数学百大经典例题——平面(新课标)
高一数学课件人教新课标:必修二2.1.1平面

3、平面的基本性质的三种语言描述:
公理1:如果一条直线上的两点在一个平面内,那么这条直
线上所有的点都在这个平面内.
AB
符号语言:A B
直线
AB
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,
这些公共点的集合是经过这个公共点的一条直线.
符号语言:P P
——判断一条直线是否在一个平面内,这时 我们说“直线在平面内”或“平面经过直线”。
Al, B l, A, B l
实际生活中的应用 泥瓦工用直的木条刮平地面上的水泥浆
思考:
过一点可以做几条直线?两点呢? 过空间中一点可以做几个平面? 两点呢?
不共线的三点呢?
平面公理
存在性
公理2 过不在一条直线上的三点,有且只有一
A.Al, A, B l, B l
B.A, A , B , B AB
C.l , Al A
D.A, B,C , A, B,C ,且A, B,C不共线 与重合
3.下面是四个命题的叙述语(其中A,B表示点,a表示直线, 表示
平面)
① A , B AB ② A, B AB
⑷把被遮部分的线段画成虚线或不画。其它为实线。
返回
(3)在画图时,如果图形的一部分被另一部分遮住, 可以把遮住部分画成虚线,也可以不画.
三.平面的表示方法:
平面可以用希腊字母表示,也可以用表示平 面的平行四边形的四个顶点或相对的两个顶点字 母表示.
D
C
A
B
如:平面α,平面β,平面ABCD,平面AC ,平 面BD等.
练习3
下列命题正确的是( ). (A)经过三点确定一个平面 (B)经过一条直线和一个点确定一个平
2021-2022年高考数学百大经典例题 直线与平面的垂直判定和性质(含解析)

2021-2022年高考数学百大经典例题直线与平面的垂直判定和性质(含解析)例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体中,分别为棱和上的点,为棱上的点,且,,求.典型例题三例3如图,在正方体中,是的中点,是底面正方形的中心,求证:平面.分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明平面,只要在平面内找两条相交直线与垂直.证明:连结、、,在△中,∵分别是和的中点, ∴. ∵面, ∴为在面内的射影. 又∵,∴.同理可证,.又∵,、面,∴平面.∵,∴平面.另证:连结,,设正方体的棱长为,易证.又∵,∴.在正方体中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=, ()a a a E B B D E D 232222212111=⎪⎭⎫ ⎝⎛+=+=. ∵,∴.∵,、平面,∴平面.说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△中,,平面,点在和上的射影分别为,求证:.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证,可证面,为此须证,进而可转化为证明平面,而已知,所以只要证即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵面,平面,∴.∵,即,,∴平面.∵平面.∴.又∵,,∴平面.∵平面,∴,又∵,,∴平面.∵平面.∴.另证:由上面可证平面.∴为在平面内的射影.∵,∴.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊙所在平面,为⊙的直径,为⊙上任意一点(与不重合).过点作的垂面交、于点,求证:.典型例题五例5如图,为平面的斜线,为斜足,垂直平面于点,为平面内的直线,,,,求证:.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过点作垂直于点,连.∵,∴在平面内射影为.∵,,∴.在△中有:①在△中有:②在△中有:③由①、②、③可得:.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为,则斜线与平面内其它直线所成角的范围为.典型例题六例6如图,已知正方形边长为4,平面,,分别是中点,求点到平面的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点与平面平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结,和分别交于,连,作于.∵为正方形,分别为的中点,∴,为中点.∵,平面,∴平面.∴与平面的距离就是点到平面的距离.∵,∴.∵面,∴.∵,∴平面.∵平面,∴.又∵,,∴平面.即长就是点到平面的距离.∵正方形边长为4,,∴,,.在△中,2222=+=CG HC HG .在△中,.说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长交的延长线于,连结,作于,作交于,连结,再作于,可得平面,长即为点到平面的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角所在平面外一点,且.(1)求证:点与斜边中点的连线面;(2)若直角边,求证:面.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰中,为中点,∴.取中点,连、.∵,,∴.又,∴面,∴.∴面(、是面内两相交直线).(2)∵,∴.又∵面,∴.∵,∴面.说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:,.求证:.分析:由线面垂直的判定定理知,只需在内找到两条相交直线与垂直即可.证明:如图所示,在平面内作两条相交直线、.∵,∴,.又∵,从而有,.由作图知、为内两条相交直线.∴.说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9如图所示,已知平面平面=,为、外一点,于,于,于.证明:.分析:先证、、、四点共面,再证明平面,从而得到.证明:∵,,∴.∴、、、四点共面.∵,,,∴,.又,∴平面.∴.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“、、、四点共面”非常重要,仅由平面,就断定,则证明是无效的.典型例题十例10 平面内有一半圆,直径,过作平面,在半圆上任取一点,连、,且、分别是在、上的射影.(1)求证:;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连、.如上图所示,∵为已知圆的直径,∴.∵平面,,∴.∵,∴平面.∵平面,∴.∵于,,∴平面.∵于,且是在平面的射影,∴.解(2):由(1)知,平面,平面,平面.∵且,∴平面,∴图中共有4个线面垂直关系.(3)∵平面,∴、均为直角三角形.∵平面,∴、均为直角三角形.∵平面,∴、、均为直角三角形.∵平面,∴、、、均为直角三角形.综上,图中共有11个直角三角形.(4)由平面知,,,.由平面知,,,.由平面知,,,.由平面知,,.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线面”可得到“线面内线”,当“线面内线”且相交时,可得到直角三角形;当“线面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11如图所示,.在平面内,是的斜线,.求与平面所成的角.分析:求与平面所成角,关键是确定在平面上射影的位置.由,可考虑通过构造直角三角形,通过全等三角形来确定位置,构造直角三角形则需用三垂线定理.解:如图所示,过作于.连结,则为在面上的射影,为与平面所成的角.作,由三重线定理可得.作,同理可得.由,,,可得≌,∴.∵、分别为、在内射影,∴.所以点在的平分线上.设,又,∴,,∴.在中,,∴,即与所成角为.说明:(1)本题在得出在面上的射影为的平分线后,可由公式来计算与平面所成的角,此时,,.(2)由与平面上射影为平分线还可推出下面结论:四面体中,若,,则点在面上的射影为的内心.典型例题十二例12如图所示,在平面内有,在平面外有点,斜线,,且斜线、分别与平面所成的角相等,设点与平面的距离为,,且.求点与直线的距离.分析:由点向平面引垂线,考查垂足的位置,连、,推得,,又,故、、、为矩形的四个顶点.解:作平面,垂足为,连、.∵,,∴由三垂线定理的逆定理,有:,,又,∴为矩形.又∵,∴,∴为正方形,∴、互相垂直平分.设为、的交点,连结,根据三垂线定理,有,则为到的距离.在中,,,∴.因此,点到的距离为.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13如图,是正方形,垂直于平面,过且垂直于的平面交、、分别于点、、,求证:,.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证,可证平面,为此须证、,进而转化证明平面、平面.证明:∵平面,平面,∴.又∵为正方形,∴.∴平面.∵平面,∴.又∵平面,∴.∴平面.又∵平面,∴,同理可证.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:在平面内,点,,,,垂足分别是、、,.求证:.证明:∵,∴为在内的射影.∵,,∴.同理可证:.又∵,,,∴.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知,为平面外一点,,求与平面所成角.典型例题十五例15判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点垂直于直线的所有直线都在过点垂直于的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点垂直于直线的平面惟一,因此,过点且与直线垂直的直线都在过点且与直线垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为,,且,,共点于,∵,,,且,确定一平面,设为,则,同理可知垂直于由,确定的平面,垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形的边,,引,为垂足,作于,求证:.分析:若证,只须利用直线和平面垂直的判定定理,证垂直平面中两条相交直线即可. 证明:取中点,连、,∵,∴.又∵,∴,∴,又,∴又,∴,,又,∴.典型例题十七例17 如果平面与外一条直线都垂直,那么.已知:直线,,.求证:.分析:若证线面平行,只须设法在平面内找到一条直线,使得,由线面平行判定定理得证.证明:(1)如图,若与相交,则由、确定平面,设.αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若与不相交,则在上任取一点,过作,、确定平面,设.αααβααα////,,////'''''''''''aaaaaaabababbbababbbb⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18如图,已知在中,,线段,,为垂足.求证:不可能是的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设是的垂心,则.∵,∴,∴,∴.又∵,∴,∴,∴,这与已知矛盾,∴假设不成立,故不可能是的垂心.说明:本题只要满足,此题的结论总成立.不妨给予证明.典型例题十九例19在空间,下列哪些命题是正确的().①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A.仅②不正确B.仅①、④正确C.仅①正确D.四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线平面,,,且,则,,即平面内两条直交直线,都垂直于同一条直线,但,的位置关系并不是平行.另外,,的位置关系也可以是异面,如果把直线平移到平面外,此时与的位置关系仍是垂直,但此时,,的位置关系是异面.③如图,在正方体中,易知,,但,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B.典型例题二十例20设,为异面直线,为它们的公垂线(1)若,都平行于平面,则;(2)若,分别垂直于平面、,且,则.分析:依据直线和平面垂直的判定定理证明;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明.图1图2证明:(1)如图1,在内任取一点,设直线与点确定的平面与平面的交线为,设直线与点确定的平面与平面的交线为∵,,∴,又∵,,∴,,∴.(2)如图2,过作,则,则又∵,∴垂直于由和确定的平面.∵,∴,,∴.∴也垂直于由和确定的平面.故.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线,构造出平面,即由相交直线与确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21如图,在正方体中,为异面直线与的公垂线,求证:.分析:证明,构造与、都垂直的平面是关键.由于是和的公垂线,这一条件对构造线面垂直十分有用.证明:连结,由于,,∴.又,,∴. ①∵,,∴.∵四边形为正方形,∴,,∴,而,∴.同理,,∴. ②由①、②可知:.典型例题二十二例22 如图,已知为外一点,、、两两垂直,,求点到平面的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过作于点,连、、,∴,,∵,∴≌≌,∴,∴为的外心.∵、、两两垂直,∴,为正三角形, ∴,∴a AO PA PO 3322=-=. 因此点到平面的距离.说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体中,棱,,求直线和平面的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵,且,,∴.从而点到平面的距离即为所求.过点作于,∵,且,∴.又,∴.即线段的长即为所求,在中,13601251252211111=+⨯=⋅=B A BB B A E B , ∴直线到平面的距离为.说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 、分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为,,,.求线段的长.分析:首先依据题意,画出图形,利用平移,将异面直线、所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出之长.解:如图,在平面内,过作,过作,两线交于.∵,∴就是、所成的角,.∵,∴四边形是矩形.连,∵,,且,∴.∵,∴.∵,∴.在中,得,∴.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.Yx621443 53C3 參/34307 8603 蘃32075 7D4B 絋 N36902 9026 逦38772 9774 靴a30735 780F 砏36178 8D52 赒。
平面几何100题 70页

61.设ω是△ABC的外接圆,ΓA是与线段AB、AC相切且与ω内切的圆,ΓB是与线段BA、BC相切且与ω内切的圆,ΓC是与线段CA、CB相切且与ω内切的圆.设过B、C且与ΓA 相切的圆(不同于ω)切ΓA于X,过C、A且与ΓB相切的圆(不同于ω)切ΓB于Y,过A、B且与ΓC相切的圆(不同于ω)切ΓC于Z.证明:AX、BY、CZ三线共点.62.设⊙I是△ABC的内切圆,⊙u、⊙v、⊙w分别是过点B和点C且与⊙I相切的圆、过点A和点C且与⊙I相切的圆、过点B和点A且与⊙I相切的圆.设P、Q、R、S、T、U分别是⊙w与BC、⊙v与BC、⊙v与AB、⊙u与AB、⊙u与CA、⊙w与AC的交点(均不同于A、B、C).I1、I2分别是△ARQ、△BST的内心,类似定义I3、I4、I5、I6.I A是△AST∠SAT内的旁心,类似定义I B、I C.求证∶△I A I2I3、△I B I6I1、△I C I4I5的欧拉线共点.63.以凸四边形ABCD为边长向外作正方形AE1E2B、BF1F2C、CG1G2D、DH1H2A.连接AF1、BG1、CH1、DE1交出四边形A'B'C'D',连接DF2、AG2、BH2、CE2交出四边形A''B''C''D''.证明∶A'A''、B'B''、C'C''、D'D''交出的四边形是正方形.64.圆内接四边形ABCD中,直线AC、BD交于E,直线AB、CD交于F,直线BC、DA交于G.设△ABE的外接圆与直线CB交于B、P两点,△ADE的外接圆与直线CD交于D、Q两点.设直线FP、GQ交于点M,证明∶AM⊥AC.65.设⊙X、⊙Y、⊙Z分别为△ABC∠BAC、∠ABC、∠BCA内的旁切圆,D、E、F、G、H、I分别是⊙Z与AC、⊙Z与BC、⊙X与AB、⊙X与AC、⊙Y与BC、⊙Y与AB的切点.FD、GI交于J,IE、HF交于K,EG、DH交于L,设M、N、O、P、Q、R分别是KL、LJ、JK、BC、CA、AB的中点.证明∶直线MP、NQ、OR三线共点.66.已知凸六边形ABCDEF既有外接圆又有内切圆,记△ABC、△BCD、△CDE、△DEF、△EFA、△FAB的内切圆分别为ωb、ωc、ωd、ωe、ωf、ωa.l AB表示ωb、ωa的另一条外公切线(不为AB),类似定义l BC、l CD、l DE、l EF、l FA.设l FA与l AB的交点为A1,类似定义B1、C1、D1、E1、F1.若六边形A1B1C1D1E1F1为凸六边形,证明:该六边形的对角线共点.67.已知圆弧Γ1、Γ2、Γ3均过点A、C,且在直线AC同侧,Γ2在Γ1与Γ3之间,B是线段AC上一点,由B引三条射线h1、h2、h3,与Γ1、Γ2、Γ3在直线AC的同侧,且h2在h1与 h3之间.设h i与Γj(i,j=1,2,3)的交点为V ij.由线段V ij V il、V kj V kl及弧V ij V kj、弧V il V kl构成的曲边四边形记为V ij V kj V kl V il,若存在一个圆与其两条线段和两条弧均相切,则称这个圆为这个曲边四边形的内切圆.证明:若曲边四边形VV21V22V12、V12V22V23V13、V21V31V32V2211均有内切圆,则曲边四边形VV32V33V23也有内切圆.2268.设△ABC的内心为I,⊙I分别切边BC,CA,AB于点D、E、F,设AI与DE、DF交于点M、N,以MN为直径的圆交BC于P、Q.已知△APQ的外接圆与⊙I切于R,△ABC 的外接圆与九点圆切于Fe,设RFe与DE、DF分别交于点M'、N'.以M'N'为直径的圆交BC 于点P'、Q'.证明:△AP'Q'的外接圆与⊙I的根轴平分线段BC.69.设I是△ABC的内心,∠BAC、∠ABC、∠BCA的内角平分线分别交对边于点D、E、F.记H是△DEF垂心.证明:IH与△ABC的欧拉线平行.70.设⊙O、⊙P、⊙Q分别是△ABC∠BAC、∠CBA、∠ACB内的旁切圆,G、H、I、J、K、L分别是⊙P与AB、⊙Q与AC、⊙Q与BC、⊙O与AB、⊙O与AC、⊙P与BC的切点.证明∶△JKD、△LGE、△HIF、△ABC的欧拉线共点.71.△ABC中,O为外心,K为△ABC九点圆圆心关于△ABC的等角共轭点.K在BC、CA、AB上的射影分别为D、E、F,H是△DEF垂心.证明:O、K、H共线.72.已知H、I分别为△ABC垂心、内心,D、E、F分别在射线AH、BH、CH上,且AD=BE=CF=2r, 这里r是△ABC的内切圆半径.证明:I也为△DEF内心.73.已知B、I1、I2、C是⊙M上顺次四点,BI1与CI2交于A,△I1I2M的外接圆与AB、AC再次交于M1、M2,点O'满足M1O'∥CI1,M2O'∥BI2.X、Y为△ABC的一组等角共轭点,D、E分别在AB、AC上使得XD∥CI1、XE∥BI2,N为△BMC外接圆弧BC(不含M)的中点,XN与△BMC外接圆的另一个交点为F.证明:X、Y、O'共线当且仅当△DEF外接圆与△I1I2M的外接圆相切.74.设△ABC∠BAC内的旁切圆切AB、AC于G、F,∠ABC内的旁切圆⊙P切AB、AC于E、N,∠ACB内的旁切圆⊙Q切AB、AC于M、D.直线DE、MN分别交⊙Q于H、J,交⊙P 于I、K.HC、BI交于X,JF、KG交于Y,证明∶∠BAX=∠CAY.75.△ABC的内切圆⊙I切BC于D,连接AD交⊙I于J,K在JD上且DK=AJ,若BJ⊥CJ,证明:I、K关于△JBC等角共轭.76.O为△ABC外心,BC、CA上的旁切圆切点分别是X、Y,AX、BY交于点N.圆Γ1切BA、 CA延长线于E、D使得AD=AE=BC,类似地定义Γ2、Γ3.⊙U为与Γ1、Γ2、Γ3均外切的圆,证明:N、O、U共线.77.△ABC内切圆⊙I切BC于D,∠ACB内的旁切圆⊙P分别切BC、AB、CA于E、F、G,∠ABC内的旁切圆⊙Q分别切BC、CA、AB于H、J、K,CF与⊙P交于F、M两点,BJ与⊙Q交于J、N两点.证明:MJ、NF、AD共点.78.P为圆外切四边形ABCD内任意一点,AP、DP分别交BC于N、M.证明:△APD、△MPN、△ABN、△CDM四个三角形的内心共圆.79.设⊙I是△ABC的内切圆,△BCD外接圆⊙O1、△CAE外接圆⊙O2、△ABF外接圆⊙O3分别与⊙I内切于点D、E、F.GH与ST、JK与NP、LM与QR分别是⊙O2与⊙O3、⊙O1与⊙O2、⊙O3与⊙O1的外公切线(L、N、R、K在⊙O1上,P、H、J、S在⊙O2上,G、Q、T、M在⊙O3上,GH、TS与A分别在BC的同侧、异侧,LM、RQ与B分别在AC的同侧、异侧,JK、YM与C分别在AB的同侧、异侧).设△GHF、△JKE、△LMD外接圆分别为ω1、ω2、ω3,X、Y、Z分别是ω2与ω3、ω1与ω3、ω1与ω2的交点且X、A在BC异侧,Y、 C 在BA异侧,Z、B在AC异侧.证明∶S△KSX•S△MNY•S△HQZ=S△LTX•S△GPY•S.△RJZ80.圆外切四边形ABCD中两点P、Q满足∠DPA+∠BPC=∠DQA+∠BQC,I1、I2、I3、I4、I11、I22、I33、I44分别是△PAB、△PBC、△PCD、△PDA、△QAB、△QBC、△QCD、△QDA 的内心.证明:I1、I2、I3、I4共圆当且仅当I11、I22、I33、I44共圆.81.△ABC的内切圆分别切AC、AB于E、F.P、Q分别为边AC、AB上的旁切圆切点.点M 为BC中点,PQ、EF交于R.设△ABC九点圆与内切圆切于K,证明:M、R、K共线.82.凸四边形ABCD中,△ABC、△BCD、△CDA、△DAB的内心分别为I D、I A、I B、I C,∠BAC与∠BDC的角平分线交于点E,∠ABD与∠ACD的角平分线交于点F,线段I D I A、I B I C、EF的中点分别为X、Y、Z.证明:X、Y、Z三点共线.83.设ω1、ω2分别是过A、C且与△ABC内切圆内切于J的圆与过B、A且与△ABC内切圆内切于K的圆.设Q、R分别是ω1、ω2与BC的交点,ω1与AB交于P,ω2与AC交于S,X 是△CSR∠C内的旁心,Y是△BPQ∠B内的旁心,M是△BSR的内心,N是△CPQ的内心. 证明:四边形XYMN是矩形.84.设圆Γ过B,C且与△ABC的内切圆⊙I内切于点J,延长AJ交BC于K,交Γ于L.证明:(KB/KC)2=(LB/LC)3.85.⊙I、⊙J、⊙K与⊙O外切于X、Y、Z,EH、FL、MG分别是⊙I与⊙K、⊙I与⊙J、⊙J 与⊙K的外公切线且均与⊙O相交,并且E、F、G、H、L、M均为切点.HG与ML、EF与HG、EF与ML分别交于点U、V、W.证明:YW·XV·ZU=WX·VZ·UY.86.设I、O分别是△ABC的内心、外心,U、V分别为⊙O与⊙I的外位似中心与内位似中心,设E、F、Y、Z分别是BI与AC、CI与AB、BO与AC、CO与AB的交点.证明:U、E、F共线的充要条件是V、Y、Z共线.87.设P、Q是△ABC的一对等角共轭点且△ABC的重心G与P、Q共线.D、E、F分别是AP 与BC、BP与AC、CP与AB的交点,AQ、BQ、CQ分别与△ABC外接圆再次交于点X、Y、Z,证明:△ADX、△BEY、△CFZ外接圆有公共的根轴.88.给定△ABC,证明:在△ABC所在平面内存在唯一的一点P,使得△ABC、△PAB、△PBC、△PCA的欧拉线互相平行.89.设N为△ABC的九点圆圆心,N在BC、CA、AB上的射影分别为D、E、F,R为N 关于△DEF的等角共轭点,X是△AEF的九点圆圆心.证明:RX垂直于BC.90.设O、I a、I b、I c分别是△ABC的外心、∠BAC内的旁心、∠ABC内的旁心、∠BCA内的旁心.设与⊙Ib、⊙I c外切且与⊙O内切的圆与⊙O切于X,类似定义Y、Z.证明:AX、BY、CZ三线共点.91.O为△ABC外心,P、Q为△ABC的一对等角共轭点.设D、E、F分别为AP与BC、BP与CA、CP与AB的交点.设一条与OQ垂直的直线分别与BC、CA、AB交于点X、Y、Z.证明:△ADX外接圆、△BEY外接圆、△CFZ外接圆有一条公共的根轴.92.设I、O分别为△ABC的内心、外心,D、E、F分别为AI与BC、BI与AC、CI与 AB的交点.设ω为与AB、AC相切且与⊙O内切的圆,过E,F作ωaa的切线(不同于直线AB、AC)交于D1,X为ωa与⊙O切点,类似定义E1、F1、Y、Z.证明:XD1、YE1、ZF1、OI四线共点.93.设P为△ABC内一点,D、E、F分别是AP与BC、BP与AC、CP与AB的交点.设△DEF外接圆与直线BC另一个交点为X,O为△ABC外心,T为△DEF垂心,X'为X 关于直线EF的对称点.证明:AX'、BC、OT三线共点.。
数学百大经典例题-直线与平面的垂直判定和性质

典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中,∵O E 、分别是B B 1和DB 的中点,∴D B EO 1//.∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =,∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=, ()a a a E B B D E D 232222212111=⎪⎭⎫ ⎝⎛+=+=. ∵21221E D OE O D =+,∴OE O D ⊥1. ∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC,⊂BC平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BABH =θcos ①在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG . 在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD , ∴BC SA ⊥.又∵ABCD 为正方形, ∴AB BC ⊥.∴⊥BC 平面ASB . ∵⊂AE 平面ASB , ∴AE BC ⊥.又∵⊥SC 平面AEFG , ∴AE SC ⊥.∴⊥AE 平面SBC . 又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影. ∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =, ∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a , 同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面, ∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF , ∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥, 又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥, 又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a . 已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a aa ab a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥. ∵DBC AH 平面⊥,∴AH DC ⊥, ∴ABH DC 平面⊥,∴DC AB ⊥. 又∵ABC DA 平面⊥,∴DA AB ⊥, ∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾, ∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ). ①平行于同一条直线的两条直线互相平行 ②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行 ④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确 分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的. 综上可知①、④正确. ∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线 (1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b ∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //', 则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'. ∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥, ∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = , ∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形, ∴1111D B C A ⊥,1111B BB D B = , ∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥. 同理11BD DC ⊥,1111C C A DC = , ∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直,∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂, ∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求. 过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂, ∴E B BC 1⊥.又B B A BC =1 , ∴111BCD A E B 平面⊥. 即线段E B 1的长即为所求, 在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B , ∴直线11C B 到平面11BCD A 的距离为1360. 说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E .∵BC AE //,∴DAE ∠就是AD 、BC 所成的角, ︒=∠30DAE . ∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = , ∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥. 在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。
安徽省宿松县九姑中学高考数学百大经典例题 两平面的

安徽省宿松县九姑中学2015届高考数学百大经典例题 两平面的平行判定和性质(含解析)例1:已知正方体1111-D C B A ABCD .求证:平面//11D AB 平面BD C 1.证明:∵1111-D C B A ABCD 为正方体,∴B C A D 11//,又 ⊂B C 1平面BD C 1,故 //1A D 平面BD C 1.同理 //11B D 平面BD C 1.又 1111D B D A D =I ,∴ 平面//11D AB 平面BD C 1.说明:上述证明是根据判定定理1实现的.本题也可根据判定定理2证明,只需连接C A 1即可,此法还可以求出这两个平行平面的距离.典型例题二例2:如图,已知βα//,a A ∈,α∈A β//a .求证:α⊂a .证明:过直线a 作一平面γ,设1a =αγI ,b =γβI .∵βα//∴b a //1又β//a∴b a //在同一个平面γ内过同一点A 有两条直线1,a a 与直线b 平行∴a 与1a 重合,即α⊂a .说明:本题也可以用反证法进行证明.典型例题三例3:如果一条直线与两个平行平面中的一个相交,那么它和另一个也相交.已知:如图,βα//,A l =αI. 求证:l 与β相交.证明:在β上取一点B ,过l 和B 作平面γ,由于γ与α有公共点A ,γ与β有公共点B .∴γ与α、β都相交.设a =αγI ,b =γβI .∵βα//∴b a //又l 、a 、b 都在平面γ内,且l 和a 交于A .∵l 与b 相交.所以l 与β相交.典型例题四例4:已知平面βα//,AB ,CD 为夹在a ,β间的异面线段,E 、F 分别为AB 、CD 的中点.求证: α//EF ,β//EF .证明:连接AF 并延长交β于G .∵F CD AG =I∴ AG ,CD 确定平面γ,且AC =αγI ,DG =βγI .∵βα//,所以 DG AC //,∴ GDF ACF ∠=∠,又 DFG AFC ∠=∠,DF CF =,∴ △ACF ≌△DFG .∴ FG AF =.又 BE AE =,∴ BG EF //,β⊂BG .故 β//EF .同理α//EF说明:本题还有其它证法,要点是对异面直线的处理.典型例题六例6 如图,已知矩形ABCD 的四个顶点在平面上的射影分别为1A 、1B 、1C 、1D ,且1A 、1B 、1C 、1D 互不重合,也无三点共线.求证:四边形1111D C B A 是平行四边形.证明:∵α⊥1AA , α⊥1DD∴11//DD AA不妨设1AA 和1DD 确定平面β.同理1BB 和1CC 确定平面γ.又11//BB AA ,且γ⊂1BB∴γ//1AA同理γ//AD又A AD AA =I 1∴γβ//又11D A =βαI ,11C B =γαI∴1111//C B D A .同理1111//D C B A .∴四边形1111D C B A 是平行四边形.典型例题七例7 设直线l 、m ,平面α、β,下列条件能得出βα//的是( ).A .α⊂l ,α⊂m ,且β//l ,β//mB .α⊂l ,β⊂m ,且m l //C .α⊥l ,β⊥m ,且m l //D .α//l ,β//m ,且m l //分析:选项A 是错误的,因为当m l //时,α与β可能相交.选项B 是错误的,理由同A .选项C 是正确的,因为α⊥l ,l m //,所以α⊥m ,又∵β⊥m ,∴βα//.选项D 也是错误的,满足条件的α可能与β相交.答案:C说明:此题极易选A ,原因是对平面平行的判定定理掌握不准确所致.本例这样的选择题是常见题目,要正确得出选择,需要有较好的作图能力和对定理、公理的准确掌握、深刻理解,同时要考虑到各种情况.典型例题八例8 设平面α⊥平面γ,平面β⊥平面γ,且α、β分别与γ相交于a 、b ,b a //.求证:平面α//平面β.分析:要证明两平面平行,只要设法在平面α上找到两条相交直线,或作出相交直线,它们分别与β平行(如图).证明:在平面α内作直线PQ ⊥直线a ,在平面β内作直线MN ⊥直线b .∵平面α⊥平面γ,∴PQ ⊥平面γ,MN ⊥平面γ,∴MN PQ //.又∵p a //,Q a PQ =I ,N b MN =I ,∴平面α//平面β.说明:如果在α、β内分别作γ⊥PQ ,γ⊥MN ,这样就走了弯路,还需证明PQ 、MN 在α、β内,如果直接在α、β内作a 、b 的垂线,就可推出MN PQ //.由面面垂直的性质推出“线面垂直”,进而推出“线线平行”、“线面平行”,最后得到“面面平行”,最后得到“面面平行”.其核心是要形成应用性质定理的意识,在立体几何证明中非常重要.典型例题九例9 如图所示,平面α//平面β,点A 、C α∈,点β∈D B 、,a AB =是α、β的公垂线,CD 是斜线.若b BD AC ==,c CD =,M 、N 分别是AB 和CD 的中点,(1)求证:β//MN ;(2)求MN 的长.分析:(1)要证β//MN ,取AD 的中点P ,只要证明MN 所在的平面β//PMN .为此证明β//PM ,β//PN 即可.(2)要求MN 之长,在CMA ∆中,CM 、CN 的长度易知,关键在于证明CD MN ⊥,从而由勾股定理可以求解.证明:(1)连结AD ,设P 是AD 的中点,分别连结PM 、PN .∵M 是AB 的中点,∴BD PM //.又β⊂BD ,∴β//PM .同理∵N 是CD 的中点,∴AC PN //.∵α⊂AC ,∴α//PN .∵βα//,P PM PN =I ,∴平面β//PMN .∵MN ⊂平面PMN ,∴β//MN .(2)分别连结MC 、MD .∵b BD AC ==,a BM AM 21==, 又∵AB 是α、β的公垂线,∴︒=∠=∠90DBM CAM ,∴ACM Rt ∆≌BDM Rt ∆,∴DM CM =,∴DMC ∆是等腰三角形.又N 是CD 的中点,∴CD MN ⊥.在CMN Rt ∆中,22222421c a b CN CM MN -+=-=. 说明:(1)证“线面平行”也可以先证“面面平行”,然后利用面面平行的性质,推证“线面平行”,这是一种以退为进的解题策略.(2)空间线段的长度,一般通过构造三角形、然后利用余弦定理或勾股定理来求解.(3)面面平行的性质:①面面平行,则线面平行;②面面平行,则被第三个平面所截得的交线平行.典型例题十例10 如果平面α内的两条相交直线与平面β所成的角相等,那么这两个平面的位置关系是__________.分析:按直线和平面的三种位置关系分类予以研究.解:设a 、b 是平面α内两条相交直线.(1)若a 、b 都在平面β内,a 、b 与平面β所成的角都为︒0,这时α与β重合,根据教材中规定,此种情况不予考虑.(2)若a 、b 都与平面β相交成等角,且所成角在)90,0(︒︒内;∵a 、b 与β有公共点,这时α与β相交.若a 、b 都与平面β成︒90角,则b a //,与已知矛盾.此种情况不可能.(3)若a 、b 都与平面β平行,则a 、b 与平面β所成的角都为︒0,α内有两条直线与平面β平行,这时βα//.综上,平面α、β的位置关系是相交或平行.典型例题十一例11 试证经过平面外一点有且只有一个平面和已知平面平行.已知:α平面∉A ,求证:过A 有且只有一个平面αβ//.分析:“有且只有”要准确理解,要先证这样的平面是存在的,再证它是惟一的,缺一不可.证明:在平面α内任作两条相交直线a 和b ,则由α∉A 知,a A ∉,b A ∉. 点A 和直线a 可确定一个平面M ,点A 和直线b 可确定一个平面N .在平面M 、N 内过A 分别作直线a a //'、b b //',故'a 、'b 是两条相交直线,可确定一个平面β.∵α⊄'a ,α⊂a ,a a //',∴α//'a .同理α//'b .又β⊂'a ,β⊂'b ,A b a =''I ,∴αβ//. 所以过点A 有一个平面αβ//.假设过A 点还有一个平面αγ//,则在平面α内取一直线c ,c A ∉,点A 、直线c 确定一个平面ρ,由公理2知: m =ρβI ,n =ργI ,∴c m //,c n //,又m A ∈,n A ∈,这与过一点有且只有一条直线与已知直线平行相矛盾,因此假设不成立,所以平面β只有一个.所以过平面外一点有且只有一个平面与已知平面平行.典型例题十二例12 已知点S 是正三角形ABC 所在平面外的一点,且SC SB SA ==,SG 为SAB ∆上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 内的位置关系,并给予证明分析1:如图,观察图形,即可判定//SG 平面DEF ,要证明结论成立,只需证明SG 与平面DEF 内的一条直线平行.观察图形可以看出:连结CG 与DE 相交于H ,连结FH ,FH 就是适合题意的直线. 怎样证明FH SG //?只需证明H 是CG 的中点.证法1:连结CG 交DE 于点H ,∵DE 是ABC ∆的中位线,∴AB DE //.在ACG ∆中,D 是AC 的中点,且AG DH //,∴H 为CG 的中点.∵FH 是SCG ∆的中位线,∴SG FH //.又SG ⊄平面DEF ,FH ⊂平面DEF ,∴//SG 平面DEF .分析2:要证明//SG 平面DEF ,只需证明平面SAB //平面DEF ,要证明平面DEF //平面SAB ,只需证明DF SA //,EF SB //而DF SA //,EF SB //可由题设直接推出.证法2:∵EF 为SBC ∆的中位线,∴SB EF //.∵⊄EF 平面SAB ,⊂SB 平面SAB ,∴//EF 平面SAB .同理://DF 平面SAB ,F DF EF =I ,∴平面SAB //平面DEF ,又∵⊂SG 平面SAB ,∴//SG 平面DEF .典型例题十三例13 如图,线段PQ 分别交两个平行平面α、β于A 、B 两点,线段PD 分别交α、β于C 、D 两点,线段QF 分别交α、β于F 、E 两点,若9=PA ,12=AB ,12=BQ ,ACF ∆的面积为72,求BDE ∆的面积.分析:求BDE ∆的面积,看起来似乎与本节内容无关,事实上,已知ACF ∆的面积,若BDE ∆与ACF ∆的对应边有联系的话,可以利用ACF ∆的面积求出BDE ∆的面积.解:∵平面AF QAF =αI ,平面BE QAF =βI ,又∵βα//,∴BE AF //.同理可证:BD AC //,∴FAC ∠与EBD ∠相等或互补,即EBD FAC ∠=∠sin sin . 由BE FA //,得212412∶∶∶∶===QA QB AF BE , ∴AF BE 21= 由AC BD //,得:73219∶∶∶∶===PB PA BD AC ,∴AC BD 37=. 又∵ACF ∆的面积为72,即72sin 21=∠⋅⋅FAC AC AF . ∴EBD BD BE S DBE ∠⋅⋅=∆sin 21 FAC AC AF ∠⋅⋅⋅=sin 372121 FAC AC AF ∠⋅⋅⋅=sin 2167 847267=⨯=. ∴BDE ∆的面积为84平方单位.说明:应用两个平行的性质一是可以证明直线与直线的平行,二是可以解决线面平行的问题.注意使用性质定理证明线线平行时,一定第三个平面与两个平行平面相交,其交线互相平行.典型例题十四例14 在棱长为a 的正方体中,求异面直线BD 和C B 1之间的距离.分析:通过前面的学习,我们解决了如下的问题:若a 和b 是两条异面直线,则过a 且平行于b 的平面必平行于过b 且平行于a 的平面.我们知道,空间两条异面直线,总分别存在于两个平行平面内.因此,求两条异面直线的距离,有时可以通过求这两个平行平面之间的距离来解决.具体解法可按如下几步来求:①分别经过BD 和C B 1找到两个互相平等的平面;②作出两个平行平面的公垂线;③计算公垂线夹在两个平等平面间的长度.解:如图,根据正方体的性质,易证:1111111//////D CB BD A C D B A D B BD 平面平面⇒⎭⎬⎫连结1AC ,分别交平面BD A 1和平面11D CB 于M 和N因为1CC 和1AC 分别是平面ABCD 的垂线和斜线,AC 在平面ABCD 内,BD AC ⊥ 由三垂线定理:BD AC ⊥1,同理:D A AC 11⊥∴⊥1AC 平面BD A 1,同理可证:⊥1AC 平面11D CB∴平面BD A 1和平面11D CB 间的距离为线段MN 长度.如图所示:在对角面1AC 中,1O 为11C A 的中点,O 为AC 的中点 ∴a AC NC MN AM 333111====. ∴BD 和C B 1的距离等于两平行平面BD A 1和11D CB 的距离为a 33. 说明:关于异面直线之间的距离的计算,有两种基本的转移方法:①转化为线面距.设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,通过计算a 和α的距离,得出a 和b 距离,这样又回到点面距离的计算;②转化为面面距,设a 、b 是两条异面直线,作出经过b 而和a 平行的平面α,再作出经过a 和b 平行的平面β,通过计算α、β之间的距离得出a 和b 之间的距离.典型例题十五例15 正方体1111D C B A ABCD -棱长为a ,求异面直线AC 与1BC 的距离.解法1:(直接法)如图:取BC 的中点P ,连结PD 、1PB 分别交AC 、1BC 于M 、N 两点,易证:MN DB //1,AC DB ⊥1,11BC DB ⊥. ∴MN 为异面直线AC 与1BC 的公垂线段,易证:a DB MN 33311==. 小结:此法也称定义法,这种解法是作出异面直线的公垂线段来解.但通常寻找公垂线段时,难度较大.解法2:(转化法)如图:∵//AC 平面B C A 11,∴AC 与1BC 的距离等于AC 与平面B C A 11的距离, 在1OBO Rt ∆中,作斜边上的高OE ,则OE 长为所求距离, ∵a OB 22=,a OO =1, ∴a B O 231=,∴a B O OB OO OE 3311=⋅=. 小结:这种解法是将线线距离转化为线面距离.解法3:(转化法)如图:∵平面1ACD //平面B C A 11,∴AC 与1BC 的距离等于平面1ACD 与平面B C A 11的距离. ∵⊥1DB 平面1ACD ,且被平面1ACD 和平面B C A 11三等分;∴所求距离为a D B 33311=. 小结:这种解法是线线距离转化为面面距离.解法4:(构造函数法)如图:任取点1BC Q ∈,作BC QR ⊥于R 点,作AC PK ⊥于K 点,设x RC =, 则x a QR BR -==,KR CK =,且222CR CK KR =+∴2222121x CR KR ==. 则222)(21x a x QK -+=2223131)32(23a a a x ≥+-=, 故QK 的最小值,即AC 与1BC 的距离等于a 33. 小结:这种解法是恰当的选择未知量,构造一个目标函数,通过求这个函数的最小值来得到二异面直线之间的距离.解法5:(体积桥法)如图:当求AC 与1BC 的距离转化为求AC 与平面B C A 11的距离后,设C 点到平面B C A 11的距离为h ,则1111BCC A B C A C V V --=. ∵222131)2(4331a a a h ⋅⋅=⋅,∴a h33.即AC 与1BC 的距离等于a 33. 小结:本解法是将线线距离转化为线面距离,再将线面距离转化为锥体化为锥体的高,然后用体积公式求之.这种方法在后面将要学到.说明:求异面直线距离的方法有:(1)(直接法)当公垂线段能直接作出时,直接求.此时,作出并证明异面直线的公垂线段,是求异面直线距离的关键.(2)(转化法)把线线距离转化为线面距离,如求异面直线a 、b 距离,先作出过a 且平行于b 的平面α,则b 与α距离就是a 、b 距离.(线面转化法).也可以转化为过a 平行b 的平面和过b 平行于a 的平面,两平行平面的距离就是两条异面直线距离.(面面转化法).(3)(体积桥法)利用线面距再转化为锥体的高用何种公式来求.(4)(构造函数法)常常利用距离最短原理构造二次函数,利用求二次函数最值来解. 两条异面直线间距离问题,教科书要求不高(要求会计算已给出公垂线时的距离),这方面的问题的其他解法,要适度接触,以开阔思路,供学有余力的同学探求.典型例题十六例16 如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.解法1:如图所示:作β⊥AD 于D ,连结BD 、CD 、BC∵BD AB >,DC AC >,222BC AC AB =+, ∴在BDC ∆中,由余弦定理,得:022cos 222222=⋅-+<⋅-+=∠CDBD BC AC AB CD BD BC CD BD BDC .∵β⊥AD ,∴ABD ∠是AB 与β所在的角. 又∵βα//,∴ABD ∠也就等于AB 与α所成的角,即︒=∠30ABD .∵2=AB ,∴1=AD ,3=BD ,12-=AC DC ,24AC BC +=,∴01324131222<-⋅---+≤-AC AC AC ,即:31102≤-<AC .∴332≥AC ,即AC 长的取值范围为⎪⎪⎭⎫⎢⎣⎡∞+,332. 解法2:如图:∵AC AB ⊥∴AC 必在过点A 且与直线AB 垂直的平面γ内设l =βγI ,则在γ内,当l AC ⊥时,AC 的长最短,且此时ABC AB AC ∠⋅=tan33230tan =︒⋅AB 而在γ内,C 点在l 上移动,远离垂足时,AC 的长将变大,从而332≥AC , 即AC 长的取值范围是⎪⎪⎭⎫⎢⎣⎡∞+,332. 说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习.(2)解法1利用余弦定理,采用放缩的方法构造出关于AC 长的不等式,再通过解不等式得到AC 长的范围,此方法以运算为主.(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段AC 是连结异面直线AB 和l 上两点间的线段,所以AC 是AB 与l 的公垂线段时,其长最短.典型例题十七例17 如果两个平面分别平行于第三个平面,那么这两个平面互相平行.已知:γα//,γβ//,求证:βα//.分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线.证明一:如图,假设α、β不平行,则α和β相交.∴α和β至少有一个公共点A ,即α∈A ,β∈A . ∵γα//,γβ//, ∴γ∉A .于是,过平面γ外一点A 有两个平面α、β都和平面γ平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
平面图形经典例题

【平面图形】1.旋转的思想方法。
将所给图形中的某一部分绕一个固定点旋转一定(或适当)的角度,变为较明显的简单而又直观的图形。
2.移动的思想方法。
A .点的移动:将图中的某一点看作一 个“动点”沿直线移动,使原来分着的空白部分合并在一起变成一个简单明了的图形。
B .面的移动:将所给图形中的某个图形沿直线上下左右移动,把复杂的图形转化成简单的图形,使原来面积不等变成相等。
3.翻折的思想方法。
将所给图形的某一部分以某一直线为对称轴翻折,使原来复杂的图形变为直观图形。
例1 如图,长方形的长是8厘米、宽是6厘米、A 和B 是宽的中点,求长方形内阴影部分的面积。
例2 下面的长方形是一块草坪,中间有两条宽1米的走道。
求植草的面积。
例3 下图是一块长方形草地。
长方形长16米、宽10米,中间有两条宽2米的道路,两条都是平行四边形。
求有草部分的面积。
(单位:厘米)例4 如图,已知长方形的长是8厘米,宽是4厘米,图中阴影部分面积是10平方厘米,求OD 长多少厘米?例5 有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相又叠合(如图),已知露在外面的部分中,红色面积是20,黄色面积为14,绿色面积是10,那么正方形盒子的面积是多少?ABD CBDC ’A ’50米BB161021.有5张同样大小的纸如下图,重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半。
求重叠后图形的周长。
2. 求图中阴影部分的面积。
(单位:厘米)3.梯形草坪(如下图),有一平形四边形人行道,求人行道的面积是多少平方米?4.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如下图阴影所示部分,红条宽都是2厘米。
问:这条手帕白色部分的面积是多少?5.把长2厘米、宽1厘米的长方形如图那样拼摆:第一层放一个,第二层放两个,第三层放三个……如果按照这样摆下去,当摆成六层图形时,周长是多少厘米?【蝴蝶翅膀】1.只有一组对边平行的四边形叫做梯形。
新平面几何100题1-60(2)(1)

1、设I是△ABC的内心,D是边BC上的一点,E是BC延长线上一点,且满足BD= BE.设H是DC ECD到直线IE的垂足,证明:∠AHE =∠IDE.2、设O、H分别是△ABC的外心和垂心,点A关于直线OH的对称点是P,点P和点A不在直线BC的同侧,E、F分别在AB和AC上,满足BE = PC,CF = PB,直线AP、OH相交于点K,证明:EK⊥ FK.P3、设正△ABC的外接圆和内切圆分别是Γ、ω,P为ω上一动点,P1、P2、P3分别为P在BC、CA、AB上的射影,圆ω1、ω2、ω3分别与BC、CA、AB切于P1、P2、P3且与Γ内切(它们的圆心与A、B、C分别在BC、CA、AB的异侧).证明:圆ω1、ω2、ω3两两外公切线的长度之和是一个定值.A⊙O上的一点,PD⊥EF于D,交AB于K,作PS⊥BC于S,连接SK并交AO于T.证明:DS = DT.T接圆于点A、P,△AEF的外接圆在A处的切线交△ABC于A、Q两点,设N、M分别为AQ、BC的中点.证明:∠APD =∠MNQ.QO共圆,C、A′、B′、O共圆.以B′为圆心,B′C为半径的圆和以C′为圆心,BC′为半径的圆的根轴为l a.类似定义l b、l c.证明:直线l a、l b、l c交出的三角形垂心与△ABC的垂心重合.AB'l cC' Ol aHl b A'B C其中P、Q分别在BC、BD内,R在CD的延长线上.记点D在直线AC、BC、AB上的射影分别为X、Y、Z,其中X、Y分别在线段AC、BC内,Z在BA的延长线上,设△ABD的垂心为H,证明:BH的中点在△PQR外接圆和△XYZ外接圆的根轴上.8、在圆内接四边形ABCD中,AB > BC,AD > DC,I、J分别为△ABC、△ADC的内心. 以AC为直径的圆与线段IB交于点X、与JD的延长线交于点Y.证明:若B、I、J、D四点共圆,则点X、Y关于直线AC对称.点P分别在边BC上(N在线段BP上),且满足五边形AMNPQ的五条边长相等.记点S为直线MN和QP的交点,l为∠MSQ的角平分线.证明:l和OI平行.S类似定义l b、l c. 证明:直线l a、l b、l c三线共点.PR、QS把四边形ABCD分为 4 个四个对角线互相垂直的凸四边形.证明:P、Q、R、S四点共圆.一点M,以DM为直径的圆与Ω交于除M以外的另一点K,直线MK与BC交于点S,设N为IS的中点,L1、L2为△KID的外接圆与△MAN的外接圆的交点.证明:IL1或IL2的中点在Ω上.S线(不同于直线BC),交直线EF于点X.类似定义Y和Z.证明:X、Y、Z三点共线.DL别交⊙I 于M 、N ,MF 与NE 交于L .证明:L 在直线BD 上.于点J,直线IJ不经过点O,且与边AB、CD的延长线分别交于点P、R,与边BC、DA分别交于点Q、S.线段PR、QS的中点分别为M、N.证明:OM⊥ ON.P边BC上的点,满足PB= BD2.设E在PN上的投影是H,证明:△BEC的外接圆与△MPH的外接圆相切. PC( )AC于点X、Y、Z、T.过A、B的圆Ω与圆Γ外切于S.证明:SP⊥ ST.直线DA于Y′,交直线AC于Z,交直线BD于Z′.已知以上六点在l上按照X、Y、Z、X′、Y′、Z′ 的顺序排列.证明:以XX′、YY′、ZZ′为直径的三个圆共点.作与⊙O内切,与线段CD、AD相切的⊙J.证明:若A、B、I、J四点共圆,则D是三角形ABC中的∠ACB内旁切圆在AB上的切点.20、设⊙O1与⊙O2交于P、Q两点,过P作两条割线AB、CD,过Q作两条平行割线A′B′、C′D′,取△PAC、△PBD、△QB′D′、△QA′C′的九点圆圆心F1、F2、F3、F4.证明:四边形F1F2F3F4是矩形.A'D'21、设⊙O是四边形ABCD的内切圆. AC、BD交于P,I、J分别是△ABC、△ADC的内心,OP,IJ交于K,T是K在BD上的射影.证明:I、J、P、T四点共圆.B切圆圆心.在AC边上取点E和Y,使得∠ABY =∠CBY,BE⊥ AC,在AB边上取点F和Z,使得∠ACZ =∠BCZ,CF⊥ AB,直线I B F和I C E交于点P.证明:PO⊥ YZ.I B ArrayI C射影,KP、BC交于X,M是BC的中点,P′是P关于BC的对称点,K′是K关于M的对称点. P′K′分别交BC于Y,交KP于Z.证明:△XYZ的外接圆与△QBC的外接圆相切.D长线交于点F,K是△CDF的外接圆与△ADE的外接圆的交点(K≠ D).设∠BAD、∠ABC、∠BCD、∠ADC的外角平分线分别为l A、l B、l C、l D,l A和l B、l B和l C、l C和l D、l D和l A分别交于点G、H、I、J.△CDF的外接圆中,弧DF(不含C)的中点为Q,直线EH与△AED的外接圆交于另一点M.设GJ中垂线与IH中垂线(不重合)交于点P.证明:P、M、Q、K四点共圆.的直线围成的三角形的外接圆与⊙O相切.AB上,X′、Y′、Z′分别是X关于U、Y关于V,Z关于W的对称点,点X、Y、Z关于△ABC的密克点为S,点X′、Y′、Z′关于△ABC的密克点为T.证明:OS = OT.X' U CCE + CF = AB. △ADF、△BDE、△CEF的外接圆与△ABC外接圆的另一个交点分别为A1、B1、C1,P是D、E、F关于△ABC的密克点,证明:P为△A1B1C1的垂心.1BC、CA、AB上的射影分别是D、E、F,X、Y、Z分别是A′关于D、B′关于E,C′关于F的对称点.证明:△XYZ∽△ABC.AB上一点K满足直线KM平行于点P关于△ABC的西姆松线,设Q为外接圆上一点满足QP∥ BC.记弦KQ交边BC于点J.证明:KJ = MJ.⊙I于另外的点X、Y.设J为△AEF外接圆的另一个交点,△XJI外接圆与⊙I的另一个交点为S,T在⊙I上满足TS⊥AI,连接YT、XS交于P,直线DP与⊙I的另一个交点为Q.证明:KQ是⊙I的直径.C点,EF、MN交于S,DS与⊙I的另一个交点为J.证明:J在△ABC的九点圆上.ACAB的中点分别为D、E、F,直线l分别交△BIC外接圆、△CIA外接圆、△AIB外接圆于另一点D′、E′、F′,过点X、Y、Z分别作平行于DD′、EE′、FF′的直线l1、l2、l3.证明:直线l1、l2、l3交于一点.于BC的异侧,过点A′作A′D的垂线,分别与AC、AB交于E、F两点.以EF为底,作底角为π的6等腰△ETF,并使得A、T位于BC的异侧.证明:AT经过△ABC的九点圆圆心. Array EDABC的顶点B、C所对的旁切圆,P、Q分别为I B E,I C F的中点,若DE、DF与I B I C交于点K、J,EJ 与FK交于点M,PE与△PAC的外接圆交于另一点X,QF与△QAB的外接圆交于另一点Y. 证明:BY、CX、AM三线共点.35、已知凸四边形ABCD内两动点P、Q满足∠APB =∠AQB =∠CPD =∠CQD.证明:动直线PQ要么均经过一个定点,要么相互平行.36、在凸四边形ABCD中,∠ABC =∠ADC <π,∠ABC、∠ADC的平分线交于点P,并分2别与AC交于点E、F,M为AC的中点,BM、DM与△BDP的外接圆分别交于另一点X、Y,EX与PY交于点Q.证明:AC⊥ PQ.D37、凸六边形A1A2A3A4A5A6满足A1A2= A3A4= A5A6,A2A3= A4A5= A6A1,点X、Y在凸六边形内部且不重合,点X在A1A2、A3A4、A5A6上的投影分别为X1、X2、X3,点Y在A2A3、A4A5、A6A1上的投影分别为Y1、Y2、Y3,且满足XX1= XX2= XX3,YY1= YY2= YY3.设△X1X2X3、△Y1Y2Y3的欧拉线分别为l1、l2,证明:l1∥ l2.A4交于点M,DE与AC相交于点N.证明:△EMN外接圆与⊙I相切.使AE = BD,CD + CE = AB.记K为BE与AD交点,证明:KH = 2IO.ACM为边BC的中点.Q、K为圆Γ上的点,使得∠HQA =∠HKQ =π.若点A、B、C、K、Q互2不相同,且按此顺序排列在Γ上,证明:△KQH的外接圆与△FKM的外接圆相切.AC于E、F,AG交⊙O于K,证明:AK平分∠EKF.K个圆ω与射线BA相切(切点不在线段BA上),与射线BC相切(切点不在线段BC上),且与直线AD和直线CD都相切.证明:圆ω1和ω2的两条外公切线的交点在圆ω上.AB.延长AP、BP、CP分别交△ABC的外接圆于点D、E、F.证明:△APF、△APE、△BPF、△BPD、△CPD、△CPE的外接圆圆心六点共圆.BPAC外接圆的两条外公切线的交点,则PA2+ PB∙PC= 1.( )XY AB∙AC45、在凸四边形ABCD中,∠ABC =∠CDA = π,H是A在BD上的射影,边AB上的S和边AD上2的T使H在△SCT内部,∠CHS−∠CSB = π,∠THC−∠DTC = π,证明:直线BD和△TSH的22外接圆相切.D关于点O对称,直线A0M交⊙O于异于点A0的一点X,证明:△ADX的外接圆与直线BC相切.别与△APD以及△CPB的内切圆切于点K和L,AC与BD交于点E,AK、BL交于点F.证明:E、I、F共线.ADB于点A且与ω外切;圆ΩA与Ω内切于点A且与ω内切.设P A和Q A分别是ωA和ΩA的圆心.同样定义P B和Q B、P C和Q C.证明:8P A Q A∙P B Q B∙P C Q C≤ R3AP AQ AQ B QCP B B P CC证明:D、E、F共线当且仅当OH = 2R,其中R为△ABC外接圆半径.FC足PA、PB、PC的长度都保持不变.求△ABC面积的最小值.。
新课标人教版高中数学必修二直线与平面平行的经典习题

直线和平面平行与平面与平面平行证明题
1、、如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点,求证:1//
AC 平面BDE 。
2、如图: 平行四边形 ABCD 和平行四边形 CDEF 有一条公共边
CD ,
M 为FC 的中点 , 证明: AF // 平面MBD.
3、如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:
面A B C '''A 1
E
D 1
C 1
B 1
D
C
B
A
M
A
B
C
D
E
F
∥ABC 面.
4、 在长方体ABCD —A1B1C1D1中. (1)作出过直线AC 且与直线BD1平行的 截面,并说明理由.
(2)设E ,F 分别是A1B 和B1C 的中点, 求证直线EF//平面ABCD.
5、、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.
A
B
C
C 1
D
A 1
B 1
D 1
求证:EH∥BD. (12分)
6、
P是平行四边形ABCD所在平面外一点,Q是PA的中点,求证://
PC平面BDQ.(自己作图)
H
G F
E
D
B
A
C
7、
如图,α//a ,A 是α的另一侧的点,a D C B ∈,,,线段AB ,AC ,AD 交α
于E ,F ,G ,若4=BD ,4=CF ,5=AF ,则EG =___________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 1 -
典型例题一 例1 三条直线两两相交,由这三条直线所确定平面的个数是( ). A.1 B.2 C.3 D.1或3 分析:本题显然是要应用推论2判断所能确定平面的个数,需要在空间想象出这三条直线所有不同位置的图形,有如下图的三种情况(如图):
答案:D. 说明:本题启发我们考虑问题不要只局限于平面图形,应养成在三维空间考虑问题的习惯.
典型例题二
例2 一条直线与三条平行直线都相交,求证这四条直线共面. 分析:先将已知和求证改写成符号语言.证明诸线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条确定一个平面,另两条确
定平面,再证平面,重合. 已知:cba////,Aal,Bbl,Ccl. 求证:直线a,b,c,l共面. 证明: ∵ ba//, ∴ a,b确定一个平面. ∵ Aal,Bbl, ∴ A,B,故l.
又 ∵ ca//, ∴ a,c确定一个平面.
同理可证l. ∴ a,且l. ∵ 过两条相交直线a,l有且只有一个平面,故与重合 即直线a,b,c,l共面. 说明:本例是新教材第9页第9题的一个简单推广,还可推广到更一般的情形.本例证明既采用了归一法,同时又采用了同一法.这两种方法是证明线共面问题的常用方法.在证明c时,也可以用如下反证法证明: 假设直线c,则c一定与相交,此时直线c与a内的所有直线都不会平行,这显然高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 2 -
与ca//矛盾.故c. 典型例题三
例3 已知ABC在平面外,它的三边所在的直线分别交平面于P,Q,R三点,证明P,Q,R三点在同一条直线上. 分析:如图所示,欲证P,Q,R三点共线,只须证P,Q,R在平面和平面ABC的交线上,由P,Q,R都是
两平面的公共点而得证. 证明:∵ PAB,QBC,
∴ PQ是平面与平面ABC的交线. 又 ∵ RAC, ∴ R且R平面ABC,
∴ PQR,
∴ P,Q,R三点共线. 说明:证明点共线的一般方法是证明这些点是某两个平面的公共点,由公理2,这些点都在这两平面的交线上.
典型例题四
例4 如图所示,ABC与111CBA不在同一个平面内,如果三直线1AA、1BB、1CC两两相交,证明:三直线1AA、1BB、1CC交于一点. 分析:证明三线共点的一般思路是:先证明两条直线交于一点,再证明该点在第三条直线上即可.
证明:由推论2,可设1BB与1CC,1CC与1AA,1
AA
与1BB分别确定平面,,. 取PBBAA11,则1AAP,1BBP. 又因1CC,则1CCP(公理2), 于是PCCBBAA111
, 高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 3 -
故三直线1AA、1BB、1CC共点. 说明:空间中证三线共点有如下两种方法: (1)先确定两直线交于一点,再证该点是这两条直线所在两个平面的公共点,第三条直线是这两个平面的交线,由公理2,该点在它们的交线上,从而得三线共点. (2)先将其中一条直线看做是某两个平面的交线,证明该交线与另两直线分别交于两点,再证这两点重合.从而得三线共点. 典型例题五
(1)不共面的四点可以确定几个平面? (2)三条直线两两平行但不共面,它们可以确定几个平面? (3)共点的三条直线可以确定几个平面? 分析:(1)可利用公里3判定。 (2)可利用公里3的推论3判定。 (3)需进行分类讨论判定。 解:(1)不共面的四点可以确定四个平面。 (2)三条直线两两平行但不共面,它们可以确定3个平面。 (3)共点的三条直线可以确定1个或3个平面。 说明:判定平面的个数问题关键是要紧紧地抓住已知条件,要做到不重不漏。 平面的确定问题 主要是根据已知条件和公里3及其3个推论来判定平面的个数。
典型例题六
例6 A、B、C为空间三点,经过这三点: A.能确定一个平面 B.能确定无数个平面 C.能确定一个或无数个平面 D.能确定一个平面或不能确定平面 分析:本题考查空间确定平面的方法,解题的主要依据是公理3及三个推论. 解:由于题设中所给的三点A、B、C并没有指明这三点之间的位置关系, 所以在应用公理3时要注意条件“不共线的三点”. 当A、B、C三点共线时,经过这三点就不能确定平面, 当A、B、C三点不共线时,经过这三点就可以确定一个平面,故选D. 说明:空间确定一平面的方法有多种,既可以根据不共线的三点来确定一个平面,又可以根据空间两相交直线或两平行直线来确定一个平面.
典型例题七
例7 判断题(答案正确的在括号内打“√”号,不正确的在括号内打“×”号). (1)两条直线确定一个平面;( ) (2)经过一点的三条直线可以确定一个平面;( ) (3)两两相交的三条直线不共面;( ) (4)不共面的四点中,任何三点不共线.( ) 分析:(1)两条直线能否确定平面,应注意这两条直线的位置关系,不给出位置关系则要分情况讨论,才可得出结论.两条相交直线可确定一个平面,两条平行直线可确定一个平面,高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 4 -
除此以外的任何两条直线不能确定平面; (2)经过一点的两条直线可确定一个平面,三条直线不一定能确定平面; (3)三条直线两两相交,若不共点时这三条直线必共面; (4)如果有三点共线,则此三点所在直线与第四点必同在某一平面内,即四点共面. 解:(1)× (2)× (3)× (4)√. 说明:由(3)题的分析过程可知:两两相交的三条直线有时共面有时不共面.那么对于空间四条直线何时共面何时不共面呢?
典型例题八
例8 如图,在正方体1111DCBAABCD中,点E、F分别是棱1AA、1CC的中点,试画出过点1D、E、F三点的截面.
分析:本题考查作多面体截面的能力,主要依据是公理1和公理2欲画出所要求的截面与正方体各个侧面的交线.
解:连FD1并延长FD1与DC的延长线交于点H,连结ED1与DA的延长线交于点G,
连结GH与AB、BC两条棱交于点B,连结BE、BF,则FBED1就是过点1D、E、F三点的截面. 说明:本题亦可以证明点B、E、1D、F四点共面.若E、F不是棱AA1与CC1的中点,则作图过程中GH不一定过点B,所画的截面多边形可能是五边形. 典型例题九
例9 判断下列说法是否正确?并说明理由. (1)平行四边形是一个平面. (2)任何一个平面图形都是一个平面. (3)空间图形中先画的线是实线,后画的线是虚线. 解:(1)不正确.平行四边形它仅是平面上四条线段构成的图形,它是不能无限延伸的. 说明:在立体几何中,我们通常用平行四边形表示平面,但绝不是说平行四边形就是平面.
(2)不正确.平面图形和平面是完全不同的两个概念,平面图形是有大小,它是不可能无限延展的. 说明:要严格区分“平面图形”和“平面”这两个概念. 高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 5 -
(3)不正确.在空间图形中,我们一般是把能够看得见的线画成实线,把被平面遮住看不见的线画成虚线(无论是题中原有的,还是后引的辅助线). 说明:在平面几何中,凡是后引的辅助线都画成虚线;在立体几何中却不然.有的同学在学习立体几何时,对此点没有认识,必将影响空间立体感的形成,削弱或阻断空间想象能力的培养.
典型例题十
例10 按照给出的要求,完成下面两个相交平面的作图,如下图的(1)、(2)、(3)、(4)、(5)、(6)中的线段AB,分别是两个平面的交线.
解:由两个相交平面的画法:本题只须过线段的端点画出与交线AB平行且相等的线段,即可得到相关的平行四边形,注意被平面遮住的部分应画成虚线或者不画,然后在相关的平面上标上表示平面的字母即可如下图所示.
说明:(1)画好两个相交平面的图形,是画好一切立体图形的基础. (2)画空间图形的过程,是培养我们空间想象能力的过程,一定要认真对待,决不可以掉以轻心.
典型例题十一
例11 (1)一个平面将空间分成几部分? (2)两个平面将空间分成几部分? 高考资源网(ks5u.com) 您身边的高考专家 www.ks5u.com 版权所有@高考资源网 - 6 -
(3)三个平面将空间分成几部分?画出图形,(要求:至少有两种情况有画法过程) 解:(1)一个平面将空间分成两部分. (2)两个平面平行时,将空间分成三部分,两个平面相交时,将空间分成四部分. (3)本小题情况比较复杂,须分类予以处理.
情况1:当平面、平面、平面互相平行(即////),将空间分成四个部分,其图形如右图.
情况2:当平面与平面平行,平面与它们相交(即//,与其相交),将空间分成六部分,其图形如下图. 画法是:
情况3:当平面、平面、平面都相交,且三条交线重合(即l且l) 将空间分成六部分,其图形如下图.
说明:本种情况给出两种图形,一种是将交线画成水平状态,一种是将交线画成竖直状态.
情况4:平面、平面、平面都相交且三条交线共点,但互不重合.(即l,
且与、都相交,三条交线共点).将空间分成八部分,其图形如下图. 画法是:
情况5:平面、平面、平面两两相交且三条交线平行(即l,与、都相交且三条交线平行).将空间分成七部分,其图形如下图.