学性质,如反应活性、耐腐蚀性等。
例如,合金中不同金属元素的配比和含量可以改变材料的硬度、耐磨性和耐腐蚀性能,从而适应不同的工程应用需求。
3. 显微结构与导电性能:材料的显微结构对其导电性能有着重要的影响。
在金属和半导体材料中,晶界和晶粒尺寸对材料的电子迁移率和电阻率具有显著影响。
通过优化材料的显微结构和粒界工程,可以提高材料的导电性能,满足电子器件对高性能材料的需求。
以上这些关联关系为材料设计提供了重要的指导意义。
在材料设计过程中,我们可以从以下几个方面出发,利用这些关联关系来实现材料性能的优化和控制:1. 结构优化:通过调控材料的结构,包括晶体结构、晶体缺陷和显微结构等,可以改善材料的力学性能、导电性能和光学性能等。
例如,利用晶粒细化和晶界工程来提高材料的强度和塑性,通过控制材料的晶粒尺寸和晶界密度来提高材料的导电性能。
2. 成分调控:通过调整材料的化学成分和配比,可以改变材料的化学性质和功能。
在合金材料中,可以通过合理的元素选择和含量控制,来改善材料的耐磨性、耐腐蚀性和高温性能等。
同时,可以利用化学成分的调控来实现材料的多功能性,满足不同领域的应用需求。
工程材料结构与性能

工 学 《工
》
③ 固溶体的溶解度 溶质原子在固溶体中的极限浓 度。溶解度有一定限度的固溶体 称有限固溶体。 称有限固溶体。组成元素无限互 溶的固溶体称无限固溶体。 溶的固溶体称无限固溶体。 组成元素原子半径、 组成元素原子半径、电化学特 性相近, 性相近,晶格类型相同的置换固 溶体,才可能形成无限固溶体。 溶体,才可能形成无限固溶体。 间隙固溶体都是有限固溶体。 间隙固溶体都是有限固溶体。
工 学 《工 》
化合物 Cu-Zn有限固溶体 有限固溶体
工 学 《工 》
Cu-Ni无限固溶体 无限固溶体 固溶体
④ 固溶体的性能 随溶质含量增加, 固溶体的 随溶质含量增加 强度、硬度增加 塑性、 强度、硬度增加, 塑性、韧性 下降—固溶强化。 下降 固溶强化。 固溶强化 产生固溶强化的原因是溶 质原子使晶格发生畸变及对 位错的钉扎作用。 位错的钉扎作用。 与纯金属相比,固溶体的强度、硬度高,塑性、 与纯金属相比,固溶体的强度、硬度高,塑性、韧性 低。与化合物相比,其硬度要低得多,塑性韧性要高得多 与化合物相比,其硬度要低得多,
工 学 《工
》
(3)密排六方晶格 ) 密排六方晶胞它是一个正六面柱体,在晶胞的 个角 密排六方晶胞它是一个正六面柱体,在晶胞的12个角 上各有一个原子,上底面和下底面的中心各有一个原子, 上各有一个原子,上底面和下底面的中心各有一个原子, 上下底面的中间有三个原子。属于这类晶格的金属有 、 上下底面的中间有三个原子。属于这类晶格的金属有Mg、 Zn等。 等
工 学 《工
》
3. 常见纯金属的晶格类型
(1) 体心立方晶格 体心立方晶格的晶胞的形状是一个立方体, 体心立方晶格的晶胞的形状是一个立方体,原子位于 立方体的八个顶角和中心。属于这类晶格的金属有 立方体的八个顶角和中心。属于这类晶格的金属有α-Fe、 Cr、V、W、Mo等。 等
材料性能与结构分析

材料性能与结构分析材料是实现各个行业领域工程的基础,而材料的性能和结构对于工程性能和可靠性起着至关重要的作用。
本文将围绕材料的性能和结构进行综合分析,探讨其对于工程应用的重要性,以及现代科技领域对材料性能和结构的不断追求与创新。
一、材料性能分析材料的性能是指材料在特定工程条件下所表现出的力学、物理、热学、电学等方面的特性。
在工程实践中,材料的性能往往是评价一个材料优劣的重要指标。
下面将从力学性能、物理性能和热学性能三个方面进行分析。
1. 力学性能分析力学性能是材料最基本的性能之一,包括强度、韧性、硬度等指标。
强度是材料抵抗外部力量破坏的能力,直接关系到工程的安全可靠性。
韧性则是材料抵抗断裂的能力,对于承受冲击或振动负荷的结构尤为重要。
硬度则表征了材料抵抗切削和磨损的能力,对于耐磨性要求较高的工程应用十分关键。
2. 物理性能分析物理性能主要包括密度、导热性、导电性等方面的指标。
密度是材料单位体积质量的大小,影响到工程结构的轻重和造价。
导热性则是材料传导热量的特性,对于热工程项目具有重要作用。
导电性则是材料导电的能力,关系到电气工程等领域的应用。
3. 热学性能分析热学性能主要包括热膨胀系数、热导率和比热容等指标。
热膨胀系数表征了材料随着温度变化时的尺寸变化情况,是热学设计中必须考虑的因素。
热导率则是材料传导热量的能力,对于热传导的工程项目非常重要。
比热容则是材料单位质量在温度变化时吸收或释放的热量,关系到热学过程中的能量变化。
二、材料结构分析材料的结构是指材料内部的分子、原子排列和组成,直接决定材料的性能表现。
不同的材料结构对应着不同的性能,下面将从金属材料和非金属材料两个方面进行分析。
1. 金属材料结构分析金属材料的结构通常是由金属原子通过离子键、金属键等形成晶体结构。
晶体结构的特点是具有一定的有序性和周期性,如立方晶体、六方晶体等。
不同的晶体结构决定了金属材料的晶格常数、晶胞数目等,直接影响金属材料的力学性能和导电性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数。
Z X
(326)
Y
-Z
第一章 工程材料的结构与性能
单晶体的各向异性
单晶体中不同晶面和晶向上的原子排列方式和 密度不同,因而,在不同的晶面和晶向上的各种性 能也不同,这种现象称为各向异性 。
第一章 工程材料的结构与性能
1.2.2实际晶体结构
1.多晶体与亚结构
实际金属晶体内部包含了许多颗粒状的小晶体,每个 小晶体内部晶格位向一致,而各小晶体之间晶格位向不同。 小晶体称为“晶粒”,晶粒与晶粒之间的界面称为“晶界”。 在晶界上原子排列是不规则的。这种由多晶粒构成的晶体结 构称为“多晶体”,多晶体呈现各向同性。
(2)共聚是指由几种不同类型的单体的聚合而生产的产物,称 为共聚物。
第一章 工程材料的结构与性能
1.5.1大分子链的结构
大分子链的结构包括大分子结构单元的化学组成、键接 方式、空间构型等。
1)结构单元的化学组成:由C、H、N、O、Si等元素构成。 其中碳原子之间以共价键结合的碳链高分子是最重要的高聚 物。
第一章工程材料的结构与性能
1.1材料原子的相互作用 1.2 晶体材料的原子排列 1.3 非晶态材料中的原子排列 1.4 合金的晶体结构 1.5 高聚物的结构 1.6 陶瓷的结构 1.7 工程材料的性能 本章小结
第一章 工程材料的结构与性能
1.1材料原子的相互作用
离子键
共价键
金属键
原子结合键类型
分子键
F凹 ?Dh ?D(D ? D2 ? d 2 )
当试验压力的单位为牛顿(N)时
2F HB ? 0.102
?D(D ? D2 ? d 2 )
低碳钢:? b=3.53HB,高碳钢: ? b=3.33HB,合金调质钢: ? b=3.19HB 灰铸铁: ? b=0.98HB,退火铝合金: ? b=4.70HB
固态合金中的相,按其晶格结构的基本属性来分,可 以分为固溶体和化合物两类。
第一章 工程材料的结构与性能
1.4.2固溶体
溶剂原子
溶质原子
置换固溶体 间隙固溶体
置换固溶体中,溶质原子在溶剂晶格中的分布是任意的、无 规律的。如果溶质原子在溶剂晶格中的溶解度有一定限度,则 称有限互溶,形成有限置换固溶体;如果合金组元可以以任何 比例相互溶解,如Cu-Ni 合金,这叫无限互溶,形成无限置换 固溶体。
2)头-头或尾-尾连接:
3)无规则连接:
第一章 工程材料的结构与性能
(2)链的构型 链的结构是指高分子链中原子或原子团在空间的排列方式 ,即 链构型。按取代基R在空间所处的位置及规律不同 ,可有以下三种立 体构型:
第一章 工程材料的结构与性能
大分子链的几何形态
线型
带有支链
体型
第一章 工程材料的结构与性能
按用途分类 结构材料(利用其力学性能) 功能材料(利用光学、电学、声学、磁学、化学、物理、生物 化学等特性完成特定功能)
按状态分类 单晶体、多晶体、非晶体
第一章 工程材料的结构与性能
第一章 工程材料的结构与性能
绪论
?本课程在人才培养中的地位和作用 ?本课程的内容和要求
第一章 工程材料的结构与性能
1.7.2工程材料的物理性能 1.7.3工程材料的化学性能 1.7.4工程材料的工艺性能
第一章 工程材料的结构与性能
1.强度
1)静载时的 强度
(1) 弹性和刚度
(2) 屈服点σs (3) 抗拉强度 σb 2)变载时的强度
3)高温强度
第一章 工程材料的结构与性能
2.塑性
材料在外力的作用下,产生塑性变形而不断裂的性能称 为塑性。其大小用伸长率和断面收缩率来表示。
由两种或两种以上的金属元素或金属元素和非金属元 素组成的具有金属性质的物质,称为合金 。组成合金的元 素叫做组元。由两种组元组成的合金,称为二元合金。
在物质中,凡是成分相同,结构相同,并与其他部分 以界面分开的均匀组成部分,称为相。合金结晶后可以是 一种相,也可以是由若干种相所组成。
一种或多种相按一定方式相互结合所构成的整体称为 组织。相的相对数量、形状、尺寸和分布的不同,形成了 不同的组织,不同的组织使合金具有不同的力学性能。
大分子链的运动方式 线型无定型高聚物中,大分子链的运动方式具有多重
性,主要有如下几种: (1)整链的运动:大分子链作为一个整体作质量中心的
移动,即发生原子链间的相对移动(滑脱)。反映在性能上 是高聚物呈现延性,会出现由粘性流动引起的永久变形。
(2)链段的运动:链段是由几个至几十个链节组成的一 小段分子链,由于主链的内旋转,使大分子链具有柔顺性 ,在整链质量中心不移动的情况下,一部分链段相对于另 一部分链段而运动,出现可逆伸缩。反映在性能上是高聚 物呈现独有的高弹性。
第一章 工程材料的结构与性能
1.5.2高聚物的聚集态结构
第一章 工程材料的结构与性能
1.6陶瓷的结构
陶瓷的基本相结构主要有:晶相、玻璃相、气相等。其组 织示意图见下图
陶瓷的性能主要取决于晶相。陶瓷中的晶相主要有硅酸盐 、氧化物、非氧化物。
第一章 工程材料的结构与性能
以共价电子形成稳定的电子满壳层的方式实现结合的晶体。如 金刚石,硅酸盐等
2)结构单元的键接方式和链的构型(头_尾连接、头_头 连接、尾_尾连接等连接方式;空间构型有全同立构、间同 立构和无规立构
3)大分子链的形态: (大分子链的几何形态、大分子 链的构象及柔顺性)
第一章 工程材料的结构与性能 2. 结构单元键连接方式和链的构型 ⑴聚合物中聚氯乙烯单体的连接方式 1)头-尾连接:
第一章 工程材料的结构与性能
洛氏硬度
第一章 工程材料的结构与性能
硬度
符号 HRC HRB HRA
压头类型
120 o
金刚石圆锥
Ф1/16inch 淬火钢球
120 o
金刚石圆锥
压力 Kgf 150
100
60
硬度值 有效范围
应用举例
20~60 HRC
淬火钢件
25~100 HRB
? ? L1 ? L0 ? 100%
L0
? ? A0 ? A1 ? 100%
A0
第一章 工程材料的结构与性能
3.硬度
布氏硬度原理
洛氏硬度原理
维氏硬度原理
第一章 工程材料的结构与性能
布氏硬度
第一章 工程材料的结构与性能
硬度
布氏硬度用HB 表示: 当试验压力的单位为kgf 时
FF
2F
HB ? ? ?
第一章 工程材料的结构与性能
(二)聚合反应类型 高聚物是由一种或几种简单化合物聚合而成,其聚合方式有
加聚、缩聚两种。 1.加聚反应 由一种或几种单体聚合而成高聚物的反应,称为加聚以应。
这种高聚物链节的化学结构与单体的化学结构相同。根据单体种类 的不同,可分为均聚和共聚两种:
(1)均聚是指由一种单体聚合而成的高聚物,称为均聚物。如 聚乙烯是乙烯的均聚物。
间隙固溶体是由一些原子半径小于1? 的非金属元素,如 :H、 O、C、B、N,溶入过渡族金属而形成,且只有当溶质原子直 径与溶剂原子直径的比值小于0.59时,才能形成间隙固溶体。 溶剂晶格的间隙是有限的,因此间隙固溶体只能是有限固溶体。
第一章 工程材料的结构与性能
1.4.3金属间化合物
1)正常价化合物 2)电子化合物 3)间隙化合物 1.4.4合金性能 1)固溶体与固溶强化 2)化合物与第二相强化
(2)面心立方晶格结构
41
第一章 工程材料的结构与性能
42
(3)密排六方晶格结构。
动画15 密排六方晶胞
第一章 工程材料的结构与性能
3).晶面和晶向的表示方法
晶面和晶向的表示方法分别采用晶面指数
(hkl)和晶向指数[uvw] 形式(以立方晶系为例)。
晶面 晶向指数[uvw] 的确定方法是:
以晶胞的某一阵点为原点,三个基矢
ቤተ መጻሕፍቲ ባይዱ 第一章 工程材料的结构与性能
1.5高聚物的结构
高聚物又称高分子化合物 ,通常由一种或几种 简单的低分子化合物聚合 而成。高聚物的分子量很 大,一般在 104~107的范围内。
高聚物的结构主要是指大分子链的结构,即大 分子链的形态、和大分子的聚集态结构。
1.5.1 大分子链的结构 1.5.2 高聚物的聚集态结构
(3)链节的运动:链节、原子团、原子在平衡位置作小 范围运动。反映在性能上是高聚物呈现普弹性(应力与应 变成正比)。
第一章 工程材料的结构与性能
单键内旋转示意图
第一章 工程材料的结构与性能
4. 高聚物的聚集态结构 高分子化合物的聚集态结构是指高聚物内部高分子链之间的几
何排列或堆砌结构,也称超分子结构。依分子在空间排列的规整性 可将高聚物分为结晶型、部分结晶型和无定型 (非晶态)三类。
晶面指数的确定方法
?在点阵中设置参考坐标系,方法与确定晶
向指数时相同,但不能将坐标原点选在待
确定指数的晶面上;
?以点阵基矢的长度为单位,量出待定晶面
在各坐标轴上的截距;
-Y
?取三个截距的倒数,并以最小
公倍数乘这三个倒数,得到三个
最小的整数h 、k 、l;
?将求得的h、 k、 l用圆括号括 X 起来,(hkl) 即为该晶面的晶面
第一章 工程材料的结构与性能
工程材料及成形 技术基础
第一章 工程材料的结构与性能
绪论
?材料与成形技术的经济地位
材料的发展史 材料的分类
?本课程在人才培养中的地位和作用 ?本课程的内容和要求
第一章 工程材料的结构与性能
材料的分类
按化学成分分类 金属(黑色金属、有色金属) 非金属 无机非金属(传统硅酸盐(水泥、玻璃、陶瓷、耐火材 料) 现代陶瓷(氧化物陶瓷、氮化物陶瓷、 碳化物陶瓷、硼化物陶瓷) 有机非金属(塑料、橡胶、纤维、胶沾剂)