第二章随机变量及其分布

合集下载

第二章随机变量及其分布

第二章随机变量及其分布

第二章 随机变量及其分布第二节 离散随机变量一、选择1 设离散随机变量X 的分布律为:),,3,2,1(,}{ ===k b k X P kλ )(0为,则且λ>b11)D (11)C (1)B (0)A (-=+=+=>b bb λλλλ的任意实数).()0(,11111·,1,11)1(·lim lim 1)1(·1}{111C b b b b S b b S b k X P n n n n n nk kn k kk 所以应选因所以时当于是可知即因为解><+==-<=--=--=====∞→∞→=∞=∞=∑∑∑λλλλλλλλλλλλ二、填空1 如果随机变量X 的分布律如下所示,则=C .X0 1 2 3PC1 C 21 C 31 C 41.12251)(31==∑=C x P x i 得:根据解 2 进行重复独立试验,设每次试验成功的概率为54, 失败的概率为51, 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是__ ___ ____.(此时称X 服从参数为p 的几何分布).解:X 的可能取值为1,2,3 ,{}{}.,1~1次成功第次失败第K K K X -==所以X 的分布律为{} 1,2, , 54)51(1=⋅==-K K X P K 三、简答1 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布.的概率分布是从而,种取法,故只,共有任取中,,个号码可在,另外只球中最大号码是意味着事件种取法,故只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 53}5{624,321253},5{103}4{2321243},4{1011}3{,3,2,13},3{.5,4,335242235232335=============X 3 4 5 P101 103 532 一汽车沿一街道行驶, 需要通过三个均设有绿路灯信号的路口, 每个信号灯为红和绿与其他信号为红或绿相互独立, 且红绿两种信号显示时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口个数, 求X 的概率分布.故分布律为于是相互独立,且,遇到红灯个路口首次汽车在第表示设的可能值为由题设知解3321321332132122121132121)()()()(}3{21)()()()(}2{21)()()(}1{21)(}0{,21)()(,,"")3,2,1(,3,2,1,0==================A P A P A P A A A P X P A P A P A P A A A P X P A P A P A A P X P A P X P A P A P A A A i i A X i i iX 0 1 2 3 P21 221 321 321 第三节 超几何分布 二项分布 泊松分布一、选择1 甲在三次射击中至少命中一次的概率为0.936, 则甲在一次射击中命中的概率p =______.(A) 0.3 (B) 0.4 (C) 0.5 (D) 0.6 解: D设=X ”三次射击中命中目标的次数”,则),3(~p B X , 已知936.0)1(1)0(1)1(3=--==-=≥p X P X P , 解之得6.04.01064.0)1(3=⇒=-⇒=-p p p2 设随机变量),3(~),,2(~p b Y p b X , {}{}=≥=≥1,951Y P X P 则若______. 43)A (2917)B ( 2719)(C 97)D ( 解: C二、填空1设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P{}______4=则=X P .解:232-e 三、简答1.某地区的月降水量X (单位:mm )服从正态分布N(40,24),试求该地区连续10个月降水量都不超过50mm 的概率.9396.09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()44050440P )50P A P mm 50A 10=)==(),(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察(()=(”=“某月降水量不超过解:设==-≤-=≤φx x2 某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的2.5倍.(1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率; (3)求1个月内至少发生2次交通事故的概率;983.001.000248.0}1{}0{1}2{01487.06}1{)3(9975.000248.01}0{1}1{00248.0}0{)2(0413.0!106}10{1033.0!86}8{)1(6,36!105.2!8}10{5.2}8{.,.,2,1,0,!}{),(~610610682108≈+≈=-=-=≥≈==≈-≈=-=≥≈===≈==≈====⨯====⋯===-------X P X P X P e X P X P X P e e X P e X P e X P e e X P X P k k e k X P P X k λλλλλλλλλλλλ解出即据题意有关键是求出是未知的这里题这是泊松分布的应用问解第五节 随机变量的分布函数一、 填空题1设离散随机变量,216131101~⎪⎪⎭⎫⎝⎛-X 则X 的分布函数为 .⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤--<==++=≤=≥=+=≤=<≤=≤=<≤-=≤=-<1,110,2101,311,0)(1216131}{)(1;216131}{)(1031}{)(01;0}{)(1x x x x x F x X P x F x x X P x F x x X P x F x x X P x F x 当当当当整理,得时,当时,当时,当时,当解二、选择1 设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某一变量的分布函数,在下列给定的数值中应取52,53)A (-==b a 32,32)B (==b a 23,21)C (=-=b a 23,21)D (-==b a ).(1)(lim )(lim )(lim ,1)(lim 21A b a x F b x F a x F x F x x x x 故应选即因此有根据分布函数的性质:分析-=-==+∞→+∞→+∞→+∞→2. 设函数⎪⎩⎪⎨⎧≥<≤<=1x , 11x 0 , 2x 0x,0)(x F .则)(x F ______.(A) 是随机变量的分布函数. (B) 不是随机变量的分布函数.(C) 是离散型随机变量的分布函数. (D) 是连续型随机变量的分布函数. 解: A显然)(x F 满足随机变量分布函数的三个条件:(1))(x F 是不减函数 , (2) 1)(,0)(,1)(0=+∞=-∞≤≤F F x F 且 , (3))()0(x F x F =+3. 设⎪⎪⎩⎪⎪⎨⎧≥<<≤=2x, 12x (*) , 4x(*)x,0)(2x F 当(*)取下列何值时,)(x F 是随机变量的分布函数.(A) 0 (B) 0.5 (C) 1.0 (D)1.5解: A 只有A 使)(x F 满足作为随机变量分布函数的三个条件.三.简答1 设随机变量X 的分布函数为x B A x F arctan )(+=,求B A ,的值. 解:由随机变量分布函数的性质.0)(lim =-∞→x F x .1)(lim =+∞→x F x 知.2)2()a r c t a n (lim )(lim 0B A B A x B A x F x x ππ-=-⨯+=+==-∞→-∞→.22)arctan (lim )(lim 1B A B A x B A x F x x ππ+=⨯+=+==+∞→+∞→ 解⎪⎪⎩⎪⎪⎨⎧=+=-1202B A B A ππ得π1,21==B A第六节 连续随机变量的概率密度一、选择1.设()f x 、()F x 分别表示随机变量X 的密度函数和分布函数,下列选项中错误的是( A )(A ) 0()1f x ≤≤ (B ) 0()1F x ≤≤(C )()1f x dx +∞-∞=⎰(D ) '()()f x F x =2.下列函数中,可为随机变量X 的密度函数的是( B )(A ) sin ,0()0,x x f x π≤≤⎧=⎨⎩其它 (B )sin ,0()20,x x f x π⎧≤≤⎪=⎨⎪⎩其它(C ) 3sin ,0()20x x f x π⎧≤≤⎪=⎨⎪⎩,其它(D )()sin ,f x x x =-∞<<+∞ 二、填空1.设连续随机变量X 的分布函数为11()arctan ,2F X x x π=+-∞<<+∞ (1)(11)P X -≤≤= 0.5 , (2)概率密度()f x =21,(1)x x π-∞<<+∞+三、简答题1. 设随机变量X 的概率密度20()0,x Ax e x f x x -⎧>=⎨≤⎩,求:(1)常数A ;(2)概率(1)P X ≥。

高中数学《第二章随机变量及其分布2.4正态分布信息技术应用μ,σ对正...》207PPT课件

高中数学《第二章随机变量及其分布2.4正态分布信息技术应用μ,σ对正...》207PPT课件

能说 说正态 曲线的特点 吗?
2曲 线 是单 峰 的,它 关 于直 线x μ
对 称;
3曲线在x μ处达到峰值;
4曲 线 与x轴 之 间 的 面 积 为1.
正态曲线下的面积规律
• X轴与正态曲线所夹面积恒等于1 。 • 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)
例1: 在一次测试中,测量结果X服从正态分布 N(2,σ2)(σ>0),若X在(0,2)内取值的概率为
观察正态分布曲线的变化
用几何画板研究正态曲线随着 和变化的特点
信息技术 的应用
2. 正态曲线的特点
的意义
正态曲线 f x
1
x 2
e 2 2 , x ,
2
由图象可以知道
(1)曲线是单峰的,它关于直线 x 对称.
(2)曲线在 x 处达到峰值 1
.
2
参数反映随机变量取值的平均水平
我们从上图看到,正态总体在(μ-2σ,μ+2σ)以外取值的概率只有 4.5%,在
3 , 3 以外取值的概率只有 0.27%。
小概率事件:
.由图可知,正态分布几乎总取值于区间 3 , 3 之内,而在此区间以外
取值的概率只有 0.0027, 由于这些概率值很小(一般不超过 5%),通常称这些
标准正态曲线
正态曲线的函数表示式
f x
1
x 2
e 2 2 , x ,
2
标准正态曲线
y
当时
f x
1
e
x2 2
,
x
,
2
-3 -2 -1 0 1 2 3 x
称为标准正态分布的函数,其图象称为标准正态曲线.
从正态曲线分析,随机变量X在区间(a,b]内取值的 概率有什么几何意义?在理论上如何计算?

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法

概率论讲义第二章随机变量及其分布[统计学经典理论]

概率论讲义第二章随机变量及其分布[统计学经典理论]

第二章随机变量及其分布第一节随机变量1. 为什么引入随机变量?概率论是从数量上来研究随机现象统计规律性的,为了更方便有力的研究随机现象,就要用数学分析的方法来研究,因此为了便于数学上的推导和计算,就需将任意的随机事件数量化.当把一些非数量表示的随机事件用数字来表示时,就建立起了随机变量的概念.2. 随机变量的引入实例1 在一装有红球、白球的袋中任摸一个球,观察摸出球的颜色.实例2 抛掷骰子,观察出现的点数.二、随机变量的概念定义设随机试验E的样本空间是S = {e}, X = X (e)是定义在样本空间S 上的实值单值函数, 则我们称X = X (e)为随机变量.2.说明(1)随机变量与普通的函数不同随机变量是一个函数 , 但它与普通的函数有着本质的差别 ,普通函数是定义在实数轴上的,而随机变量是定义在样本空间上的 (样本空间的元素不一定是实数).(2)随机变量的取值具有一定的概率规律随机变量随着试验的结果不同而取不同的值, 由于试验的各个结果的出现具有一定的概率, 因此随机变量的取值也有一定的概率规律.(3)随机变量与随机事件的关系随机事件包容在随机变量这个范围更广的概念之内.或者说 : 随机事件是从静态的观点来研究随机现象,而随机变量则是从动态的观点来研究随机现象.下面我们举几个随机变量的例子:(1) n次射击命中目标的次数X (或随意抽验n件产品, 其中不合格品的件数), 它有n + 1个可能取值: 0, 1, 2, …, n.(2) 灯泡寿命X, 可以取[0, +∞)上的任意值.(3) 测量误差X, 可以取(-∞, +∞)上的任意值.有了随机变量, 随机试验中的各种事件, 就可以通过随机变量的关系式表达出来.例如, 从一批产品中任意取出10件, 若用X表示其中的废品数, 这时, {少于2件废品}、{恰有1件废品}两个事件, 就可以分别用{X < 2}、{X = 1}来表示.又如单位时间内电话交换台接到的呼唤次数用X 表示, 此时{接到不少于1次呼唤}、{没有接到呼唤}两个事件, 可以分别用{X ≥ 1}、{X = 0}来表示.再如, 上面(2)中事件{寿命不少于200小时而不超过1000小时}的事件, 就可用{200 ≤ X ≤ 1000}来表示.例1 “掷一颗骰子”是随机现象, 用随机变量X 表示出现的点数, 求(1) X 的取值范围; (2) 概率P{X ≤ 4}及P{X < 4}; (3) 概率P{X > 4}及P{2 ≤ X < 4}.引进了随机变量, 就可以通过随机变量来描述随机试验中各种事件, 全面反映试验的情况. 因此, 我们对随机现象统计规律性的研究, 就可以由对事件与事件的概率的研究扩大为对随机变量的研究.-∞第二节 离散型随机变量极其分布律如果随机变量它所有可能取的值是有限个或可列个值, 则我们就称之为离散型随机变量.设离散型随机变量X 的所有可能取值为x k (k = 0, 1, 2, ...), X 取各个可能值的概率, 即事件{X = x k }概率为 P{X = x k }= p k , k = 0, 1, 2, (1)则我们称(1)式为离散型随机变量X 的分布律或概率分布. 分布律也可以用表格的形式来表示:k 1︒ 0 ≤ p k ≤ 1, k = 0, 1, 2, …; 2︒ 11=∑∞=k k p .(2) 注: 凡满足(2)的函数p k 一定是某个离散型随机变量的分布律. 例1 (1) 设随机变量X 的分布律为k c k X P ⎪⎭⎫ ⎝⎛⋅==32}{, k = 1, 2, 3, 求常数c 的值. 3827 (2) 设随机变量X 的分布律为!}{k c k X P k λ⋅==, k = 0, 1, 2, …, λ > 0, 求常数c 的值. 1)1(--λe下面介绍三种重要的离散型随机变量.一、(0 - 1)分布(或两点分布)设随机变量X 只可能取0或1两个值, 它的分布律为k k p p k X P --==1)1(}{, k = 0, 1, (0 < p < 1), 或则称X 服从(0 - 1)分布 凡是只有两个结果的试验都可以用(0 - 1)分布来描述.二、伯努利试验、二项分布在实践中, 我们经常遇到下列类型的重复试验:(1) 每次试验的条件都相同, 且试验结果; 只有两个: A 及A , 且P(A) = p, P(A ) = q = 1 - p (0 < p < 1),(2) 每次试验的结果(即基本事件)是相互独立的.我们称之为n 重伯努利(Bernoulli)试验, 或伯努利概型.由于它是一个常见的、十分有用的概型, 所以在这里着重对它进行讨论.对于伯努利概型, 可以得到如下结果: 在n 次试验中事件A 出现k 次的概率为()(,,)k k n k n n P k b k n p C p q-==, k = 0, 1, 2, …, n. (3)事实上, 如将“第i 次试验中A 出现”的事件记为A i (i = 1, 2, …, n), 则由伯努利概型知, 在n 次试验中事件A 在指定的k 次试验中出现(如在前k 次出现), 其余n - k 次试验中不出现的概率为=+)(11n k k A A A A P =+)()()()(11n k k A P A P A P A P k k k k q p p p --=-11)1(.由于n 次试验中A 出现k 次的方式很多(在前k 次出现只是其中一种方式), 其总数相当于k 个相同的质点安排在n 个位置(每个位置只能安排一个质点)上的所有可能方式, 易知共应有k n C 种方式, 而它所对应的这k n C 个事件(即“n 次试验中A 出现k 次”这一事件)是不相容的, 故由概率的可加性得()(,,)k k n k n n P k b k n p C p q-==, k = 0, 1, 2, …, n.例3 设由四门高射炮同时独立地向一架敌机各发射一发炮弹, 若低机被不少于两发炮弹击中时, 就被击落. 设每门高射炮击中敌机地概率为0.6, 球敌机被击落地概率.解: 所求概率为 P = 1 - P 4(0) - P 4(1) = 0.8208.例4 甲、乙两乒乓球运动员实力相等, 连赛数局, 问哪一种结果的可能性大: 赛3局甲胜2局; 赛5局甲胜3局.解: 赛3局甲胜2局 83)2(3=P ; 赛5局甲胜3局 165)3(5=P .例5 某人有两盒火柴, 用时从任一盒中取一根火柴, 经过若干时间以后发现一盒火柴已经用完, 如果最初两盒中各有n 根火柴, 求这时另一盒中还有r 根火柴的概率.解: 发现一盒火柴已经用完, 而另一盒中还有r 根火柴, 这种情况一定是在第n + (n - r) + 1= 2n - r + 1次用时发现的. 设在前2n - r 次中此人恰有n 次取了第一盒, n - r 次取了第二盒, 而在第2n - r + 1次又取了第一盒, 发现它是空的, 这一事件的概率为 21)(21⋅=-n P p r n =2121212⋅⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--r n n n r n C =12221+--⎪⎭⎫ ⎝⎛r n n r n C 同理, 设在前2n - r 次中此人恰有n 次取了第二盒, n - r 次取了第一盒, 而在第2n - r + 1次又取了第二盒, 发现它是空的, 这一事件的概率为 122221+--⎪⎭⎫ ⎝⎛=r n n r n C p . 因此, 所求事件的概率为 r n n r n C p p P --⎪⎭⎫ ⎝⎛=+=222121.设X 表示n 重伯努利试验中事件A 发生的次数, 则X 是一个随机变量, 它的可能取值为0、1、2、…、n, 由前面的讨论, 我们有 {}k k n k n P X k C p q -==, k = 0, 1,2, …, n. (4) 显然, P{X = k} ≥ 0, k = 0, 1, 2, …, n; 0()1n k k n k n n k C p q p q -==+=∑即P{X = k}满足条件(2), 注意到k k n k n C p q -刚好是二项式n q p )(+的展开式中出现p k 的项,故我们称随机变量X 服从参数为n 、p 的二项分布, 记为X ~b (n, p).特别地, 当n = 1时, 二项分布即为(0 - 1)分布.例6 设有12台独立运转的机器, 在一小时内每台机器停机的概率为0.1, 试求在一小时内停机台数不超过2的概率.解: 设X 表示一小时内停机台数, 则X ~b (12, 0.1). 从而所求概率为P{X ≤ 2} = P{X= 0} + P{X= 1} + P{X= 2} = 0.2824 + 0.3766 + 0.2301 = 0.8891.例7 某车间有10台电机各为7.5千瓦的机床, 如果每台机床的工作情况是相互独立的, 且每台机床平均每小时开动12分钟, 问全部机床用电超过48千瓦的可能性有多少?解: 设X 表示正在工作的机床台数, 则)51,10(~b X , 用电超过48千瓦即有7台或7台以上的机床在工作, 则所求概率为377105451}7{⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=≥C X p +288105451⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C +⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛54519910C +10101051⎪⎭⎫ ⎝⎛C 11571≈. 从此例可看出, 当n 很大时, 计算k k k n q p C k X P -==1}{是十分麻烦的.为此, 我们有泊松(Poisson)定理 设λ > 0是一个常数, n 是任意正整数, 设np n = λ , 则对于任一固定的非负整数k, 有 !)1(lim k e p p C k k n n k n k n n λλ--∞→=-. 证: 由n p n λ=, 有 k n k k n n k n k n n n k n n n k p p C --⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+--=-λλ1)1()1(!1)1( k n k n n n k n n k -⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛----⋅-⋅=λλλ11)]11()21()11(1[! . 对于任意固定的k, 当n →∞时, 有 1)]11()21()11(1[→---⋅-⋅n k n n , λλ-→⎪⎭⎫ ⎝⎛-e n n 1, 11→⎪⎭⎫ ⎝⎛--k n λ. 故有 !)1(lim k e p p C k k n n k n k n n λλ--∞→=-. 可见, 当n 很大, p 很小时, 二项分布就可以用下列公式来近似计算: !)1(1k e p p C k k k k n λλ--≈- (λ = np) (5) 这就是著名的二项分布的泊松逼近公式.例8 某人进行射击, 每次命中率为0.02, 独立射击400次, 求命中次数X ≥ 2的概率.解: 显然, X ~ b(400, 0.02), 则P{X ≥2} = 1 - P{X = 0} - P{X =1}9970.091)98.0()02.0()98.0()02.0(183991140040000400≈-≈--=-e C C .这个概率接近于1, 它说明, 一个事件尽管它在一次试验中发生的概率很小, 但只要试验次数很多, 而且试验是独立进行的, 那么这一事件的发生几乎是肯定的, 所以不能轻视小概率事件. 另外, 如果在400次射击中, 击中目标的次数竟不到2次, 根据实际推断原理, 我们将怀疑“每次命中率为0.02”这一假设.例9 为保证设备正常工作, 需要配备适量的维修工人(工人配备多了就浪费, 配备少了要影响生产). 现有同类型设备300台, 各台工作与否是相互独立的, 发生故障的概率都是0.01, 在通常情况下, 一台设备的故障可由一人来处理(我们也只考虑这种情况), 问至少需配备多少工人, 才能保证当设备发生故障但不能维修的概率小于0.01?解: 设需要配备N 人, 记同一时刻发生故障的设备台数为X, 则X ~ b(300, 0.01), 所要解决的问题是确定N, 使得 P{X > N} < 0.01. 由泊松定理, λ = np = 3, }{1}{N X P N X P ≤-=>=∑=-⋅-N k k k k C 0300300)99.0()01.0(1∑∑∞+=-=-=-≈1303!3!31N k k N k k k e k e < 0.01. 查表知, 满足上式的最小的N 是8, 因此需配备8个维修工人.例10 在上例中, 若由一人负责维修20台设备, 求设备发生故障而不能及时处理的概率. 若由3人共同负责维修80台呢?解: 在前一种情况, 设备发生故障而不能及时处理, 说明在同一时刻设备有2台以上发生故障. 设X 为发生故障设备的台数, 则X ~ b(20, 0.01)且n = 20, λ = 0.2, 于是, 设备发生故障而不能及时处理的概率为 }2{1)99.0()01.0(}2{2020220<-==≥-=∑X P C X P k k k k ∑=--=102020)99.0()01.0(1k k k k C 0175.0!)2.0(1102.0=-≈∑=-k k k e . 若由3人共同负责维修80台, 设同一时刻发生故障的设备台数为X, 则X ~ b(80, 0.01), λ = 0.8, 故同一时刻至少有4台设备发生故障的概率为 k k k k C X P -=∑=≥8080480)99.0()01.0(}4{0091.0!)8.0(8048.0≈≈∑=-k k k e . 计算结果表明, 后一种情况尽管任务重了(平均每人维修27台), 但工作质量不仅没有降低, 相反还提高了, 不能维修的概率变小了, 这说明, 由3人共同负责维修80台, 比由一人单独维修20台更好, 既节约了人力又提高了工作效率, 所以, 可用概率论的方法进行国民经济管理, 以便达到更有效地使用人力、物力资源的目的. 因此, 概率方法成为运筹学的一个有力工具.三、泊松分布设随机变量X 的所有可能取值为0, 1, 2, …, 而取各个值的概率为 !}{k e k X P k λλ-==, k = 0, 1, 2, … 其中λ > 0是常数, 则称X 服从参数为λ的泊松分布, 记为X ~ π (λ).易验证, P{X = k}满足条件(2).例11 有一汽车站, 每天都有大量汽车通过. 设每辆汽车在一天中的某段时间内发生事故的概率为0.0001, 而在某天的该段时间内有1000辆汽车通过, 试求发生事故的次数X < 2的概率.解: 显然X ~ b(1000, 0.0001). 因n = 1000较大, p = 0.0001较小, 故可用泊松分布来计算, λ = np = 0.1, 从而 }1{}0{}2{=+==<X P X P X P 1.01.00!11.0!0)1.0(--+=e e 9953.01.11.0≈=-e . 泊松定理指明了以n 、p(np = λ)为参数的二项分布, 当n →∞时趋于以λ为参数的泊松分布, 这一事实也显示了泊松分布在理论上的重要性.具有泊松分布的随机变量在实际中存在相当广泛. 例如, 纺纱车间大量纱锭上的纺线在一个时间间隔内被扯断的次数; 纺织厂生产的一批布匹上的疵点个数; 电话总机在一段时间内收到的呼唤次数; 种子中杂草种子的个数; 一本书某页(或某几页)上印刷错误的个数; 在一个固定时间内从某块放射物质中发射出的α粒子的数目等都服从泊松分布.泊松分布通常适用于描绘大量重复试验中稀有事件(即每次试验中出现的概率很小的事件, 例如不幸事件、意外事故、非常见病、自然灾害等)出现的次数的概率分布.第三节 随机变量的分布函数对于非离散型随机变量X, 由于其取值不能一个个列举出来, 因此在一般情况下, 需研究随机变量取值落在任意区间(x 1, x 2)中的概率, 即求 P{x 1< X ≤ x 2}. 由于事件{x 1< X ≤ x 2}与事件{X ≤ x 1}互不相容, 且{x 1< X ≤ x 2}∪{X ≤ x 1}= {X ≤ x 2}, 因此有P{x 1< X ≤ x 2} = P{X ≤ x 2} - P{X ≤ x 1}.由此可见, 若对任何给定的实数x, 事件{X ≤ x}的概率P{X ≤ x}确定的话, 概率P{x 1< X ≤ x 2}也就确定了, 但概率P{X ≤ x}随着不同的x 而变化, 这个概率是x 的函数, 于是引进下面的分布函数的概念.定义 设X 是一个随机变量, x 是任意实数, 函数 F(x) = P{X ≤ x}(1)称为分布函数.注: 1︒ F(x)是一个普通实函数, 它的定义域是整个数轴, 故求分布函数时要就x 落在整个数轴上讨论, F(x)的值域是区间[0, 1]. 如果将X 看成是数轴上的随机点的坐标, 则分布函数F(x)在x 处的函数值就表示X 落在(-∞, x ]上的概率.2︒ 由上面的讨论, 有P{x 1< X ≤ x 2}= F(x 2) - F(x 1).例1 接连进行两次射击, 以X 表示命中目标的次数, 假设已知每次射击命中目标的概率为0.4, 求X 的分布律与分布函数.解: XX 的分布函数为 ⎪⎪⎩⎨≥<≤=.2,1,21,84.0)(x x x F 一般地, 设离散型随机变量X 的分布律为 P{X = x k }= p k , k = 1, 2, …, 则X 的分布函数为∑∑≤≤===≤=x x k x x k k k p x X P x X P x F }{}{)( (2)这里和式是对所有满足x k ≤ x 的k 求和. 此外, 分布函数F(x)在x = x k (k = 1, 2, …)处有跳跃, 其跳跃值为p k = P{X = x k }.例2求X 的分布函数}2{≤X P }21{≤<X P }21{≤≤X P 例3 向区间[a, b]上均匀地投掷一随机点, 以X 表示随机点的落点坐标, 求X 的分布函数. 解: ⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 分布函数F(x)具有以下一些性质:1︒ 0 ≤ F(x) ≤ 1 (-∞ < x < +∞);2︒ F(x)是单调不减函数, 即若x 1 < x 2, 则F(x 1) ≤ F(x 2);3︒ 0)(lim )(==-∞-∞→x F F x , 1)(lim )(==+∞+∞→x F F x ; 4︒ )()(lim )0(0000x F x F x F x x ==++→ (-∞ < x 0 < +∞), 即F(x)是右连续的.第四节 连续型随机变量极其概率密度在实际问题中, 除了离散型随机变量以外, 还有非离散型随机变量, 其中常用的是连续型随机变量. 如炮弹落地点和目标之间的距离. 尽管分布函数是描述各种类型随机变量变化规律的最一般的共同形式, 但由于它不够直观, 往往不常用. 如对于离散型随机变量, 用分布律来描述既简单又直观. 对于连续型随机变量我们也希望有一种比分布函数更直观的描述方式.定义 如果对于随机变量X 的分布函数F(x), 存在非负函数f (x), 使对任意实数x, 有 ⎰∞-=x dt t f x F )()( (1) 则称X 为连续型随机变量, 其中函数f (x)称为X 的概率密度函数, 简称概率密度.概率密度f (x)在几何上表示一条曲线, 称之为分布曲线. 分布函数F(x)的几何意义是分布曲线f (x)下从-∞到x 的一块面积, 这块面积随x 而改变.可以证明: 连续型随机变量的分布函数F(x)是连续函数.易知, 概率密度f (x)具有下列性质:1︒ f (x) ≥ 0; 2︒ 1)(=⎰∞+∞-dx x f ; 3︒ P{x 1< X ≤ x 2}= F(x 2) - F(x 1) =⎰21)(x x dx x f (x 1 ≤ x 2); 4︒ 若f (x)在点x 处连续, 则有)()(x f x F ='.注: (1) 若函数f (x)满足性质1︒、2︒, 则f (x)一定是某个连续型随机变量的概率密度.(2) 对于连续型随机变量X 来说, 它取任一指定实数a 的概率为0, 即P{X = a}= 0.事实上, 设X 的分布函数为F(X), ∆x > 0, 则由{X = a}⊂ {a - ∆x < X ≤ a}得 ⎰∆+=∆--=≤<∆-≤=≤x a a dx x f x a F a F a X x a P a X P )()()(}{}{0. 又0)(lim 0=⎰∆+→∆x a a x dx x f , 所以, P{X = a}= 0. 因此 P{a < X ≤ b} = P{a < X < b} = P{a ≤ X < b} = P{a ≤ X ≤ b} = F(b) - F(a).(3) 概率为0的事件不一定是不可能事件, 同样, 概率为1的事件也不一定是必然事件.(4) 连续型随机变量X 落在小区间(x, x + ∆x) (∆x > 0)上的概率为 =∆+≤<}{x x X x P dx x f dx x f x x x )()(≈⎰∆+. 乘积f (x)dx 称为概率微分, 上式表明, 连续型随机变量X 落在小区间(x, x + ∆x)上的概率近似地等于概率微分. f (x)dx 在连续型随机变量理论中所起的作用与概率P{X = x k } = p k 在离散型随机变量理论中所起的作用是类似的. 如果把x 看成质点的坐标, f (x)看成在x 处的线密度, 则P{x 1< X ≤ x 2}=⎰21)(x x dx x f 就可看成是分布在线段x 1x 2上的质量, 这就是称f (x)为概率密度的理由.例1 确定常数A, 使x Ae x f -=)((-∞ < x < +∞)为某一随机变量的概率密度. 21 例2 设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧<≤-<≤=,,0,21,2,10,)(其它x x x x x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧><≤-+-<≤<=.2,1,21,122,10,2,0,0)(22x x x x x x x x F 求X 的分布函数F(x). 例3 设随机变量X 的概率密度x x e e A x f -+=)( (-∞ < x < +∞). 求 (1) 常数A; (2) 概率}3ln 210{<<X P ; (3) X 的分布函数F(x). 解: (1) 由12arctan )(===+∞∞-∞+∞-⎰A e A dx x f x π, 得 π2=A . (2) }3ln 210{<<X P =61arctan 23ln 0=x e π. (3) X 的分布函数F(x)为 x e x F arctan 2)(π= (-∞ < x < +∞). 例4 设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧><≤-+-<=,,1,,arcsin ,,0)(a x a x a a x B A a x x F 其中a > 0, 求 (1) 常数A 、B; (2) 概率}2{a X P <; (3) X 的概率密度f (x). 注: 若已知X 的概率密度f (x), 要求分布函数F(x), 用积分方法⎰∞-=x dt t f x F )()(, 当f (x)是分段函数时, 积分要分段讨论; 若已知X 的分布函数F(x), 要求概率密度f (x), 则用微分方法)()(x f x F =', 当F(x)是分段函数时, 在分段点处用导数定义求导, 当)(x F '不存在(个别点), 则可任意规定)(x F '的值(个别点的值不影响积分结果).下面介绍几个重要的连续型随机变量.一、均匀分布如果随机变量X 的取值范围是有限区间(a, b), 并且落在[a, b]中的任一小区间的概率只与这个区间的长度成正比, 而与该小区间的位置无关, 则称X 在(a, b)上服从均匀分布, 它的概率密度为 ⎪⎩⎪⎨⎧<<-=.,0,,1)(其它b x a a b x f 分布函数为⎪⎩⎪⎨⎧≥<≤--<=.,1,,,,0)(b x b x a a b a x a x x F 记为X ~ U (a, b). 例5 设随机变量X ~ U (0, 10), 求方程012=++Xx x 有实根的概率.解: ∆=042≥-X , X ≤ -2或X ≥ 2, 所以 P{X ≤ -2} + P{X ≥ 2} = 0.8.二、指数分布 如果连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧>=-.,0,0,1)(其它x e x f xθθ 其中θ > 0是常数, 则称X 服从参数为θ 指数分布, 其分布函数为⎪⎩⎪⎨⎧>-=-.,0,0,1)(其它x e x F x θ 指数分布有重要应用, 常用它来作为各种“寿命”分布的近似. 例如无线电元件的寿命、动物的寿命、电话问题中的通话时间、随机服务系统中的服务时间等都常假定服从指数分布.服从指数分布的随机变量X 具有以下有趣的性质:对于任意的s 、t > 0, 有P{X > s + t ∣X > s} = P{X > t}. 事实上 P{X > s + t ∣X > s} =}{}{}{)}(){(s X P t s X P s X P s X t s X P >+>=>>+> =}{)(1)(1t X P e e e s F t s F t s t s >===-+---+-θθθ. 此性质称为无记忆性. 如果X 是某一元件的寿命, 那么上式表明: 已知元件已使用了s 小时, 它总共能使用至少s + t 小时的条件概率, 与从开始使用时算起它至少能使用t 小时的概率相等. 这就是说, 元件对它已使用过s 小时没有记忆. 具有这一性质是指数分布有广泛应用的原因.三、正态分布 设连续型随机变量X 的概率密度为 222)(21)(σμσπ--=x e x f , (-∞ < x < +∞). 其中μ、σ (σ > 0)为常数, 则称X 服从参数为μ、σ 的正态分布或高斯(Gauss)分布, 记为X ~ N (μ、2σ). 其分布函数为 ⎰∞---=x t dt e x F 222)(21)(σμσπ (-∞ < x < +∞).可以证明, f (x)满足概率密度的两个性质. 事实上 ⎰∞+∞---dx e x 222)(21σμσπ(令σμ-=x t )= I dt e t =⎰∞+∞--2221π. 而=2I 22221⎪⎪⎪⎭⎫ ⎝⎛⎰∞+∞--dt e t π=⎰⎰∞+∞-∞+∞---⋅dy e dx e y x 22222121ππ=⎰⎰∞+∞-∞+∞-+-dxdy e y x )(212221π. 利用极坐标, 令x = rcos θ, y = rsin θ, 则 =2I ⎰⎰∞+-02021221πθπrdrd e r =1022=⎰∞+-dr re r , 由于I ≥ 0, 故有 1)(=⎰∞+∞-dx x f .正态分布的概率密度f (x)的图形称为正态曲线, 它具有以下性质:1︒ 曲线位于x 轴的上方, 以直线x = μ为对称轴, 即f (μ + x) = f (μ - x). 这表明对于任意的h > 0, 有P{μ - h < X ≤ μ}= P{μ < X ≤ μ + h}. 2︒ 当x = μ 时, 曲线处于最高点(σπμ21)(=f ), 当x < μ 时, f (x)单调增加; 当x > μ 时, f (x)单调减少, 即当x 向左右远离μ 时, 曲线逐渐降低, 整条曲线呈现“中间高, 两边低”的形状. 这表明对于同样长度的区间, 当区间离μ 越远, X 落在这个区间上的概率越小. 3︒ 在x = μ ±σ 处曲线有拐点, 并以x 轴为渐近线.4︒ 参数μ 确定了曲线的位置, σ 确定了曲线的形状. σ 越大, 曲线越平坦; σ 越小, 曲线越集中.特别地, 当μ = 0, σ = 1时, 称X 服从标准正态分布, 其概率密度和分布函数分别用ϕ(x)和Φ(x)表示, 即 2221)(x e x -=πϕ, ⎰∞--=Φx t dt e x 2221)(π.我们知道, 利用分布函数F(x)可以计算事件“X ≤ x ”的概率. 但当X ~ N (0, 1)时, 就无法用初等方法计算, 因此, 为计算方便, 人们编制了Φ(x)的函数表, 从表中可查出服从N (0, 1)的随机变量小于指定值x(x > 0)的概率P{X ≤ x} = Φ(x).因⎰⎰-∞--∞----==-Φx x t d t dt t x )()()()(ϕϕ=)(1)(1)(x dt t dt t x x Φ-=-=⎰⎰∞-∞+ϕϕ(ϕ(x)是偶函数), 所以, 当x < 0时, 只要查得Φ(-x), 即可求得Φ(x)的值.对一般的正态分布, 可利用变换σμ-=x t , 将其化成标准正态分布, 即有(){}x F x P X x μσ-⎛⎫=≤=Φ ⎪⎝⎭. 事实上, }{)(x X P x F ≤==⎰∞---x t dt e 222)(21σμσπ(令σμ-=t y )=⎰-∞--⎪⎭⎫ ⎝⎛-Φ=σμσμπx y x dy e 2221.对任意区间[x 1, x 2], 有 ⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=≤-≤=≤<σμσμ121221}{}{}{x x x X P x X P x X x P .例6 设X ~ N (0, 1), 求:(1) P{X ≤ 1.15}; 0.8749 (2) P{X ≤ -2.35}; 0.0094(3) P{0.02 < X ≤ 1.15}; 0.4821 (4) P{-1.85 < X ≤ 0.04}; 0.4838例7 设X ~ N (108, 9), 求: (1) P{101.1 < X < 117.6}; 0.9886(2) 求常数a, 使P{X < a} = 0.90; 111.84 (3) 求常数a, 使P{∣X - a ∣> a} = 0.01. 57.50例8 设),(~2σμN X , 求:(1) P{μ - σ < X < μ + σ}; 0.6826 (2) P{μ - 2σ < X < μ + 2σ}; 0.9544 (3) P{μ - 3σ < X < μ + 3σ}. 0.9974此例表明, 当时, X 以99.74%的概率落入区间(μ - 3σ , μ + 3σ)内, 即X 的可取值几乎全部在(μ - 3σ , μ + 3σ)内, 这就是统计中的3σ 原则.例9 公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的. 设男子身长X 服从μ = 170cm, σ = 6cm 的正态分布, 即)6,170(~2N X , 问车门高度应如何确定?解: 设车门高度为hcm. 按设计要求, P{X ≥ h} ≤ 0.10或P{X < h} ≥ 0.99. 因)6,170(~2N X , 故99.06170)(}{≈⎪⎭⎫ ⎝⎛-Φ==<h h F h X P , 查表得 Φ(2.33) = 0.9901 > 0.99, 所以, 33.26170=-h , h = 184cm.为了便于今后应用, 对于标准正态随机变量, 我们引入α分位点的概念.设X ~ N (0, 1), 对给定的数α, 0 < α < 1, 称满足条件 αϕαα==>⎰∞+z dx x z X P )(}{ 的数z α为标准正态分布的上(侧) α分位点(如图).对于给定的α, z α的值可这样求得; P{X > z α} = 1 - Φ( z α) = α , 从而, Φ( z α) = 1 - α , 查表可得. 如, z 0.05 = 1.645, z 0.3 = 0.52.一般地, 对随机变量X, 若对给定的数α, 0 < α < 1, 称满足条件P{X ≥ z α}= 1 - F(z α)的数z α为此概率分布的上(侧) α分位点(数).在自然现象和社会现象中, 大量随机变量服从或近似服从正态分布. 一般地, 只要某个随机变量是由大量相互独立、微小的偶然因素的总和所构成, 而且每一个别偶然因素对总和的影响都均匀地微小, 则可断定这个随机变量必近似服从正态分布.第五节 随机变量的函数的分布在微积分中, 函数y = g(x)是一个最基本的概念, 同样, 在概率论与数理统计中, 也常遇到随机变量的函数. 例如, 在测量圆轴截面面积的试验中, 所关心的随机变量−圆轴截面面积A 不能直接测量得到, 只能直接测量圆轴截面的直径d 这个随机变量, 再根据关系式 得到A, 这里随机变量A 是随机变量d 的函数.一般地, 设g(x)是定义在随机变量X 的一切可能取值x 的集合上的函数, 如果当X 取值为x 时, 随机变量Y 的取值为y = g(x), 则称Y 是随机变量X 的函数, 记为Y = g(X). 下面我们讨论如何由已知的随机变量X 的分布去求得它的函数的分布.一、X 是离散型随机变量设求 当X 取得它的某一可能值x i 时, 随机变量Y = g(X)取值y i = g(x i ) (i = 1, 2, …).如果诸i i i , 则把那些相等的值分别合并起来, 并根据概率可加性把对应的概率相加,就得到函数Y = g(X)的分布律.例求)2(-X 例求⎪⎭ ⎝=X Y 2sin 解: 因⎪⎩⎪⎨⎧-==-=-=⎪⎭⎫ ⎝⎛.34,1,2,0,14,12sin k n k n k n n π 所以, ⎪⎭⎫ ⎝⎛=X Y 2sin π只有三个可能取值: -1, 0, 1. 而取得这些值的概率分别是 152********}1{141173=+++++=-=- k Y P , 3121212121}0{2642=+++++== k Y P , 158********}1{3495=+++++==- k Y P . 所以, Y二、X 是连续型随机变量若X 是连续型随机变量. Y = g(X)是X 的函数, 则Y 也是随机变量, 这时如何求出Y = g(X)的分布呢? 先看一个例子.例3 已知),(~2σμN X , 求σμ-=X Y 的概率密度. 解: 设Y 的分布函数为F Y (y), 于是 F Y (y) = P{Y = y}=}{y X P ≤-σμ= P{X ≤ σ y + μ} = F X (σ y + μ). 其中F X (x)为X 的分布函数. 将上式两边对y 求导, 并利用概率密度是分布函数的导数的关系得 []σμσμσ⋅+='+==')()()()(y f y F y f y F y X Y Y . 再将222)(21)(σμσπ--=x e x f 代入, 有 22])[(2222121)(y y Y e e y f --+-=⋅=πσσπσμμσ, 这表明Y ~ N(0, 1).在以上推导过程中, 除去用到分布函数的定义以及分布函数和概率密度的关系之外, 还用到这样一个等式}{y X P ≤-σμ= P{X ≤ σ y + μ}. 表面上看, 只是把不等式“y X ≤-σμ”变形为“X ≤ σ y + μ”, 它们是同一个随机事件, 因而概率相等. 实质上关键在于把σμ-=X Y 的分布函数在y 的值F Y (y)转化为X 的分布函数在σ y + μ 的值F X (σ y + μ). 这样就建立了分布函数之间的关系, 然后通过求导得到Y 的概率密度. 这种方法叫做“分布函数法”, 按照上例的解题思路, 可得到下面的定理:定理 设随机变量X 具有概率密度f X (x), -∞ < x < +∞, 又设函数g (x)处处可导且有)(x g '> 0 (或恒有)(x g '< 0), 则Y = g(X)是连续型随机变量, 其概率密度为 ⎩⎨⎧<<'⋅=.,0,,)()]([)(其它βαy y h y h f y f XY 其中α = min{g(-∞), g(+∞)}, β =max{g(-∞), g(+∞)}, h(y)是g(x)的反函数.证: 对于任意x 有)(x g '> 0 (或)(x g '< 0). 因而g(x)单调增加(或单调减少), 它的反函数h(y)存在, 并且h(y)在(α,.β)内单调增加(或单调减少)且可导.设g(x)单调增加, Y 的分布函数为 ⎰∞-=≤=≤=≤=)()()}({})({}{)(y h X Y dx x f y h X P y X g P y Y P y F , 于是Y 的概率密度为 )()]([)()(y h y h f y F y f X Y Y '='=, g(-∞) < g(+∞), )0)((>'y h 设g(x)单调减少, Y 的分布函数为 ⎰∞+=≥=≤=≤=)()()}({})({}{)(y h X Y dx x f y h X P y X g P y Y P y F . 于是Y 的概率密度为 )()]([)()(y h y h f y F y f X Y Y '-='=, g(+∞) < g(-∞), )0)((<'y h 综合以上两种情形, 即得所要结论.注: 若f X (x)在有限区间[a, b]以外等于零, 则只需设在[a, b]上有> 0 (或< 0)., 此时α = min{g(a), g(b)}, β =max{g(a), g(b)}.例4 设随机变量X 具有概率密度f X (x), -∞ < x < +∞, 求线性函数Y = a + bX (a 、b 为常数, 且b ≠ 0)的概率密度.解: 因y = g(x) = bx + a, 故b a y y h x -==)(. 而b y h 1)(=', 由定理得⎪⎭⎫ ⎝⎛-=b a y f b y f Y 1)(,-∞ < y < +∞. 若),(~2σμN X , 则=)(x f X 222)(21σμσπ--x e (-∞ < x < +∞), 故Y 的概率密度为 ⎪⎭⎫ ⎝⎛-=b a y f b y f Y 1)(2222)(21σμσπb b a y e b ---. 因而),(~22σμb b a N Y +, 这就是说正态随机变量X 的线性函数仍服从正态分布, 只是参数不同而已.例5 设X 具有概率密度f X (x), -∞ < x < +∞, 求2X Y =的概率密度.解: 2x y =不是单调函数, 故不能用定理来求. 但可划分为两个单调区间(-∞, 0)和(0, +∞), 在这两个单调区间上它的反函数分别为y x -=与y x =. 对于y > 0, Y 的分布函数为 ⎰-=≤≤-=≤=y y X Y dx x f y X y P y Y P y F )(}{}{)( 由于02≥=X Y , 且P{Y = 0} = 0, 所以当y ≤ 0时, 其分布函数F Y (y) = 0, 于是Y 的概率密度为 ⎪⎩⎪⎨⎧≤>-+='=.0,0,0)],()([21)()(y y y f y f y y F y f X X Y Y 例如, 设X ~ N (0, 1), 其概率密度为2221)(x e x -=πϕ(-∞ < x < +∞), 则的概率密度为 ⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>+=----.0,0,0,21.0,0,0),2121(21)(22122y y e y y y e e y y f y y y Y πππ 称Y 服从自由度为1的分布.习 题 课一、要点与要求本章主要内容是把随机事件数量化, 使得随机事件极其概率能够用随机变量极其分布函数来表示, 以便使用微积分等数学工具研究随机现象. 这一章是本课程的重点.1︒ 求离散型随机变量X 的分布律时, 首先要确定X 的取值, 然后求出对应于各取值的事件的概率, 要注意验证∑∞===11}{n k x X P , 否则不正确.两点分布、二项分布、泊松分布是三种常用离散型随机变量的概率分布.2︒ 使用概率密度f (x)描述连续型随机变量X, f (x)满足f (x) ≥ 0, ⎰∞+∞-=1)(dx x f . 对于任意(a, b), 有 ⎰=<<b a dx x f b X a P )(}{. 均匀分布、正态分布、指数分布是三种常用连续型随机变量的分布.3︒ 可以使用分布函数统一描述离散型随机变量和连续型随机变量. 当分布函数F(x)中含有待定常数时, 常利用0)(lim =-∞→x F x , 1)(lim =+∞→x F x 或F(x + 0) = F(x)来确定该常数. 而当概率密度f (x)及分布律中含有待定常数时, 常利用⎰∞+∞-=1)(dx x f 或∑∞===11}{n k x X P 来确定该常数. 有概率密度f (x)求分布函数F(x), 要在相应的区间段把F(x)写成f (x)的变上限积分, 利用公式)()(x f x F =', 可由分布函数F(x)求概率密度f (x).离散型随机变量的分布函数为分段函数, 若随机变量X 的取值为n 个, 则要分为n + 1段, 其图形是右连续的阶梯曲线.4︒ 对正态随机变量, 我们有Φ(-x) = 1 - Φ(x). 若),(~2σμN X , 则⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=<<σμσμa b b X a P }{. 5︒ 随机变量的函数是一个重要概念. 对连续型随机变量X 的函数Y = g(X), 要了解求Y 的分布的原理和方法, 当g(x)是严格单调函数时, Y 的概率密度可使用公式计算出来.本章中的概念比第一章少, 并且多数概念容易理解, 重点是计算问题. 对离散型随机变量, 求它的分布律实质上是第一章内容的继续, 要用到第一章中的许多内容; 对连续型随机变量, 在进行各种计算时, 涉及到高等数学中的知识, 主要是定积分的计算(其中包括无穷限的广义积分), 要牢记积分的基本公式, 掌握简单的换元积分法和分部积分法, 同时要掌握简单的极限计算.二、典型例题例1 选择题1. 设F 1(x)与F 2(x)分别为随机变量X 1与X 2的分布函数, 为使F(x) = a F 1(x) - b F 2(x)是某一随机变量的分布函数, 在下列给定的各组数值中应取(98数三)( ) A (A) 52,53-==b a ; (B) 32,32==b a ; (C) 23,21=-=b a ; (D) 23,21-==b a . 2.设X 1与X 2是任意两个相互独立的连续型随机变量, 它们的概率密度分别为f 1 (x)与f 2 (x), 分布函数分别为F 1(x)与F 2(x), 则(2002数一)( ) D(A) f 1 (x) + f 2 (x)必为某一随机变量的概率密度; (B) f 1 (x) f 2 (x)必为某一随机变量的概率密度;(C) F 1(x) + F 2(x)必为某一随机变量的分布函数; (D) F 1(x) F 2(x)必为某一随机变量的分布函数.3. 设随机变量X 服从正态分布),(2σμN , 则随σ 的增大, 概率P{|X - μ| < σ}(95)( ) C(A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定.4. 设随机变量X 与Y 均服从正态分布, )4,(~2μN X , )5,(~2μN Y . 记p 1 = P{X ≤ μ - 4}, p 2 = P{Y ≥ μ + 5}, 则(93)。

概率论与数理统计第二章 随机变量及其分布

概率论与数理统计第二章 随机变量及其分布

15
例4: 甲、乙两名棋手约定进行10盘比赛,以赢的盘数 较多者为胜. 假设每盘棋甲赢的概率都为0.6,乙赢的概 率为0.4,且各盘比赛相互独立,问甲、乙获胜的概率 各为多少? 解 每一盘棋可看作0-1试验. 设X为10盘棋赛中甲赢的 盘数,则 X ~ b(10, 0.6) . 按约定,甲只要赢6盘或6盘 以上即可获胜. 所以
定义:若随机变量X所有可能的取值为x1,x2,…,xi,…,且 X 取这些值的概率为 P(X=xi)= pi , i=1, 2, ... (*)
则称(*)式为离散型随机变量X 的分布律。 分布律的基本性质: (1) 表格形式表示: pi 0, i=1,2,... (2)

i
pi 1
X pk
x1 p1
这里n=500值较大,直接计算比较麻烦. 利用泊松定理作近似计算: n =500, np = 500/365=1.3699>0 ,用 =1.3699 的泊松分布作近似 计算:
(1.3669) 5 1.3669 P{ X 5} e 0.01 5!
23
例2: 某人进行射击,其命中率为0.02,独立射击400次,试求击 中的次数大于等于2的概率。 解 将每次射击看成是一次贝努里试验,X表示在400次射击中 击的次数,则X~B(400, 0.02)其分布律为
k 0,1
14
(2) 二项分布 设在一次伯努利试验中有两个可能的结果,且有 P(A)=p 。则在 n 重伯努利试验中事件 A发生的次数 X是一个 离散型随机变量,其分布为
P ( X k ) C nk p k q n k
k =0, 1, 2 ,, n
称X 服从参数为n,p的二项分布,记为 X~b(n, p) 对于n次重复一个0-1试验. 随机变量X表示: n次试验中, A发生的次数. 如: 掷一枚硬币100次, 正面出现的次数X服从二项分布. b(100, 1/2) 事件 X~

第二章《随机变量及其分布》作业

第二章《随机变量及其分布》作业

第二章 《随机变量及其分布》作业班级 学号 姓名一、单项选择题1. 设连续随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其它,;,020,2)(x x x f 则P {-3≤X ≤1}= ( ) (A). 0(B). 0.25(C). 0.5(D). 12.设随机变量X 服从参数为λ的泊松分布,且{}{}21===X P X P , 则λ=( )(A) 1 ; (B) 2 ; (C) 3; (D) 4. 3.设随机变量),(~2σμN X ,则=≤≤)(b X a P ( )).(A )()(b a Φ-Φ; ).(B )()(b a Φ+Φ; ).(C )()(σμσμ-Φ--Φb a ; ).(D )()(σμσμ-Φ--Φa b .4. 若4重伯努利试验中,事件A 至少发生一次的概率为8165,则在一次 试验中,事件A 发生的概率为( )).(A 1; ).(B 32; ).(C 41; ).(D 43.5. 设随机变量,且,则c=( ).0 ; ; ; .二 .填空题1.已知随机变量只能取-1,0,1,2四个数值,其相应的概率依次是,则2.则X 的分布函数为=)(x F .),(~2σμN X )()(c X p c X p >=≤)(A )(B μ)(C μ-)(D σX c c c c 161,81,41,21=c3.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它021)2(10)(x x k x kx x f ,则k= ; ⎭⎬⎫⎩⎨⎧≤≤2321X P = .4.某高速公路一天的事故数X 服从参数3=λ的泊松分布,则一天内没有发生事故的概率是5.设离散型随机变量X 的分布列为则 随机变量函数 Y =()21+X 的分布列是6.设随机变量ξ在(1,6)上服从均匀分布,求方程012=++x x ξ有实根的概率 .7.已知ξ服从)4,150(2N ,则140(P <=≤)160ξ ,=≤)150(ξP 。

高二数学选修2-3第二章 随机变量及其分布

高二数学选修2-3第二章  随机变量及其分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

第二章 随机变量及其分布及第2章补充练习参考答案

第二章  随机变量及其分布及第2章补充练习参考答案

第二章 随机变量及其分布1. 从一个装有4个红球和2个白球的口袋中不放回地任取5个球,以X 表示取出的红球个数.(1) 求X 的分布律;(2) 求X 的分布函数; (3) 求)40(<<X P .2. 设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,10)(x b a x a x a x x F ,, 且21)2(==X P ,求b a ,和X 的分布律. 3. 设随机变量X 具有分布律X -1 0 1 2 3k p 0.16 10a 2a 5a 0.3 确定常数a .4. 设在时间t(min)内,通过某十字路口的汽车数X 服从参数与t 成正比的泊松分布.已知在1min 内没有汽车通过的概率为0.2,求在2min 内有多于1辆汽车通过的概率.5. 有一决策系统,其中每一成员作出决策互不影响,且每一成员作出正确决策的概率均为)10(<<p p ,当半数以上成员作出正确决策时,系统作出正确决策,问p 多大时,5个成员的决策系统比3个成员的决策系统更为可靠?6. 某商店出售某种商品,根据历史记录分析,月销售量服从参数5=λ的泊松分布.问在月初进货时要库存多少件该种商品,才能以0.999的概率满足顾客的需求?7. 设随机变量X ~),2(2σN ,且3.0)42(=<<X P ,求)0(<X P .8. 设随机变量X ~),0(2σN ,问当σ取何值时, 概率)31(<<X P 取到最大?9. 设随机变量X 的密度函数为⎩⎨⎧<≥=-0,00,4)(2x x xe x f x求: (1) X 的分布函数;(2) )121(<≤-X P ; (3) )23(=X P . 10. 设随机变量X ~)1,0(U ,求X Y 32-=的密度函数.11. 设随机变量X 的密度函数为+∞<<-∞=-x Aex f x ,)(,求:(1) 确定常数A ;(2) )10(<<X P ;(3) X 的分布函数.12. 设随机变量X 的密度函数为 ⎪⎩⎪⎨⎧<<<<= 其他  ,032,21,)(x B x Ax x f 且))3,2(())2,1((∈=∈X P X P ,求:(1) 常数A,B;(2) X 的分布函数.13. 设随机变量X 的绝对值不大于1, 81)1(=-=X P ,41)1(==X P ,在事件)11(<<-X 出现的条件下, X 在)1,1(-内的任一子区间上的取值的条件概率与该子区间的长度成正比,求X 的分布函数)()(x X P x F ≤=.14.设离散型随机变量X 具有分布律 ,2,1,21)(===k k X P k ,求随机变量X Y 2sin π=的分布律.15. 设一电路装有三个同种电器元件,其工作状态相互独立,且无故障工作时间都服从参数为0>λ的指数分布,当三个元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作时间T 的概率分布.16. 设随机变量X ~)1,0(N ,求:(1) 122+=X Y 的密度函数; (2) X Z =的密度函数.第2章补充练习参考答案1. (1) X 3 4 k p32 31 (2) ⎪⎩⎪⎨⎧≥<≤<=  4,143,323,0)(x x x x F (3) 32)3()40(===<<X P x P 2. 65,61==b a 3. =a 0.6 4. 255ln 224-(提示:X ~)(at π,t=1时,由)0(=X P =0.2可确定常数a ) 5. 21>p (提示:设5个成员与3个成员的决策系统中作出正确决策的人数分别为X 和Y ,则X ~),5(p B ,Y ~),3(p B ,要求)2()3(≥>≥Y P X P ) 6. 至少13件7. 0.2 8. 3ln 22=σ 9.(1)⎩⎨⎧<≥--=--0,00,21)(22x x e xe x F x x (2)231--e (3) 0 10. ⎪⎩⎪⎨⎧<<-=其他,021,31)(x y f Y 11. (1)21=A (2) 211--e (3)⎪⎩⎪⎨⎧≥-<=-0,2110,21)(x e x e x F x x 12. (1),31,21==B A (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-≤<-≤=32),1(2121),1(611,0)(2x x x x x x F 13. ⎪⎩⎪⎨⎧≥<≤-+-<=1,111,1671651,0)(x x x x x F 14.Y -1 0 1k p 152 31 158 15. T 服从参数为λ3的指数分布.即T 的密度为⎩⎨⎧≤>=-0,00,3)(3t t e t f t T λλ(提示:T 的分布函数)(1)()(t T P t T P t F T >-=≤=)=),,(1321t X t X t X P >>>-)16. ⎪⎩⎪⎨⎧≤>-=--1,01,)1(21)(41 y e y y f y Y π,⎪⎩⎪⎨⎧<≥=-0,00,2)(22z z e z f z z π第二章补充练习参考答案1. (1) X 3 4k p 32 31(2) ⎪⎩⎪⎨⎧≥<≤<=  4,143,323,0)(x x x x F (3) 32)3()40(===<<X P x P 2. 65,61==b a 3. =a 0.6 4. 255ln 224-(提示:X ~)(at π,t=1时,由)0(=X P =0.2可确定常数a ) 5. 21>p (提示:设5个成员与3个成员的决策系统中作出正确决策的人数分别为X 和Y ,则X ~),5(p B ,Y ~),3(p B ,要求)2()3(≥>≥Y P X P ) 6. 至少13件7. 0.2 8. 3ln 22=σ 9.(1)⎩⎨⎧<≥--=--0,00,21)(22x x e xe x F x x (2)231--e (3) 0 10. ⎪⎩⎪⎨⎧<<-=其他,021,31)(x y f Y 11. (1)21=A (2) 211--e (3)⎪⎩⎪⎨⎧≥-<=-0,2110,21)(x e x e x F x x 12. (1),31,21==B A (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-≤<-≤=32),1(2121),1(611,0)(2x x x x x x F 13. ⎪⎩⎪⎨⎧≥<≤-+-<=1,111,1671651,0)(x x x x x F 14.Y -1 0 1k p 152 31 158 15. T 服从参数为λ3的指数分布.即T 的密度为⎩⎨⎧≤>=-0,00,3)(3t t e t f t T λλ(提示:T 的分布函数)(1)()(t T P t T P t F T >-=≤=)=),,(1321t X t X t X P >>>-)16. ⎪⎩⎪⎨⎧≤>-=--1,01,)1(21)(41 y e y y f y Y π,⎪⎩⎪⎨⎧<≥=-0,00,2)(22z z e z f z z π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章随机变量及其分布 1 .理解条件概 率的概念 2. 理解独立性 概念 3. 独立重复试 验公式的探

索 1 .事件间关系 独立与否 2. 二项分布模 型的辨别与 应用

1 .条件概率 2. 独立事件同 时发生的概 率 3. 二项分布

二项分布及其应用 (课堂针对训练一)条件概率 双基再现

1.已知 P(B|A) A. 1 2 2.由“ 0”、

3 1 nt = ,P(A)=,则 P(AB)=() 10 5

B. - C. - D.— 2 3 50

组成的三位数码组中,若用 A表示“第二位数字为 “第一位数字为 0”的事件,则P(A|B)() 1 1 D.- 4 8

0”的 事件,用B表示 八1 a 1

A. B. 2 3

C.

3.某地区气象台统计, 4 该地区下雨的概率是 ,刮三级以上风的概率为 15

2

15, 既刮风又下雨的概率为

8 1 A. B. C. 225 2

4.设某种动物有出生算起活

1 ,则在下雨天里,刮风的概率为( 10

3 D.

8

率为0.4.现有一个20岁的这种动物,问它能活到 是 4

20岁以上的概率为 0.8,活到25岁以上的概 25岁以上的概率

5 .—个口袋内装有 2个白球,3个黑球,则

(1) 先摸出1个白球后放回,再摸出 1个白球的概率? (2) 先摸出1个白球后不放回,再摸出 1个白球的概率?

1. 条件概率的计 算 2. 事件的独立性 3. 二项分布 3 6 .某种元件用满 6000小时未坏的概率是 ,用满10000小时未坏的概率

4

1 一

是—,现有一个此种元件,已经用过 6000小时未坏,求它能用到 10000小 2

时的概率

变式活学 7•某个班级共有学生 40人,其中有团员15人,全班分成四个小组,第一 小组有学生10人,其中团员4人。如果要在班内任选一人当学生代表 (1)求这个代表恰好在第一小组内的概率 (2)求这个代表恰好是团员代 表的概率 (3) 求这个代表恰好是第一小组内团员的概率 (4) 现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概 率 &市场上供应的灯泡中,甲厂产品占 70%,乙厂占30%,甲厂产品合格率 是95%,乙厂合格率是 80%,则(1)市场上灯泡的合格率是多少? (2)市场上合格品中甲厂占百分之几?(保留两位有效数字)

实践演练 9•一个家庭中有两个小孩,已知其中一个是女孩,问这时另一个小孩也是 女孩的概率?(每个小孩是男孩和女孩的概率相等) 10.在一批电子元件中任取一件检查,是不合格品的概率为 0.1,是废品 的概率为0.01,已知取到了一件不合格品,它不是废品的概率是多少? (课堂针对训练二)事件的相互独立性 双基再现 1.已知下列各对事件:

(1)甲组3名男生,2名女生;乙组2名男生,3名女生.今从甲、乙两组 中各选一名同学参加游园活动 •“从甲组中选出一名男生”与“从乙组中 选出一名女生”;

出第一个后放回筐内,再取 1个是梨”; 其中为相互独立事件的有( ) A.(1) (2) B.(1) (3) C.(2) D.(2)(3) 2•两个气象台同时作天气预报,如果他们与预报准确的概率分别为 0.8与 0.9,那么在一次预报中,两个气象台都没预报准确的概率为( ) A.0.72 B.0.3 C.0.02 D.0.03 3•甲、乙两人独立地解同一问题,甲解决这个问题的概率是 p1,乙解决这 个问题的概率是 P2,那么恰好有1人解决这个问题的概率是 ( )

A. P1 P2 B. P1 (1 - P2 ) ■ P2 (1 - P1) C. 1 - P1 P2 D. 1 - (1 - P1 )(1 - P2 ) 1 4从某地区的儿童中挑选体操学员, 已知儿童体型合格的概率为 1 ,身体关 5 1 节构造合格的概率为 .从中任挑一儿童,这两项至少有一项合格的概率是 4

( )(假定体型与身体关节构造合格与否相互之间没有影响) 13 1 1 2 A. B. — C. D.- 20 5 4 5

5.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球 的颜色全相同的概率是 _________________ . 6•如图,用 A B、C、D表示四类不同的元件连接成系统 M . 当元件A、B至少有一个正常工作且元件 C、D至少有一个正常工作时, 系统 M正常工作已知元件 A、B C D正常工作的概率依次

为0.5、0.6、0.7、0.8,元件连接成的系统 M正常工作的概率 P(M )= _ 亠_ C

(2) —盒内盛有5个白乒乓球和 3个黄乒乓球•“从8个球中任取1个,取

出的是白球”与“从剩下的 7个球中任意取1个,取出的仍是白球” (3) 筐内有 6个苹果和3个梨,“从中任取1个,取出的是苹果”与“取 变式活学 1 1 7. 甲乙两人破译一密码,他们能破译的概率分别为 和一,求两人破译时 3 4

以下事件发生的概率:(1)两人都能破译的概率; (2) 恰有一人能破译的概率; (3) 至多有一人能译出的概率。

1 &设两个独立事件 A和B都不发生的概率为 —,A发生B不发生的概率与 9

B发生A不发生的概率相同,则事件A发生的概率P(A)是多少?

实践演练 9•在某次知识抢答赛的预赛中,甲乙两位同学分在同一小组,主持人给每 个小组出四个必答题, 每次只可由一位选手作答, 每个小组只有答对不少于 2 三道题才有资格进入决赛。已知对每道题,甲同学回答正确的概率为 2, 3

1 乙同学回答正确的概率为 一 •比赛规则规定可任选一位同学答第一题,如果 2

回答正确,则仍由他继续回答下一题, 如果答错,则下一题由另一位同学回 答。每个同学答题行为是相互独立的。甲乙两人决定先由甲回答第一题 • (1 )以X表示甲乙两同学所在小组答对题目的个数,求 X的分布列; (2)甲乙两同学所在小组晋级决赛的概率是多少?

10•为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可 供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记 为P)和所需费用如下表: 预防方案可单独采用一种预防措施或联合采用几种预防措施, 在总费用不超 过120万元的前提下,请确定一个预防方案, 使得此突发事件不发生的概率 最大

预防措施 甲 乙 丙 丁 P 0.9 0.8 0.7 0.6 费用(万元) 90 60 30 10 (课堂针对训练三)独立重复试验与二项分布 双基再现

1.小王通过英语听力测试的概率是 1 -,他连续测试3次,那么其中恰有1

3

次获得通过的概率是( ) 4 2 4 2 A. B. C. D. 9 9 27 27

2某种玉米种子,如果每一粒发芽的概率为 90 %,播下5粒种子,则其中

恰有2粒未发芽的概率约为( ) A.0.07 B.0.27 C.0.30 D.0.33 3有三箱粉笔,每箱中有 100盒,每箱有一盒次品。从这三箱粉笔中各抽 出一盒,则这三盒中至少有一盒是次品的概率为( ) A.0.017.992 B. 0.01^0.99 C. C30.0仆0.992 D. 1 -0.993 4掷一枚骰子5次,得到点数为6的次数记为E,则P( E >3)= ______________ (只列式不计算)

19 5在三次独立重复试验中,若已知 A至少出现一次的概率等于 ,则事件

A在一次试验中出现的概率为 .

6如图,某人从A处出发到达B处,但他只知道B在A 的东北方向,图中一线表示以道路,当他每到一交叉 路口时,对路线要作一次选择,

每次都以概率 P选择向东走,以1-P的概率选择向北

走.则经8次选择到B的概率 变式活学 7.已知两名射击运动员的射击水平: 让他们各向目标靶射击 10次,其中甲 击中目标7次,乙击中目标6次。若在让甲、乙两人各自向目标靶射击 3 次,求:(1)甲运动员恰好击中目标 2次的概率是多少? ( 2)两名运动 员都恰好击中目标 2次的概率是多少?(结果保留两位有效数字)

8. 某单位6

27 ft 个员工借助互联网开展工作,每个员工上网的概率都是 0.5 (各 员工上网相互独立)•( 1)求至少3人同时上网的概率;(2)至少几人同时 上网的概率小于 0.3 ?

实践演练 9. 袋中有4个红球,2个白球,一次摸出一球然后放回,共摸三次 .记Y为

摸出的三个球中白球的个数 ,求Y的分布列.

10. 在一次抗洪抢险中,,准备用射击的方法引爆从桥上游漂流而下的一个 巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出, 第二次 2 命中才能引爆。每次射击相互独立,且命中概率都是 一,求(1)油罐被引 3

爆的概率; (2)如果引爆或子弹打光则停止射击,设射击次数为 E,求E的分布列.

相关文档
最新文档